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AOSC 652: Analysis Methods in AOSC
Partial Differential Equations

Alternate forms of this equation:

where c is specific heat
 is density

and k is thermal conductivity

Classic PDE that describes the flow of heat along a pipe:

2

2( , ) ( , )u ux t K x t
t x

 


 
(1)

( , , , ) ( , , ) ( , , , ) ( , , ) ( , , , )

                         ( , , ) ( , , , )

u u u u uc x y z t k x y z x y z t k x y z x y z t
t x x y y

u uk x y z x y z t
z z


                 

      
(2)
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AOSC 652: Analysis Methods in AOSC

Classic PDE that describes the flow of heat along a pipe:
Partial Differential Equations

2

2( , ) ( , )u ux t K x t
t x

 


 

Alternate forms of this equation:

( , , , ) ( , , ) ( , , , ) ( , , ) ( , , , )

                         ( , , ) ( , , , )

u u u u uc x y z t k x y z x y z t k x y z x y z t
t x x y y

u uk x y z x y z t
z z


                 

      

Equation can be re-written (and solved in a straight forward manner)
if c, , and k are constant wrt spatial dimensions:

(1)

(2)

2 2 2

2 2 2( , , , ) ( , , , ) ( , , , ) ( , , , )c u u u ux y z t x y z t x y z t x y z t
k t x y z
    

  
   

(3)
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AOSC 652: Analysis Methods in AOSC

Classic PDE that describes the flow of heat along a pipe:
Partial Differential Equations

Equation can be re-written (and solved in a straight forward manner)
if c, , and k are constant wrt spatial dimensions:

2 2 2

2 2 2( , , , ) ( , , , ) ( , , , ) ( , , , )c u u u ux y z t x y z t x y z t x y z t
k t x y z
    

  
   

(3)

         where  is temperature,
                  is the gradient of temperature
                   is the divergence operator
                     is the density
                   is the heat cap

T
T

C





pacity

                     is the heat added to the system
        and        is the thermal conductivity

Q
k

How might a physicist write this same equation?



Copyright © 2016 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 21 Nov 2016

5

AOSC 652: Analysis Methods in AOSC
Partial Differential Equations

Another application of this same equation in AOSC that does not involve
Temperature or Heat:

Classic PDE that describes the flow of heat along a pipe:
2

2( , ) ( , )u ux t K x t
t x

 


 
(1)

2

2

 Carbon Carbon(z, ) ( , )

              where Carbon is the Dissolved Inorganic Carbon content of the ocean
                                    is the depth of the ocean
                        

t K z t
t z

z

 


 

           is the eddy diffusion coefficie
        

nt
   

K

(5)
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AOSC 652: Analysis Methods in AOSC

A classic example of PDEs from oceanography:

For the barotropic, tropical ocean, the linear inviscid governing        
equations (Gill, 1982) are:

Partial Differential Equations
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AOSC 652: Analysis Methods in AOSC
Partial Differential Equations
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A classic example of PDEs from atmospheric sciences:

For the barotropic atmosphere the governing        
equations (Anderson and McCreary, 1985) are:

(7a)

(7b)

(7c)
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AOSC 652: Analysis Methods in AOSC
Partial Differential Equations

Coupled ocean/atmosphere system:
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AOSC 652: Analysis Methods in AOSC

One more example of a classic PDE from AOSC:
Potential Vorticity:

where: 
PV is potential vorticity
f is Coriolis Parameter, 2Ωsin(Latitude), where Ω is angular speed of Earth’s rotation (s1)
g is gravitational acceleration (m s2)
p is pressure (mbar, or force/area  kg m s2 / m2 )
 is potential temperature (K)
 is relative isentropic vorticity (s1)

 θ
θ =   +  PV g f
p

 




u     evaluated on an isentropic surfacev
x y
 

 
 

Partial Differential Equations

Units: K m2 s1 kg1 .  The quantity 106 K m2 s1 kg1 is often called MKS PV units 

(8a)

(8b)
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AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations

Classic PDE that describes the flow of heat along a pipe:
2

2( , ) ( , )u ux t K x t
t x

 


 
(1)

Typically in atmospheric and oceanic sciences, PDEs are solved numerically
rather than analytically:

although in many cases analytic manipulation is key to understanding     
the solutions (e.g., wave propagation) or even being able to proceed   
with a numerical solution

