Introduction to Photolysis

AOSC / CHEM 433 & AOSC / CHEM 633

Ross Salawitch

Figure 3.3.2, Wilmouth, Salawitch, and Canty, 2018 https://www2.atmos.umd.edu/~rjs/class/spr2020/readings/green_chemistry_chapter_3.3.pdf

Lecture 11 20 October 2020

1

Copyright © 2020 University of Maryland.

According to Section 2.6 of Chemistry in Context:

a) what is the upper limit for photodissociation of O_2 ?

b) what is the classification of this type of radiation?

c) how damaging is this radiation and would it be a problem, for humans to be exposed to this type of radiation?

According to Section 2.6 of Chemistry in Context:

a) what is the upper limit for photodissociation of O_3 ?

b) what is the classification of this type of radiation?

c) how damaging is this radiation and would it be a problem, for humans to be exposed to this type of radiation?

Figure 2.12 of the Warneck reading shows the photodissocation *frequency* of O_2 and O_3 , termed J_{O2} and J_{O3} , as a function of altitude. An altitude of 15 km corresponds to Earth's upper troposphere. Also, the lifetime for loss by dissociation is given by the reciprocal of the photodissociation frequency.

Calculate the lifetimes for loss of O_2 and for loss of O_3 by photodissociation at 15 km, in units that you can easily conceptualize. Then, for each molecule, state whether you think the gas will be lost by photodissociation in Earth's upper troposphere.

Copyright © 2020 University of Maryland.

$$O_2 \xrightarrow[(\lambda \le 242 \text{ nm})]{\text{UV photons}} 2 \text{ O}$$

Equation 2.4, Chemistry in Context

Copyright © 2020 University of Maryland.

Copyright © 2020 University of Maryland.

Copyright © 2020 University of Maryland.

According to Section 2.6 of Chemistry in Context:

a) what is the upper limit for photodissociation of O₂

b) what is the classification of this type of radiation?

c) how damaging is this radiation and would it be a problem, for humans to be exposed to this type of radiation?

O₂ protects us even more so than O₃

According to Section 2.6 of Chemistry in Context:

a) what is the upper limit for photodissociation of O_3

b) what is the classification of this type of radiation?

c) how damaging is this radiation and would it be a problem, for humans to be exposed to this type of radiation?

Wilmouth et al., 2018

Copyright © 2020 University of Maryland.

According to Section 2.6 of Chemistry in Context:

a) what is the upper limit for photodissociation of O₂

b) what is the classification of this type of radiation?

c) how damaging is this radiation and would it be a problem, for humans to be exposed to this type of radiation?

O₂ protects us even more so than O₃

According to Section 2.6 of Chemistry in Context:

a) what is the upper limit for photodissociation of O_3

b) what is the classification of this type of radiation?

c) how damaging is this radiation and would it be a problem, for humans to be exposed to this type of radiation?

When we examine skin cancer and ozone depletion, it is all about UV-B radiation.

Wilmouth et al., 2018

Copyright © 2020 University of Maryland.

Figure 2.12 of the Warneck reading shows the photodissocation *frequency* of O_2 and $O_{3,}$ termed J_{O2} and $J_{O3,}$ as a function of altitude. An altitude of 15 km corresponds to Earth's upper troposphere. And, the lifetime for loss by dissociation is given by the reciprocal of the photodissociation frequency.

Calculate the lifetimes for loss of O_2 and for loss of O_3 by photodissociation, for the upper troposphere, in units that you can easily conceptualize. Then, for each molecule, state whether you think the gas will be lost by photodissociation in Earth's upper troposphere.

Copyright © 2020 University of Maryland.

Figure 2.12 of the Warneck reading shows the photodissocation *frequency* of O_2 and $O_{3,}$ termed J_{O2} and $J_{O3,}$ as a function of altitude. An altitude of 15 km corresponds to Earth's upper troposphere. And, the lifetime for loss by dissociation is given by the reciprocal of the photodissociation frequency.

Calculate the lifetimes for loss of O_2 and for loss of O_3 by photodissociation, for the upper troposphere, in units that you can easily conceptualize. Then, for each molecule, state whether you think the gas will be lost by photodissociation in Earth's upper troposphere

Copyright © 2020 University of Maryland.

Figure 2.12 of the Warneck reading shows the photodissocation *frequency* of O_2 and $O_{3,}$ termed J_{O2} and $J_{O3,}$ as a function of altitude. An altitude of 15 km corresponds to Earth's upper troposphere. And, the lifetime for loss by dissociation is given by the reciprocal of the photodissociation frequency.

Calculate the lifetimes for loss of O_2 and for loss of O_3 by photodissociation, for the upper troposphere, in units that you can easily conceptualize. Then, for each molecule, state whether you think the gas will be lost by photodissociation in Earth's upper troposphere

Copyright © 2020 University of Maryland.

Figure 2.12 of the Warneck reading shows the photodissocation *frequency* of O_2 and $O_{3,}$ termed J_{O2} and $J_{O3,}$ as a function of altitude. An altitude of 15 km corresponds to Earth's upper troposphere. And, the lifetime for loss by dissociation is given by the reciprocal of the photodissociation frequency.

