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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

Suppose: % =f(x,y) with boundary conditions of y, and x,
X

Copyright © 2016 University of Maryland. 2
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty. 16 Nov 2016



AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

Suppose: % =f(x,y) with boundary conditions of y, and x,
X

Euler’s Method:
Ay, = Ax f(xy,),)

Yae =Yo T AN
Ay, =Ax f(x, +Ax,p,,)
YVore =V TAY,

etc.
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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

% — f(x)

Euler’s Method:
Ay, = Ax f(xy,),)

Var =Yoo T AV
Ay, = Ax f(xy + Ax, y,,)

Suppose:

with boundary conditions of y, and x,

Vore =Vae TAY,
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Euler’s method. In this simplest (and least accurate) method for integrating an ODE,
the derivative at the starting point of each interval is extrapolated to find the next function value. The
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Numerical Solution to Differential Equations

Suppose: Q =f(x,y)
dx

Euler’s Method:
Ay, = Ax f(xy,),)

Yae =Yo T AN
Ay, =Ax f(x, +Ax,p,,)
YVore =V TAY,

etc.
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with boundary conditions of y, and x,

The underlying concept for solving differential equations is
to rewrite dy/dx as finite steps Ax and Ay, and multiply the egn
by Ax. In the limit of small step sizes, a good approximation to

the underlying differential equation can be achieved.

Euler’'s method, while conceptually important, is not recommended

for practical use.
Press et al., page 702
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Figure 16.1.1.  Euler’s method. In this simplest (and least accurate) method for integrating an ODE,
the derivative at the starting point of each interval is extrapolated to find the next function value. The

method has first-order accuracy. Press et al
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The underlying concept for solving differential equations is

to rewrite dy/dx as finite steps Ax and Ay, and multiply the egn
by Ax. In the limit of small step sizes, a good approximation to
the underlying differential equation can be achieved.

Euler’'s method, while conceptually important, is not recommended

for practical use.
Press et al., page 702 /
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Numerical Solution to Differential Equations
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YVore =V TAY,
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with boundary conditions of y, and x,

Euler’s method is very simple., very intuitive, and ...
THE WORST POSSIBLE METHOD WE COULD USE
to solve and ODE, in part because the error grows

as the solution progresses

Storey, page 9

/
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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

Suppose: % =f(x,y) with boundary conditions of y, and x,
X

Euler’s Method:
Ay, = Ax f(xy,),)

Yae =Yo T AN
Ay, =Ax f(x, +Ax,p,,)
YVore =V TAY,

etc.

Consider a Taylor Series expansion of f(x,))

FE)= F00r0) + =) S )+ E2 )+
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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

Suppose: % =f(x,y) with boundary conditions of y, and x,
X

Euler’s Method:
Ay, = Ax f(xy,),)

Yae =Yo T AN
Ay, =Ax f(x, +Ax,p,,)
YVore =V TAY,

etc.

Consider a Taylor Series expansion of f(x,))

FE)= F00r0) + =) S )+ E2 )+

Can rewrite Ay, as:

Vae =V TAX f(x,,y,) + error
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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

Suppose: % =f(x,y) with boundary conditions of y, and x,
X

Euler’s Method:
Ay, = Ax f(xy,),)

Yae =Yo T AN
Ay, =Ax f(x, +Ax,p,,)
YVore =V TAY,

etc.

Consider a Taylor Series expansion of f(x,))

FE)= F00r0) + =) S )+ E2 )+

Can rewrite Ay, as:

Vae =V TAX f(x,,y,) + error

What does error equal?
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Numerical Solution to Differential Equations

Suppose: % =f(x,y) with boundary conditions of y, and x,
X

Euler’s Method:
Ay, = Ax f(xy,),)

Yae =Yo T AN
Ay, =Ax f(x, +Ax,p,,)
YVore =V TAY,

etc.