Three aspects of Numerical Solutions to PDEs that must be considered:
1.  Initial Conditions and Boundary Conditions
2.  Numerical Stability
3.  Numerical Diffusion

Note: material presented in this part of the lecture is based on
Chapter 12 (Numerical Solutions to PDEs) of Numerical Analysis,
8th Edition, by Richard L. Burden and J. Douglass Faires
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AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations

Classic PDE that describes the flow of heat along a pipe:
2

2( , ) ( , )u ux t K x t
t x

 


 
1.  Initial Conditions (IC) and Boundary Conditions (BC)

For the heat diffusion equation, must typically specify distribution of
temperature (or heat) at all locations for t = 0

Also, must specify either value of temperature (or heat) at boundary:

or flux of temperature (or heat) at boundary:

( ,0)  ( )u x f x

(1)

(IC)

0(0, )      and     ( , )       where the rod has length  Lu t u u L t u L  (BCa)

(0, ) 0     and     ( , ) 0    if the rod is insulatedu ut L t
x x
 

 
  on both ends 

(BCb)

Let’s examine how our solution depends on IC and BC !
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AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations

Classic PDE that describes the flow of heat along a pipe:
2

2( , ) ( , )u ux t K x t
t x

 


 
(1)

on both ends 

1.  Initial Conditions (IC) and Boundary Conditions (BC)
For the heat diffusion equation, must typically specify distribution of
temperature (or heat) at the all locations for t = 0

Also, must specify either value of temperature (or heat) at boundary:

or flux of temperature (or heat) at boundary:

( ,0)  ( )u x f x (IC)

0(0, )      and     ( , )       where the rod has length  Lu t u u L t u L  (BCa)

(0, ) 0     and     ( , ) 0    if the rod is insulatedu ut L t
x x
 

 
 

(BCb)

Let’s examine how our solution depends on IC and BC !

on both ends 

1.  Initial Conditions (IC) and Boundary Conditions (BC)
For the heat diffusion equation, must typically specify distribution of
temperature (or heat) at the all locations for t = 0

Also, must specify either value of temperature (or heat) at boundary:

or flux of temperature (or heat) at boundary:

( ,0)  ( )u x f x (IC)

0(0, )      and     ( , )       where the rod has length  Lu t u u L t u L  (BCa)

(0, ) 0     and     ( , ) 0    if the rod is insulatedu ut L t
x x
 

 
 

(BCb)

Let’s examine how our solution depends on IC and BC !

0
0lim  ( , )   +  Lu uu x t u x

L



t 

Can show that for BCa

lim  ( , )  Constantu x t 
t 

Can show that for BCb
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AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations

Classic PDE that describes the flow of heat along a pipe:

2.  Numerical Stability

2

2( , ) ( , )u ux t K x t
t x

 


 
(1)

(0, ) ( , ) 0,     0    and    ( ,0) ( ),     0u t u L t t u x f x x L     

Select a time-step size k
2

1
2

( , ) ( , )
( , )   +   

2
i j i j

i j

u x t u x tu k ux t
t k t

 
 

 


Select a spatial-step size h

Then:

2 2 4

2 2

( , ) 2 ( , ) ( , )
( , )      

12 4
i j i j i j

i j

u x h t u x t u x h tu h ux t
x h x

    
  

 


, , 1 1, , 1,
2

2
   = 0i j i j i j i j i ju u u u u

K
k h

    


(IC) & (BCa)
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AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations

Classic PDE that describes the flow of heat along a pipe:

2.  Numerical Stability

2

2( , ) ( , )u ux t K x t
t x

 


 
(1)

(0, ) ( , ) 0,     0    and    ( ,0) ( ),     0u t u L t t u x f x x L      (IC) & (BCa)

The relation:
, , 1 1, , 1,

2

2
   = 0i j i j i j i j i ju u u u u

K
k h

    


combined with the IC & BC imply:

1, 1, 1

2, 2, 1

1, 1, 1

(1+2 ) 0 0
(1 2 )

 =(1 2 )

0 (1 2 )
                          
                                       

j j

j j

m j m j

u u
u u

u u

 
  

  
 

 





  

 
           
                           


 

 
 

  
 

2                                  where  = ( / )K k h
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AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations

Classic PDE that describes the flow of heat along a pipe:

2.  Numerical Stability

2

2( , ) ( , )u ux t K x t
t x

 


 
(1)

(0, ) ( , ) 0,     0    and    ( ,0) ( ),     0u t u L t t u x f x x L      (IC) & (BCa)