Calculate the lifetimes for loss of O_2 and for loss of O_3 by photodissociation, for the upper troposphere, in units that you can easily conceptualize. Then, for each molecule, state whether you think the gas will be lost by photodissociation in Earth's upper troposphere

Copyright © 2020 University of Maryland.

Figure 2.12 of the Warneck reading shows the photodissocation *frequency* of O_2 and O_3 , termed J_{O2} and J_{O3} , as a function of altitude. An altitude of 15 km corresponds to Earth's upper troposphere. And, the lifetime for loss by dissociation is given by the reciprocal of the photodissociation frequency.

Calculate the lifetimes for loss of O_2 and for loss of O_3 by photodissociation, for the upper troposphere, in units that you can easily conceptualize. Then, for each molecule, state whether you think the gas will be lost by photodissociation in Earth's upper troposphere

Lifetime O₂ at 15 km = $[O_2] / (J_{O2} [O_2]) = 1/J_{O2} = 1/(10^{-15} \text{ sec}^{-1}) = 10^{15} \text{ sec or 31 million years!}$ Lifetime O₃ at 15 km = $[O_3] / (J_{O3} [O_3]) = 1/J_{O3} = 1/(5 \times 10^{-4} \text{ sec}^{-1}) = 2000 \text{ sec or 0.5 hour}$

Copyright © 2020 University of Maryland.

Figure 2.12 of the Warneck reading shows the photodissocation *frequency* of O_2 and $O_{3,}$ termed J_{O2} and $J_{O3,}$ as a function of altitude. An altitude of 15 km corresponds to Earth's upper troposphere. And, the lifetime for loss by dissociation is given by the reciprocal of the photodissociation frequency.

Calculate the lifetimes for loss of O_2 and for loss of O_3 by photodissociation, for the upper troposphere, in units that you can easily conceptualize. Then, for each molecule, state whether you think the gas will be lost by photodissociation in Earth's upper troposphere.

Lifetime O₂ at 15 km = $[O_2] / (J_{O2} [O_2]) = 1/J_{O2} = 1/(10^{-15} \text{ sec}^{-1}) = 10^{15} \text{ sec or 31 million years!}$ Lifetime O₃ at 15 km = $[O_3] / (J_{O3} [O_3]) = 1/J_{O3} = 1/(5 \times 10^{-4} \text{ sec}^{-1}) = 2000 \text{ sec or 0.5 hour}$

Copyright © 2020 University of Maryland.

Biological Effects of UV Radiation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 2.4	Types of UV Radiation				
Туре	Wavelength	Relative Energy	Comments		
UV-A	320–400 nm	Lowest energy	Least damaging and reaches the Earth's surface in greatest amount		
UV-B	280–320 nm	Higher energy than UV-A but less energetic than UV-C	More damaging than UV-A but less damaging than UV-C. Most UV-B is absorbed by O ₃ in the stratosphere		
UV-C	200–280 nm	Highest energy	Most damaging but not a problem because it is totally absorbed by O_2 and O_3 in the stratosphere		

Chemistry in Context

Wavelength (nm)

Figure 2.11, Chemistry in Context

Copyright © 2020 University of Maryland.

Biological Effects of UV Radiation

Fig. 1. Biologically active UV radiation. The overlap between the spectral irradiance $F(\lambda)$ and the erythemal action spectrum $B(\lambda)$ given by McKinlay and Diffey [6] shows the spectrum of biologically active radiation, $F(\lambda)B(\lambda)$. The area under the product function $F(\lambda)B(\lambda)$ is the biologically active dose rate. For a total ozone column of 348 DU.

Humans are:

- strongly affected by exposure to UV-C radiation (100 to 280 nm)
- moderately affected by exposure to UV-B radiation

(280 to 315 nm)

• weakly affected by exposure to UV-A radiation (315 to 400 nm)

http://www.who.int/uv/uv_and_health/en

From Mandronich et al., J. Photochemistry and Photobiology, vol. 46, pg. 5, 1998

The "biologically active dose rate" maximizes in the UV-B region at ~305 nm

Copyright © 2020 University of Maryland.

Relationship Between Cancer and UV

Scotto and Fraumeni, Cancer Epidemiology, W. B. Saunders and Co, Philadelphia, 1982.

Copyright © 2020 University of Maryland.

Relationship Between Cancer and UV

Scotto and Fraumeni, Cancer Epidemiology, W. B. Saunders and Co, Philadelphia, 1982.

Factor of 2 rise in UV Index leads to factor of 4 rise in Non-Melanoma Skin Cancer:

i.e., <u>Non-Melanoma Skin Cancer</u> rises <u>about twice as fast</u> as incident solar ultraviolet (UV) radiation

Factor of 2 rise in UV Index leads to factor of 2 rise in Melanoma Skin Cancer:

i.e., <u>Melanoma Skin Cancer</u> rises at about the <u>same rate</u> as incident solar ultraviolet (UV) radiation

Copyright © 2020 University of Maryland.

Relationship Between UV and Column Ozone

Fig. 2. Dependence of erythemal ultraviolet (UV) radiation at the Earth's surface on atmospheric ozone, measured on cloud-free days at various locations, at fixed solar zenith angles. Legend: South Pole [8]; Mauna Loa, Hawaii [9]; Lauder, New Zealand [10]; Thessaloniki, Greece (updated from Ref. [11]); Garmisch, Germany [12]; and Toronto, Canada (updated from Ref. [13]).