Consider a Taylor Series expansion of f(x,))

FE)= F00r0) + =) S )+ E2 )+

Can rewrite Ay, as:

Vae =V TAX f(x,,y,) + error

2
error = Ax” f'(x,,5,)
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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

d ] .
Suppose: & f(x,y) with boundary conditions of y, and x,
dx Error is “second order”:

Euler’s Method: i.e., varies as AXx 2

Ay, = Ax f(x,,¥,)

Note: Press reading uses
h rather than AX

Yae =Yo T AN
Ay, =Ax f(x, +Ax,p,,)
YVore =V TAY,

etc.

Consider a Taylor Series expansjon of f(x,))

F)= F00r0) + (fx) S0y + E2 )+

Can rewrite Ay, as:

Vae =V TAX f(x,/y,) + error

error = A f'(xy,,)
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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

d ] .
Suppose: & f(x,y) with boundary conditions of y, and x,
dx Error is “second order”:

Euler’s Method: i.e., varies as AXx 2

Ay, = Ax f(x,,¥,)

As we shall see, as AX becomes
smaller, solution becomes more

Var =Vo T AV, accurate.
Ay, = Ax f(xy +Ax, y,.)
Vore =Vae T A,

etc.

Consider a Taylor Series expansjon of f(x,))

F)= F00r0) + (fx) S0y + E2 )+

Can rewrite Ay, as:

Vae =V TAX f(x,/y,) + error

2
error = Ax” f'(x,,5,)
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Numerical Solution to Differential Equations

Suppose: Y _ f(x,y) with boundary conditions of y, and x,

dx Error is “second order”:
Euler’'s Method: i.e., varies as AXx 2

Ay, = Ax f(x,,¥,)

As we shall see, as AX becomes
smaller, solution becomes more

Var =Vo T AV, accurate.
Ay, = Ax f(xy +Ax,¥,,) However, in many geophysical
Vyre =Vn. T AV, appl_lcatlons, the model grid size
X (or timestep) can not be made
etc.

infinitesimally small
Consider a Taylor Series expansjon of f(x,))

F)= F00r0) + (fx) S0y + E2 )+

Can rewrite Ay, as:

Vae =V TAX f(x,/y,) + error

2
error = Ax” f'(x,,5,)
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Numerical Solution to Differential Equations
Let's examine: % =4x with boundary condition y =1, x =1
X

Solution of dy/dz=4x% B.C. y=1, z=1
BLACK : Euler's Method, Grid Size = 0.1
RED : Exact Solution

Vo =Vo TAX f(x,y,y,) T error
error = Ax” f'(x,,,)

Calculations done using FORTRAN code:
~rjs/aosc652/week 12/simple eqn.f
Please have a look at code.
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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

Let's examine: Y _ 4 x° with boundary condition y =1, x =1
dx
Solution of dy/dz=4x> B.C. y=1, z=1
BLACK : Euler's Method, Grid Size = 0.05
RED : Exact Solution

Error = 4.3 %

Vo =Vo TAX f(x,y,y,) T error
error = Ax” f'(x,,,)

Calculations done using FORTRAN code:
~rjs/aosc652/week 12/simple eqn.f
Please have a look at code.
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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

Let's examine: Y _ 4 x° with boundary condition y =1, x =1
dx
Solution of dy/dz=4x> B.C. y=1, z=1
BLACK : Euler's Method, Grid Size = 0.025
RED : Exact Solution

16—

Error = 2.2 %

Vo =Vo TAX f(x,y,y,) T error
error = Ax” f'(x,,,)

Calculations done using FORTRAN code:
~rjs/aosc652/week 12/simple eqn.f
Please have a look at code.
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AOSC 652: Analysis Methods in AOSC

Modified Euler’s Method (Storey reading):
 Evaluate slope at start of interval

« Estimate value of dependent variable (y) at end of interval
using Euler’s method
 Evaluate slope at end of interval