The relation:
, , 1 1, , 1,

2

2
   = 0i j i j i j i j i ju u u u u

K
k h

    


combined with the IC & BC imply:

1, 1, 1

2, 2, 1

1, 1, 1

(1+2 ) 0 0
(1 2 )

 =(1 2 )

0 (1 2 )
                          
                                       

j j

j j

m j m j

u u
u u

u u

 
  

  
 

 





  

 
           
                           


 

 
 

  
 

2                                  where  = ( / )K k h
Another matrix equation, finally !
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1, 1, 1

2, 2, 1

1, 1, 1

(1+2 ) 0 0
(1 2 )

 =(1 2 )

0 (1 2 )
                          
                                       

j j

j j

m j m j

u u
u u

u u

 
  

  
 

 
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

  
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           
                           


 

 
 

  
 

2                                  where  = ( / )K k h

AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations

2.  Numerical Stability has “everything to do” with the properties of the matrix !
It can be shown that, due to the properties of the eigenvalues of this matrix,
it’s inverse must exist: therefore, can always find values of u at time j
based on knowledge of values at time j  1

This solution backward difference or implicit soln is said to be 
unconditionally stable
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AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations

2. Numerical Stability has “everything to do” with the properties of the matrix !
It can be shown that, due to the properties of the eigenvalues of this matrix,
it’s inverse must exist: therefore, can always find values of u at time j
based on knowledge of values at time j  1

This solution backward difference or implicit soln is said to be 
unconditionally stable

Interestingly, had we defined:

we would have arrived at a different matrix that can only be inverted
when k, h, and K satisfy a specific relation.  This solution, called the
forward difference or explicit soln is said to be conditionally stable

2
1

2

( , ) ( , )
( , )      

2
i j i j

i j

u x t u x tu k ux t
t k t

  
  

 

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AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations
3.  Numerical Diffusion

Consider the continuity equation:

Let’s examine the advective term & consider transport of a square wave to the right with velocity v:

Move the material 0.1 
grid box to the right:

Note: material presented in this part of the lecture is based on
an excellent presentation by Anne Douglass (NASA GSFC)
that was given at the University of Toronto, available on the web at:

http://www.atmosp.physics.utoronto.ca/MAM/douglass2.ppt

  ( ) + Chemical v Chemical Production Loss
t


   


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AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations
3.  Numerical Diffusion

Consider the continuity equation:

Let’s examine the advective term & consider transport of a square wave to the right with velocity v:

Move the material 0.1 
grid box to the right: “Physical” solution

“Mathematical” solutionUpwind material mixes 
uniformly in neighboring 
grid box.

Critical aspect: what happens at next time step!

  ( ) + Chemical v Chemical Production Loss
t


   


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AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations
3.  Numerical Diffusion

Consider the continuity equation:

Let’s examine the advective term & consider transport of a square wave to the right with velocity v:

Move the material 0.1 
grid box to the right: “Physical” solution

“Mathematical” solutionUpwind material mixes 
uniformly in neighboring 
grid box.

Next time step: some of the material
will appear here, which disagrees with 
physical solution (i.e., non-physical)

  ( ) + Chemical v Chemical Production Loss
t


   


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AOSC 652: Analysis Methods in AOSC
Numerical Solutions to Partial Differential Equations
3.  Numerical Diffusion

Consider the continuity equation:

Let’s examine the advective term & consider transport of a square wave to the right with velocity v:

Move the material 0.1 
grid box to the right: “Physical” solution

“Mathematical” solutionUpwind material mixes 
uniformly in neighboring 
grid box.

Next time step: some of the material
will appear here, which disagrees with 
physical solution (i.e., non-physical)NUMERICAL DIFFUSION

  ( ) + Chemical v Chemical Production Loss
t


   


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Prather, M. J., Numerical advection by conservation of second-order moments, JGR, 91, 
6671-6681, 1986 developed an algorithm that almost exactly accounts for the
advective transport of a constituent in grid box of appropriate size of 3D climate model

Advantages: Non-diffusive, mass-conserving, numerically stable

Disadvantage:  Computational requirements (need nine 3D arrays for each constituent)

Take home message: if conducting 3D calculations of the distribution of a constituent 
that involves the solution of a PDE, will often have to consider (and account for) 

effects of numerical diffusion (there are numerous schemes to consider)

AOSC 652: Analysis Methods in AOSC
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