Madronich et al., J. of Photochemistry and Photobiology B, Vol. 46, 5–19, 1998.

Copyright © 2020 University of Maryland.

Relationship Between UV and Column Ozone

Fig. 2. Dependence of erythemal ultraviolet (UV) radiation at the Earth's surface on atmospheric ozone, measured on cloud-free days at various locations, at fixed solar zenith angles. Legend: South Pole [8]; Mauna Loa, Hawaii [9]; Lauder, New Zealand [10]; Thessaloniki, Greece (updated from Ref. [11]); Garmisch, Germany [12]; and Toronto, Canada (updated from Ref. [13]).

Madronich et al., J. of Photochemistry and Photobiology B, Vol. 46, 5–19, 1998.

Copyright © 2020 University of Maryland.

Relationship Between UV and Column Ozone

Fig. 2. Dependence of erythemal ultraviolet (UV) radiation at the Earth's surface on atmospheric ozone, measured on cloud-free days at various locations, at fixed solar zenith angles. Legend: South Pole [8]; Mauna Loa, Hawaii [9]; Lauder, New Zealand [10]; Thessaloniki, Greece (updated from Ref. [11]); Garmisch, Germany [12]; and Toronto, Canada (updated from Ref. [13]).

Madronich et al., J. of Photochemistry and Photobiology B, Vol. 46, 5–19, 1998.

Copyright © 2020 University of Maryland.

Energetics of Photolysis

 $O_3 + hv \rightarrow O(^1D) + O_2$

 h_{v} represents a photon with specific energy.

Let's examine enthalpy of this reaction:

33.9 kcal/mole 104.7 kcal/mole 22.5 kcal/mole $O_3 + h\nu \rightarrow O(^1D) + O_2(^1\Delta_g) \quad \Delta \text{Enthalpy} =$ Photon Energy: $\varepsilon = \frac{hc}{\lambda} \implies \lambda_{\max} = \frac{hc}{\Delta \text{Enthalpy}}$

For O_3 photo-dissociating to $O(^1D)$:

 $\lambda_{\text{max}} = \frac{hc}{\Delta \text{Enthalpy}} = \frac{2.85 \times 10^4 \text{ kcal/mole nm}}{\Delta \text{Enthalpy}} = \frac{1000 \text{ kcal/mole nm}}{\Delta \text{Enthalphy}} = \frac{1000 \text{ kcal/mole nm}}{\Delta$

Copyright © 2020 University of Maryland.

Energetics of Photolysis

 $O_3 + hv \rightarrow O(^1D) + O_2$

 h_{v} represents a photon with specific energy.

Let's examine enthalpy of this reaction:

33.9 kcal/mole 104.7 kcal/mole 22.5 kcal/mole $O_3 + hv \rightarrow O(^1D) + O_2(^1\Delta_g) \quad \Delta \text{Enthalpy} = 93.3 \text{ kcal/mole}$ Photon Energy: $\varepsilon = \frac{hc}{\lambda} \implies \lambda_{\max} = \frac{hc}{\Delta \text{Enthalpy}}$

For O_3 photo-dissociating to $O(^1D)$:

 $\lambda_{\text{max}} = \frac{hc}{\Delta \text{Enthalpy}} = \frac{2.85 \times 10^4 \text{ kcal/mole nm}}{\Delta \text{Enthalpy}} = \frac{1000 \text{ kcal/mole nm}}{\Delta \text{Enthalphy}} = \frac{1000 \text{ kcal/mole nm}}{\Delta$

Copyright © 2020 University of Maryland.

Energetics of Photolysis

 $O_3 + hv \rightarrow O(^1D) + O_2$

 h_{v} represents a photon with specific energy.

Let's examine enthalpy of this reaction:

33.9 kcal/mole 104.7 kcal/mole 22.5 kcal/mole $O_3 + h_V \rightarrow O(^1D) + O_2(^1\Delta_g) \quad \Delta \text{Enthalpy} = 93.3 \text{ kcal/mole}$ Photon Energy: $\varepsilon = \frac{hc}{\lambda} \implies \lambda_{\max} = \frac{hc}{\Delta \text{Enthalpy}}$

For O_3 photo-dissociating to $O(^1D)$:

$$\lambda_{\text{max}} = \frac{hc}{\Delta \text{Enthalpy}} = \frac{2.85 \times 10^4 \text{ kcal/mole nm}}{\Delta \text{Enthalpy}} = \frac{2.85 \times 10^4 \text{ nm}}{93.3} = 305 \text{ nm}$$

Copyright © 2020 University of Maryland.