* Average two slopes
« Compute revised value of dependent variable at end of interval
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AOSC 652: Analysis Methods in AOSC

Mid-point Method (Press reading):
 Evaluate slope at start of interval

» Rather than stepping to end of interval, take a half step (0.5 h in Press)
 Evaluate slope at halfway point
» Use slope at halfway point to step forward full step (h)

y(x)

Press et al., page 705

——

X X2 X3 X

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at
each step to find a point halfway across the interval, then using the midpoint derivative across the full
width of the interval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.
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AOSC 652: Analysis Methods in AOSC

Mid-point Method (Press reading):
 Evaluate slope at start of interval

» Rather than stepping to end of interval, take a half step (0.5 h in Press)
 Evaluate slope at halfway point
» Use slope at halfway point to step forward full step (h)

y(x)

Press et al., page 705

——

X X2 X3 X

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at
each step to find a point halfway across the interval, then using the midpoint derivative across the full
width of the interval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.

« Can show using Taylor series expansion that error is order h 3
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AOSC 652: Analysis Methods in AOSC

Let's examine: Y _ 4 x° with boundary condition y =1, x =1

dx
Solution of dy/dz=4x3; B.C. y=1, z=1
BLACK : Euler's Method, Grid Size = 0.1
RED : Exact Solution

16—

Error = 8.6 %

Vo =V TAX f(x,y,y,) T error
error = Ax’ f'(xy,,)

Calculations done using FORTRAN code:
~rjs/aosc652/week 12/simple eqn.f

Please have a look at code.
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AOSC 652: Analysis Methods in AOSC

Let's examine: Y _ 4 x° with boundary condition y =1, x =1

dx

Solution of dy/dx=4z>; B.C. y=1, z=1
BLACK : Modified Euler's Method, Grid Size = 0.1
RED : Exact Solution

Ve =Vo T
Ax 0.5[ f (%0, 39) + f (%, +Ax, y, + )] +
error,

where I' = Ax f(x,,),)

3

Ax
error ~ — (%45 ¥,)

Calculations done using FORTRAN code:
~rjs/aosc652/week 12/simple eqn.f
Please have a look at code.
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AOSC 652: Analysis Methods in AOSC

Runge-Kutta Method:
a) Evaluate slope at start of interval (S,)

b) Compute value of dependent variable at mid-point of interval (y,,,»)

c) Compute slope at mid-point of interval (S,)

d) Revise value of dependent variable at mid-point using S,

e) Revise value of slope at mid-point (S3) using S, and y,, »

f) Compute value of dependent variable at end of interval using ¥, and S,

g) Compute value of slope at end of interval using S;and value of y at
end of interval from step f

h) Compute value of dependent variable at end of interval (y,,):

706 Chapter 16.  Integration of Ordinary Differential Equations

) 1

~
S~
~.

Figure 16.1.3. Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the initial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives the
final function value (shown as a filled dot) is calculated. (See text for details.)
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AOSC 652: Analysis Methods in AOSC

Runge-Kutta Method:
a) Evaluate slope at start of interval (S,)

b) Compute value of dependent variable at mid-point of interval (y,,,»)

c) Compute slope at mid-point of interval (S,)

d) Revise value of dependent variable at mid-point using S,

e) Revise value of slope at mid-point (S3) using S, and y,, »

f) Compute value of dependent variable at end of interval using y and S,

g) Compute value of slope at end of interval using S;and value of y at
end of interval from step f

h) Compute value of dependent variable at end of interval (y,,):

Ve =Vo T %]‘(S1 +28,+28,+S,) +error

Ax

5
error = = f"(x,.30)
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AOSC 652: Analysis Methods in AOSC
Runge-Kutta Method:

Please see pages 704 to 708 of Press for erudite description of benefits
and possible pitfalls of the Runge-Kutta method, for two Runge-Kutta
subroutines, and for the following succinct description of the method:

