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AOSC 652: Analysis Methods in AOSC

OH Column: Units of 1012 molecules cm−2  OR
1012 cm−2

How is Trop OH column from a model such as the
Goddard “Global Modeling Initiative” (GMI)

Chemical Transport Model (CTM) 
found ???

Trop: Troposphere
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AOSC 652: Analysis Methods in AOSC

τ CH4 : CH4 Lifetime with respect to loss by reaction w/ tropospheric OH

How found ?!?
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GMIGEOS-Chem

DECCAM-Chem
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Air Quality Model Satellite Data

AOSC 652: Analysis Methods in AOSC
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22 March

NASA Aura MLS ClO
490 K pot’l temp

~18 km
22 March

 2010            2011 

ppb ppb
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2 October 2011
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2 October 2011
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Why else might you need to compute an integral ?

Calculate carbon emissions to compare with change in atmospheric CO2

CO2 emission, 1959 to 2014 = 323.6 Gt C
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Why else might you need to compute an integral ?

Calculate carbon emissions to compare with change in atmospheric CO2

Change in atmospheric CO2, 1959 to 2014  =   82.64 ppm
82.64 ppm × 2.18 Gt C / ppm CO2 = 180.16 Gt C

CO2 emission, 1959 to 2014 = 323.6 Gt C

Legacy of Charles Keeling, Scripps Institution of Oceanography, La Jolla, CA
http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_data_mlo.html

About half of the CO2 released by combustion of
fossil fuels stays in the atmosphere:

rest taken up by land biosphere and oceans

http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_data_mlo.html
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Why might you need to compute an integral ?

Heat Balance in Ocean:
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Why might you need to compute an integral ?

Heat Balance in Ocean:

( )   /  

  

        
0

0 −

− − −

=

∫
∫ OCEAN WARMING

t

SOLAR IR RADIATION EVAPORATION SENSIBLE HEAT LOSS GAIN

t

Q Q Q Q dt

Q dt

This heat then affects temperature in a particular ocean layer via: 

  T   
Z

OCEAN WARMING p

t
c dzQ dt ρ− ∆= ∫∫ 00
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Also known as “quadrature”

Why might you need to compute an integral ?

Find pressure based on the mass of the overlying atmosphere:

Find dynamic height D of ocean based on specific volume α:
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Trapezoidal Rule:
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Trapezoidal Rule:
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Analysis Methods for Engineers, Ayyub and McCuen
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Trapezoidal Rule:
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Base of trapezoid

Analysis Methods for Engineers, Ayyub and McCuen
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Trapezoidal Rule:
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Avg height of end points

Analysis Methods for Engineers, Ayyub and McCuen
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Trapezoidal Rule:
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Analysis Methods for Engineers, Ayyub and McCuen

Case where integration using the trapezoidal rule should work well:
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Trapezoidal Rule:
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Analysis Methods for Engineers, Ayyub and McCuen

Case where integration using the trapezoidal rule may not work well:
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Trapezoidal Rule:
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Error order d2f/dx2: i.e., second derivative of function evaluated at some place
in the interval

Hence, trapezoidal rule is exact for any function whose second derivative
is identically zero.
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Simpson’s Rule:
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What is the basis of this formula?
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Simpson’s Rule:

1
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What is the basis of this formula?
 each point fit by “quadratic” Lagrange polynomials

Analysis Methods for Engineers, Ayyub and McCuen



Copyright © 2016 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 3 Oct 2016

23

AOSC 652: Analysis Methods in AOSC
Numerical Integration

Simpson’s Rule:

1
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What is the basis of this formula?
 each point fit by “quadratic” Lagrange polynomials

Analysis Methods for Engineers, Ayyub and McCuen

See pages 187 to 190 of Numerical Analysis, Burden and Faires,
for a derivation of Simpson’s Rule

in terms of Quadratic Lagrange Polynomials
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Simpson’s Rule:
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Error order d4f/dx4: i.e., fourth derivative of function evaluated at some place
in the interval

Hence, Simpson’s rule is exact for what order polynomial?
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Boole’s Rule (aka as Bode’s rule):
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Error order d6f(x)/dx6: i.e., sixth derivative of function evaluated at some place
in the interval

Hence, Boole’s rule is exact for what order polynomial?
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AOSC 652: Analysis Methods in AOSC
Numerical Integration

Gaussian Quadrature:

y1, y2, … yn   nodes are not uniformly spaced
c1, c2, … cn Gauss coefficients are determined once n is specified

Nice descriptions of theory  at http://en.wikipedia.org/wiki/Gaussian_quadrature
and http://www.efunda.com/math/num_integration/num_int_gauss.cfm
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1 ( )  =  ( ( ))     ( ( )) 
2
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i ia

dxf x dx f g y dy b a c f g y
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Note:

produces exact result for polynomials of degree 3 or less
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3 3−

   −
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∫ f y dy f f

http://en.wikipedia.org/wiki/Gaussian_quadrature
http://www.efunda.com/math/num_integration/num_int_gauss.cfm
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Numerical Integration: Derivation of Simpson’s rule, page 1

R. L. Burden and J. D. Faires, Numerical Analysis, 8th edition
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Numerical Integration: Derivation of Simpson’s rule, page 2

R. L. Burden and J. D. Faires, Numerical Analysis, 8th edition



Copyright © 2016 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 3 Oct 2016

29

Numerical Integration: Derivation of Simpson’s rule, page 3

R. L. Burden and J. D. Faires, Numerical Analysis, 8th edition
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