 $O_3 + h\nu \rightarrow O(^1D) + O_2(^1\Delta_g)$ Δ Enthalpy = 93.3 kcal/mole $\lambda_{max} =$ nm $O_3 + h\nu \rightarrow O(^3P) + O_2(^3\Sigma_g)$ Δ Enthalpy = 25.7 kcal/mole $\lambda_{max} =$ nm

 $O_3 + h\nu \rightarrow O(^1D) + O_2(^1\Delta_g)$ Δ Enthalpy = 93.3 kcal/mole $\lambda_{max} = 305 \text{ nm}$ $O_3 + h\nu \rightarrow O(^3P) + O_2(^3\Sigma_g)$ Δ Enthalpy = 25.7 kcal/mole $\lambda_{max} = 1120 \text{ nm}$

$$\begin{split} O_3 + h\nu &\rightarrow O(^1D) + O_2(^1\Delta_g) & \Delta \text{Enthalpy = 93.3 kcal/mole} \quad \lambda_{max} = \text{ 305 nm} \\ O_3 + h\nu &\rightarrow O(^3P) + O_2(^3\Sigma_g) & \Delta \text{Enthalpy = 25.7 kcal/mole} \quad \lambda_{max} = \text{ 1120 nm} \end{split}$$

Copyright © 2020 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

 $O_3 + h\nu \rightarrow O(^1D) + O_2(^1\Delta_g)$ Δ Enthalpy = 93.3 kcal/mole $\lambda_{max} = 305 \text{ nm}$ $O_3 + h\nu \rightarrow O(^3P) + O_2(^3\Sigma_g)$ Δ Enthalpy = 25.7 kcal/mole $\lambda_{max} = 1120 \text{ nm}$

Atomic oxygen: (Note: you will not be "responsible" for the material below on any exam (2)

Ground state – two unpaired electrons in the 2p orbitals: $(1s)^2(2s)^2(2p_1)^2(2p_2)^1(2p_3)^1$ <u>Called ³P</u>:

"3" represents 2S+1, where S is spin of all of the unpaired electrons.

There are 2 unpaired electrons, each with spin of $\frac{1}{2}$

Hence, S = 1 and 2S+1 = $3 \leftarrow \text{spin angular momentum}$

P represents orbital angular momentum, found from an electron diagram of filled orbitals:

Excited state – one electron moves from $2p_3$ to $2p_2$: $(1s)^2(2s)^2(2p_1)^2(2p_2)^2$ Called ¹D:

"1" represents 2S+1, where S is spin of all of the unpaired electrons.

There are no unpaired electrons!

Hence, S = 0 and 2S+1 = $1 \leftarrow$ spin angular momentum

D represents orbital angular momentum, found from an electron diagram of filled orbitals:

Copyright © 2020 University of Maryland.

 $O(^{1}D)$ + Reactant $\rightarrow O(^{3}P)$ + Reactant (Quenching) (R1a)

 \rightarrow O(³P) + Products (Reactive Quenching) (R1b)

 \rightarrow Products (Reactive) (R1c)

Baasandorj et al., ACP, 2012

Excited state – one electron moves from $2p_3$ to $2p_2$: $(1s)^2(2s)^2(2p_1)^2(2p_2)^2$ <u>Called ¹D</u>:

"1" represents 2S+1, where S is spin of all of the unpaired electrons.

There are no unpaired electrons!

Hence, S = 0 and 2S+1 = $1 \leftarrow$ spin angular momentum

D represents orbital angular momentum, found from an electron diagram of filled orbitals:

Copyright © 2020 University of Maryland.

Atmospheric Radiation

 Solar irradiance (downwelling) at top of atmosphere occurs at wavelengths between ~200 and 2000 nm (~5750 K "black body" temperature)

• Absorption and photodissociation in the UV occurs due to changes in the electronic state (orbital configuration) of molecules

Copyright © 2020 University of Maryland.

Figure 2.8, Chemistry in Context

• Absorption and photodissociation in the UV occurs due to changes in the electronic state (orbital configuration) of molecules

Copyright © 2020 University of Maryland.

• Motivation for Rest of Today's Lecture:

From DeMore et al., *Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling*, Evaluation No. 11, 1994.

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Maryland.

Absorption Cross Section of O₂

From Brasseur & Solomon, Aeronomy of the Middle Atmosphere, 1986

- O_2 can not dissociate longward of ~250 nm
- All absorption shown above is dissociative (e.g., leads to production of two O atoms)
- Structure in the O₂ cross section is related to whether the initial transition involves an unbound electronic state (smooth) or involves a specific vibrational level of an electronic state (banded, due to requirement of specific quanta of energy)

Copyright © 2020 University of Maryland.

Beer-Lambert Law

$$F(z,\lambda) = F_{TOA}(\lambda) e^{-\tau(z,\lambda)}$$
 (TOA : Top of Atmosphere)

where:

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [C] dz'$$
 (τ : optical depth)

- F : solar irradiance (photons/cm²/sec)
- σ_{λ} : absorption cross section (cm²/molecule)
- C : concentration of absorbing gas (molecules/cm³)
- m : ratio of slant path to vertical path, equal to $1/\cos(\theta)$ for $\theta < \sim 75^{\circ}$
- θ : solar zenith angle

Governs basics of radiative transfer in the UV and near IR regions

Copyright © 2020 University of Maryland.