By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

’Cl = hf(.’L‘-n, yn) + this fis S1

= hf(z, + g,yn %)*thisfissz
h ks o
ks = hf(z, + 5 Yn -~ —2—) — this fis S,

ks = hf(zp + h,yn + k3) ¢+ thisfis S,
kl k k3 k4

= —_ i pad e} 5
Uni1=yn+ =+ 3 + 5+ +OR) (16.1.3)

nn

)

error =

l
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= hf(z, + g,yn %)*thisfissz
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AOSC 652: Analysis Methods in AOSC
Runge-Kutta Method:

In fact you can get pretty far on this old workhorse ... RK'is for
ploughing the fields. Even the old workhorse is more nimble with
new horseshoes (adaptive stepsize) Press et al., page 706

By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

’Cl = hf(.’L‘-n, yn) + this fis S1

ko = hf(z, + -}E,yn—k %1—) +« this fis S,

2
ks = hf(z, + g,yn + %2—) — this fis S,
ks = hf(zp + h,yn + k3) ¢+ thisfis S,
kl ko ks k4 5
Untl =Yn+ —+ — + =+ — + O(h°) (16.1.3)

6 3 3 6

AXS
error & = - "%y, %)
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AOSC 652: Analysis Methods in AOSC
Runge-Kutta Method:

The other methods (Bulirsch-Stoer or predictor-corrector) can be
very efficient when high accuracy is required ... but these methods
are the high-strung racehorses of ODE solvers.  Press et al., page 706

By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

’Cl = hf(.’L‘-n, yn) + this fis S1

ko = hf(z, + -}E,yn—k %1—) +« this fis S,

2
ks = hf(z, + g,yn + %2—) — this fis S,
ks = hf(zp + h,yn + k3) ¢+ thisfis S,
kl ko ks k4 5
Untl =Yn+ —+ — + =+ — + O(h°) (16.1.3)

6 3 3 6

AXS
error & = - "%y, %)
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AOSC 652: Analysis Methods in AOSC
Runge-Kutta Method:

One of the standard workhorses for solving ODEs is called the
Runge-Kutta method, which is a higher order approximation to
the midpoint method. Storey, page 19

By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

’Cl = hf(.’L‘-n, yn) + this fis S1

ko = hf(z, + -}E,yn—k %1—) +« this fis S,

2
ks = hf(z, + g,yn + %2—) — this fis S,
ks = hf(zp + h,yn + k3) ¢+ thisfis S,
kl ko ks k4 5
Untl =Yn+ —+ — + =+ — + O(h°) (16.1.3)

6 3 3 6

AXS
error & = - "%y, %)
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AOSC 652: Analysis Methods in AOSC
Runge-Kutta Method:

One of the standard workhorses for solving ODEs is called the
Runge-Kutta method, which is a higher order approximation to
the midpoint method. Storey, page 19

By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

ki = hf(€n,yn) « this fis S,

= hf(z, + g,yn %1—)<—thisfisS2
h ko e
ks = hf(z, + 5 Yn -~ —2—) — this fis S,

ks =hf(zn + h,yn + k3) <« thisfis S,
kl k k3 k4

— e A i s 5
Uni1=yn+ =+ 3 + 5+ +OR) (16.1.3)

nn

)

error =

What should happen when we apply the
Runge-Kutta method to: ﬂ =4y ?

dx 30
Copyright © 2016 University of Maryland.
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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

Euler’s Method Runge-Kutta Method
Solution of dy/dz=4z>; B.C. y=1, z=1 Solution of dy/dzx=4z>; B.C. y=1, z=1
BLACK : Euler's Method, Grid Size = 0.1 BLACK : Runge—Kutta, Grid Size = 0.1
RED : Exact Solution RED : Exact Solution
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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

Euler’s Method Runge-Kutta Method
Solution of dy/dz=4z>; B.C. y=1, z=1 Solution of dy/dzx=4z>; B.C. y=1, z=1
BLACK : Euler's Method, Grid Size = 0.1 BLACK : Runge—Kutta, Grid Size = 0.25
RED : Exact Solution RED : Exact Solution

Error = 0.0 %

Copyright © 2016 University of Maryland. 32
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty. 16 Nov 2016



AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

Euler’s Method Runge-Kutta Method
Solution of dy/dz=4z>; B.C. y=1, z=1 Solution of dy/dzx=4z>; B.C. y=1, z=1
BLACK : Euler's Method, Grid Size = 0.1 BLACK : Runge—Kutta, Grid Size = 0.5
RED : Exact Solution RED : Exact Solution
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AOSC 652: Analysis Methods in AOSC

Numerical Solution to Differential Equations

Euler’s Method Runge-Kutta Method
Solution of dy/dz=4z>; B.C. y=1, z=1 Solution of dy/dzx=4z>; B.C. y=1, z=1
BLACK : Euler's Method, Grid Size = 0.1 BLACK : Runge—Kutta, Grid Size = 0.5
RED : Exact Solution RED : Exact Solution
1 | I | I | | I
16— 16 —
12— 12—
> i > ]
8 8 | —

Calculations done using FORTRAN code:
~rjs/aosc652/week 12/simple eqn.f

Please have a look at code.

|.|.: O%.|.|.|.:

1.6 1.8 2.0 1.0 1.2 1.4 1.6 1.8 2.0
X
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AOSC 652: Analysis Methods in AOSC

Lorenz Equations

The equations [Lorenz derived were:

dzx .

- = 10(y — =) (6.6)
dy

dz 8

We will not discuss the derivation of these equations but they were
based on physical arguments relating to atmospheric convection. The
variables z, vy, z represent physical quantities such as temperatures and
flow velocities, while the numbers 10, 20, and 8/3 represent properties
of the air.

Lorenz, Journal of the Atmospheric Sciences, 1963
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AOSC 652: Analysis Methods in AOSC

Lorenz Equations

dz
E—lo(y*ﬂf)

%’-zm(?ﬂ—z)—y
a Y73

Copyright © 2016 University of Maryland.
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Calculations done using FORTRAN code:
~rjs/aosc652/week 12/lorenz_eqns.f
Please have a look at code.

Solution to Lorenz Eqgns
IC for x, y, z : 27, 0, 0; At= 0.01
e t=1 o t=7 mt=30
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Lorenz Equations

dx Calculations done using FORTRAN code:
a 10(y — ) ~rjs/aosc652/week_12/lorenz_eqns.f
d Please have a look at code.
2 _ (20 —2) —y
dt _
dz x 82 IC f SOlUtlonzj;osl_oore:ZoE?nZt 0.01
—_— =Y — = or X, Y, Z: .3, 0.1, 0.1; At= 0.
dt 3 et=1 ot=7 =t=30
1 | | | I | I | 1
40 (—
30 —
N I
20—
10—
0
=20

Copyright © 2016 University of Maryland.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty.

37
16 Nov 2016



AOSC 652: Analysis Methods in AOSC

Lorenz Equations

dx Calculations done using FORTRAN code:
a 10(y — x) ~rjs/aosc652/week_12/lorenz_eqns.f
d Please have a look at code.
2 _ (20 —2) —y
dt _
dz 8 Solution to Lorenz Eqgns
EZ =Y — gz IC for x, y, z : 27.1, 0.3, 0.3; At= 0.01

o t=1 o t=7 at=30
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Lorenz Equations If you’d like to see Matlab code that solves these
da eqns, have a look at
qaH 10(y — z) ~rjs/aosc652/week 12/lorenz.m
%’- =xz(20—-2) —y
dz 8 Solution to Lorenz Eqgns
EZ =Y — gz IC for x, y, z : 27.1, 0.3, 0.3; At= 0.01

o t=1 o t=7 at=30
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