Photolysis Frequency

For a specific spectral interval, the photolysis frequency (*partial J value*) of a gas is given by the product of its absorption cross section and the solar irradiance:

$$J_{gas}(z,\lambda) = Quantum_Yield(\lambda) \sigma_{gas}(\lambda,T) F(z,\lambda)$$

Units: s⁻¹ nm⁻¹

The total *photolysis frequency* (*J value*) is found by integrating $J_{gas}(z,\lambda)$ over all wavelengths for which the gas photodissociates:

$$J_{gas}(z) = \int_{\lambda_{min}}^{\lambda_{max}} J_{gas}(z, \lambda) \, d\lambda \qquad \text{Units: } s^{-1}$$

Rate of Reaction =
$$\frac{dO_3}{dt} = -J$$
 [O₃]; Units of J are s⁻¹

More precisely, calculations of photolysis frequencies consider the "spectral actinic flux", which represents the amount of available photons integrated over all angles, rather than "solar irradiance". These two quantities differ because of scattering of solar radiation by gases and aerosols, and reflection of radiation by clouds and the surface.

Copyright © 2020 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Recall the *Beer-Lambert Law*:

 $F(z,\lambda) = F_{TOA}(\lambda) e^{-\tau(z,\lambda)}$ (TOA : Top of Atmosphere)

where:

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [C] dz' \qquad (\tau: optical depth)$$
$$\int_{0}^{\infty} [O_{2}] dz' \approx 4 \times 10^{24} \text{ molecules/cm}^{2}$$

Also:

Copyright © 2020 University of Maryland.

Recall the *Beer-Lambert Law*:

 $F(z,\lambda) = F_{TOA}(\lambda) e^{-\tau(z,\lambda)}$ (TOA : Top of Atmosphere)

where:

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [C] dz' \qquad (\tau: optical depth)$$

$$\int_{0}^{\infty} [O_{2}] dz' \approx 4 \times 10^{24} \text{ molecules/cm}^{2}$$

Also:

Copyright © 2020 University of Maryland.

Recall the *Beer-Lambert Law*:

 $F(z,\lambda) = F_{TOA}(\lambda) e^{-\tau(z,\lambda)}$ (TOA : Top of Atmosphere)

where:

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [C] dz' \qquad (\tau: optical depth)$$

$$\int_{0}^{\infty} [O_{2}] dz' \approx 4 \times 10^{24} \text{ molecules/cm}^{2}$$

Also:

Copyright © 2020 University of Maryland.

Recall the *Beer-Lambert Law*:

 $F(z,\lambda) = F_{TOA}(\lambda) e^{-\tau(z,\lambda)}$ (TOA : Top of Atmosphere)

where:

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [C] dz' \qquad (\tau: optical depth)$$

$$\int_{0}^{\infty} [O_{2}] dz' \approx 4 \times 10^{24} \text{ molecules/cm}^{2}$$

Also:

O_2 Optical Depth for $\theta = 0^\circ$, $z = 0$ km					
	$\sigma_{\rm max}({\rm cm}^2)$	τ (0 km)	$e^{-\tau (0 \text{ km})}$		
Schumann-Runge Continuum	10^{-17}	4×10^7	0.		
Schumann-Runge Bands	10^{-20}				
	3×10^{-23}				
Herzberg Continuum					

Copyright © 2020 University of Maryland.

Recall the *Beer-Lambert Law*:

 $F(z,\lambda) = F_{TOA}(\lambda) e^{-\tau(z,\lambda)}$ (TOA : Top of Atmosphere)

where:

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [C] dz' \qquad (\tau: optical depth)$$
$$\int_{0}^{\infty} [O_{2}] dz' \approx 4 \times 10^{24} \text{ molecules/cm}^{2}$$

Also:

O_2 Optical Depth for $\theta = 0^\circ$, $z = 0$ km						
	$\sigma_{\rm max}({\rm cm}^2)$	τ (0 km)	$e^{-\tau (0 \text{ km})}$			
Schumann-Runge Continuum	10^{-17}	4×10^7	0.			
Schumann-Runge Bands	10^{-20}	4×10^4	0.			
	3×10^{-23}	120	7.6×10^{-53}			
Herzberg Continuum						

Copyright © 2020 University of Maryland.

Recall the *Beer-Lambert Law*:

 $F(z,\lambda) = F_{TOA}(\lambda) e^{-\tau(z,\lambda)}$ (TOA : Top of Atmosphere)

where:

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [C] dz' \qquad (\tau: optical depth)$$
$$\int_{0}^{\infty} [O_{2}] dz' \approx 4 \times 10^{24} \text{ molecules/cm}^{2}$$

Also:

O_2 Optical Depth for $\theta = 0^\circ$, $z = 0$ km						
	$\sigma_{\rm max}({\rm cm}^2)$	τ (0 km)	$e^{-\tau (0 \text{ km})}$			
Schumann-Runge Continuum	10^{-17}	4×10^7	0.			
Schumann-Runge Bands	10^{-20}	4×10^4	0.			
	3×10^{-23}	120	7.6×10^{-53}			
Herzberg Continuum	10 ⁻²³	40	4.2×10^{-18}			

Copyright © 2020 University of Maryland.

Recall the *Beer-Lambert Law*:

 $F(z,\lambda) = F_{TOA}(\lambda) e^{-\tau(z,\lambda)}$ (TOA : Top of Atmosphere)

where:

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [C] dz' \quad (\tau: optical depth)$$
$$\int_{0}^{\infty} [O_{2}] dz' \approx 4 \times 10^{24} \text{ molecules/cm}^{2}$$
Optically Thick !

Also:

O ₂ Optica	al Depth for	$\theta = 0^{\circ},$	z = 0 km	
Schumann-Runge Continuum Schumann-Runge Bands	σ_{max} (cm ²) 10^{-17} 10^{-20} 3×10^{-23}	$\tau (0 \text{ km})$ 4×10^7 4×10^4 120	$e^{-\tau (0 \text{ km})}$ 0. 0. 7.6 × 10 ⁻⁵³	
Herzberg Continuum	10^{-23}	40	4.2×10^{-18})

Copyright © 2020 University of Maryland.

Photolysis Frequency of O₂

Figure 4.31, Brasseur and Solomon

O_2 Optical Depth for $\theta = 0^\circ$, $z = 0$ km					
	$\sigma_{\rm max}$ (cm ²)	τ (0 km)	$e^{-\tau (0 \text{ km})}$		
Schumann-Runge Continuum	10^{-17}	4×10^7	0.		
Schumann-Runge Bands	10^{-20}	4×10^4	0.		
	3×10^{-23}	120	7.6×10^{-53}		
Herzberg Continuum	10 ⁻²³	40	4.2×10^{-18}		

Copyright © 2020 University of Maryland.

Where Does Optical Depth = 1.0 for O_2 ?

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [O_{2}] dz'$$
$$\approx \sigma_{\lambda} m 4 \times 10^{24} e^{-z/H}$$

Setting $\tau = 1$ and re-arranging gives:

 $z = H \ln (\sigma_{\lambda} \cdot m \cdot 4 \times 10^{24})$

Copyright © 2020 University of Maryland.

Where Does Optical Depth = 1.0 for O_2 ?

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [O_{2}] dz'$$
$$\approx \sigma_{\lambda} m 4 \times 10^{24} e^{-z/H}$$

Setting $\tau = 1$ and re-arranging gives:

 $z = H \ln (\sigma_{\lambda} \cdot m \cdot 4 \times 10^{24})$

Altitude w	Altitude where $\tau = 1$ (for $\theta = 0^{\circ}$)				
	$\sigma_{max}(cm^2)$	Z (km)			
Schumann-Runge Continuum	10^{-17}	140			
Schumann-Runge Bands	10^{-20}	85			
	3×10^{-23}	38			
Herzberg Continuum	10-23	29			

Copyright © 2020 University of Maryland.

Absorption Cross Section of O₃

Copyright © 2020 University of Maryland.

Absorption Cross Section of O₃

Copyright © 2020 University of Maryland.

A typical mid-latitude column abundance for O_3 is 300 Dobson units (DU):

1 DU = 2.687×10^{16} molecules/cm²; 300 DU = 8×10^{18} molecules/cm²

Aside:

$$\frac{\text{Column O}_3}{\text{Column Air}} = \frac{8 \times 10^{18}}{2 \times 10^{25}} = 0.4 \text{ parts per million} \implies \text{Ozone is a trace species !}$$

O_3 Optical Depth for $\theta = 0^\circ$, $z = 0$ km					
	$\sigma_{\max}(cm^2) \tau (0 \text{ km}) e^{-\tau (01)}$	^{km)} O_3 Column, $\tau = 1.0$			
Hartley (~220 to 280 nm)	10-17				
Huggins (~310 to 330 nm)					
Chappuis (~500 to 700 nm)					

Copyright © 2020 University of Maryland.

Total Ozone, NASA Aura OMI

OMI: Ozone Monitoring Instrument, aboard NASA Aura satellite KNMI: Royal Netherlands Meteorological Institute

http://www.temis.nl/protocols/O3global.html

Copyright © 2020 University of Maryland.

A typical mid-latitude column abundance for O_3 is 300 Dobson units (DU):

1 DU = 2.687×10^{16} molecules/cm²; 300 DU = 8×10^{18} molecules/cm²

Aside:

$$\frac{\text{Column O}_3}{\text{Column Air}} = \frac{8 \times 10^{18}}{2 \times 10^{25}} = 0.4 \text{ parts per million} \implies \text{Ozone is a trace species !}$$

O_3 Optical Depth for $\theta = 0^\circ$, $z = 0$ km					
	$\sigma_{max}(cm^2)$	τ (0 km)	$e^{-\tau (0 \text{ km})}$	O_3 Column, $\tau = 1.0$	
Hartley (~220 to 280 nm)	10^{-17}	80	1.8×10^{-35}	3.7 DU	
Huggins (~310 to 330 nm)					
Chappuis (~500 to 700 nm)					

Copyright © 2020 University of Maryland.

A typical mid-latitude column abundance for O_3 is 300 Dobson units (DU):

1 DU = 2.687×10^{16} molecules/cm²; 300 DU = 8×10^{18} molecules/cm²

Aside:

$$\frac{\text{Column O}_3}{\text{Column Air}} = \frac{8 \times 10^{18}}{2 \times 10^{25}} = 0.4 \text{ parts per million} \implies \text{Ozone is a trace species !}$$

O_3 Optical Depth for $\theta = 0^\circ$, $z = 0$ km					
	σ_{max} (cm ²)	τ (0 km)	$e^{-\tau (0 \text{ km})}$	O_3 Column, $\tau = 1.0$	
Hartley (~220 to 280 nm)	10^{-17}	80	1.8×10^{-35}	3.7 DU	
Huggins (~310 to 330 nm)	10 ⁻¹⁹				
Chappuis (~500 to 700 nm)	3 × 10 ⁻²¹				

Copyright © 2020 University of Maryland.

A typical mid-latitude column abundance for O_3 is 300 Dobson units (DU):

1 DU = 2.687×10^{16} molecules/cm²; 300 DU = 8×10^{18} molecules/cm²

Aside:

$$\frac{\text{Column O}_3}{\text{Column Air}} = \frac{8 \times 10^{18}}{2 \times 10^{25}} = 0.4 \text{ parts per million} \implies \text{Ozone is a trace species !}$$

O_3 Optical Depth for $\theta = 0^\circ$, $z = 0$ km					
	$\sigma_{\rm max}({\rm cm}^2)$	τ (0 km)	$e^{-\tau (0 \text{ km})}$	O_3 Column, $\tau = 1.0$	
Hartley (~220 to 280 nm)	10^{-17}	80	1.8×10^{-35}	3.7 DU	
Huggins (~310 to 330 nm)	10 ⁻¹⁹	0.8	0.45	372 DU	
Chappuis (~500 to 700 nm)	3 × 10 ⁻²¹	0 .024	~1.0	12,400 DU	

Copyright © 2020 University of Maryland.

A typical mid-latitude column abundance for O_3 is 300 Dobson units (DU):

1 DU = 2.687×10^{16} molecules/cm²; 300 DU = 8×10^{18} molecules/cm²

Aside:

$$\frac{\text{Column O}_3}{\text{Column Air}} = \frac{8 \times 10^{18}}{2 \times 10^{25}} = 0.4 \text{ parts per million} \implies \text{Ozone is a trace species !}$$

O ₃ Opti	O_3 Optical Depth for $\theta = 0^\circ$, $z = 0$ km						
	$\sigma_{max}(cm^2)$	τ (0 km)	$e^{-\tau (0 \text{ km})}$	O_3 Column, $\tau = 1.0$			
Hartley (~220 to 280 nm)	10-17	80	1.8×10^{-35}	3.7 DU			
Huggins (~310 to 330 nm)	10 ⁻¹⁹	0.8	0.45	372 DU			
Chappuis (~500 to 700 nm)	3 × 10 ⁻²¹	0.024	~1.0	12,400 DU			
			Optically	Thin!			

Copyright © 2020 University of Maryland.

Solar Spectral Actinic Flux

From DeMore et al., *Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling*, Evaluation No. 11, 1994.

From Seinfeld and Pandis, Atmospheric Chemistry and Physics, 1998.

Copyright © 2020 University of Maryland.

Photodissociation Frequencies

Next goal is to understand:

FIGURE 4.58 Photodissociation frequencies for numerous important atmospheric species.

From Brasseur & Solomon, Aeronomy of the Middle Atmosphere, 1986

Copyright © 2020 University of Maryland.

Photodissociation Frequencies

Next goal is to understand:

FIGURE 4.58 Photodissociation frequencies for numerous important atmospheric species.

From Brasseur & Solomon, Aeronomy of the Middle Atmosphere, 1986

Copyright © 2020 University of Maryland.

NO₂ Photolysis

The majority of NO₂ photolysis occurs longward of 300 nm, where the atmosphere is optically thin with respect to absorption by O_3 and O_2 :

leading to a value for J_{NO2} that is nearly <u>independent</u> of height and SZA:

Copyright © 2020 University of Maryland.

NO₂ Photolysis

Copyright © 2020 University of Maryland.

$O_3 \rightarrow O(^{3}P)$ Photolysis

The production of $O(^{3}P)$ from photolysis of O_{3} occurs mainly longward of 500 nm, where the atmosphere is optically thin with respect to absorption by O_{3} :

leading to a value for $J_{O3 \rightarrow O(3P)}$ that is essentially <u>independent</u> of height and SZA:

Copyright © 2020 University of Maryland.

$O_3 \rightarrow O(^{3}P)$ Photolysis

Copyright © 2020 University of Maryland.

$O_3 \rightarrow O(^1D)$ Photolysis

The production of $O(^{1}D)$ from photolysis of O_{3} occurs shortward of 320 nm, where the atmosphere is basically optically thick with respect to absorption by O_{3} :

leading to a value for $J_{O3\rightarrow O(1D)}$ that is <u>dependent</u> on height and SZA:

Copyright © 2020 University of Maryland.

$O_3 \rightarrow O(^1D)$ Photolysis

Copyright © 2020 University of Maryland.

Chapman expression for $[O_3]$:

$$[O_3] = \left(\frac{f_{O2}k_2}{J_3k_4}\right)^{\frac{1}{2}} \left[J_1[O_2]\right]^{\frac{1}{2}} [M]$$

The concentration of O_3 should peak at the altitude where the product of the square-root of the O_2 photolysis rate times the density of air is largest

Copyright © 2020 University of Maryland.

The total *photolysis rate* is the product of the concentration of a gas and the total photolysis frequency (*J value*):

Photolysis Rate Gas (z) = [Gas] \times J_{gas} Units: molecules cm⁻³ sec⁻¹

$$= [Gas] \int_{\lambda_{min}}^{\lambda_{max}} J_{gas}(z, \lambda) d\lambda$$

$$\approx [Gas] \int_{\lambda_{min}}^{\lambda_{max}} \sigma_{gas}(z, T) F_{TOA}(\lambda) e^{-\tau(z, \lambda)} d\lambda$$

where:

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{O2}(\lambda, T) [O_{2}(z)] dz' + m \int_{z}^{\infty} \sigma_{O3}(\lambda, T) [O_{3}(z)] dz'$$

Copyright © 2020 University of Maryland.

The total *photolysis rate* is the product of the concentration of a gas and the total photolysis frequency (*J value*):

Photolysis Rate O₂(z)
$$\approx [O_2(z)] \int_{\lambda_{min}}^{\lambda_{max}} \sigma_{O2}(z, T) F_{TOA}(\lambda) e^{-\tau(z,\lambda)} d\lambda$$

Assume:

1. O₂ is the only absorber:

$$\tau(z,\lambda) = m \int_{z}^{z} \sigma_{02}(\lambda,T) [O_2] dz'$$

2. σ_{02} is independent of T:

$$\sigma(z,\lambda) = m \sigma_{O2}(\lambda,T) \int [O_2] dz'$$

3. $[O_2]$ falls off exponentially with increasing height:

$$\tau(z,\lambda) = m \sigma_{O2}(\lambda,T) [O_2]_{\text{ground}} H e^{-z/H}$$

 \sim

Photolysis Rate $O_2(z,\lambda) = J_{O2} [O_2]$ $[O_2]_{ground} e^{-z/H} \sigma_{O2} F_{TOA} \exp \{-m \sigma_{O2} [O_2]_{ground} H e^{-z/H} \}$

Copyright © 2020 University of Maryland.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Photolysis Rate $O_2(z,\lambda) = J_{O2} [O_2] =$ $[O_2]_{ground} e^{-z/H} \sigma_{O2} F_{TOA} \exp \{-m \sigma_{O2} [O_2]_{ground} H e^{-z/H} \}$

What does this function look like?

Copyright © 2020 University of Maryland.

The *partial photolysis rate* of O_2 maximizes at the altitude where $\tau = 1$ This is true for any gas that is the primary absorber

At what altitude does $\tau = 1$?

 $z \approx H \log [\sigma_{\lambda} m 4 \times 10^{24} (\text{molecules/cm}^2)]$

What is the value of the partial photolysis rate of O_2 when $\tau = 1$?

Photolysis Rate of $O_2 \approx 5 \times 10^{18}$ (molecules/cm³) $e^{-z/H} \sigma_{O2} F_{TOA} \frac{1}{2}$

Let's examine the partial photolysis rate of O_2 in its three absorption regions

Assume H = 7 km (realistic for 240 K) & $\theta = 45^{\circ}$

	σ_{max} (cm ²)	z (τ=1) (km)	F _{TOA} (#/cm ² /s)	J (sec ⁻¹)	Photolysis Rate (#/cm ³ /sec)
Schumann-Runge Continuun	n 10 ⁻¹⁷	125	1×10^{11}	3.7×10^{-7}	3.3×10^{4}
Schumann-Runge Bands	10^{-20}	77	8×10^{11}	$2.9 imes 10^{-9}$	2.4×10^{5}
	3×10^{-23}	36	3×10^{12}	3.3×10^{-11}	9.6×10^{5}
Herzberg Continuum	10-23	29	2×10^{14}	7.3×10^{-10}	5.8 × 10 ⁷

Copyright © 2020 University of Maryland.

Copyright © 2020 University of Maryland.

The height of the ozone layer (~30 km) and the thickness of the ozone layer (~400 DU) are determined by values of solar actinic flux (F_{TOA}) & O_2 absorption cross section (σ_{max})

Suppose the Herzberg Continuum region dominated the photolysis rate of O_2 , but the maximum cross section was different:

$$\sigma_{\text{max}} = 3 \times 10^{-22} \text{ cm}^2 \rightarrow z_{\text{OZONE LAYER}} = 48 \text{ km}$$

$$\sigma_{\text{max}} = 3 \times 10^{-25} \text{ cm}^2 \rightarrow z_{\text{OZONE LAYER}} = 2 \text{ km}$$

Suppose the Herzberg Continuum region dominated the photolysis rate of O_2 , but the solar irradiance at these wavelengths was different:

Copyright © 2020 University of Maryland.

Extra #2: CFC Photolysis

Copyright © 2020 University of Maryland.

Extra #3: HNO₃ Photolysis

The majority of HNO₃ photolysis occurs shortward of 320 nm, where the atmosphere is optically thick with respect to absorption by O_3 and O_2 :

leading to a value for J_{HNO3} that is strongly dependent on height and SZA:

Copyright © 2020 University of Maryland.

Extra #3: HNO₃ Photolysis

Copyright © 2020 University of Maryland.