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Climates of the PastOverview:
1) Techniques for quantifying past climate

2) Remarkable changes in past climate

3) Challenge in applying past climate sensitivity to future climate
The details of this “challenge” are quantitative and come at end of lecture.
I generally do not like to place quantitative material at the end of lecture;
please bear with me today as this arrangement seems best way to organize material.

Legend for slides to follow →
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Pre-Cambrian     Ordovician   Devonian       Permian            Jurassic                               Tertiary           Quaternary
Cambrian Silurian     Carboniferous   Triasssic                   Cretaceous                         (Pleistocene/Holocene)

Early Cambrian Climate
(540 million years ago)

The climate of the Cambrian is not well known.
It was probably not very hot, nor very cold.
There is no evidence of ice at the poles. 

Source: http://www.scotese.com/ecambcli.htm

Berner et al., Science, 1997

http://www.scotese.comhttps://www.ucl.ac.uk/GeolSci/micropal/foram.html

http://www.scotese.com/ecambcli.htm
http://www.scotese.com/
https://www.ucl.ac.uk/GeolSci/micropal/foram.html
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Pre-Cambrian     Ordovician Devonian       Permian            Jurassic                               Tertiary           Quaternary
Cambrian     Silurian Carboniferous   Triasssic                   Cretaceous                         (Pleistocene/Holocene)

Silurian Climate
(420 million years ago)

Source: http://www.scotese.com/silclim.htm

Coral reefs thrived in the clear sunny skies of the southern Arid Belt.
Lingering glacial conditions prevailed near the South Pole. 

http://www.scotese.com

Berner et al., Science, 1997

https://www.ucl.ac.uk/GeolSci/micropal/foram.html

http://www.scotese.com/silclim.htm
http://www.scotese.com/
https://www.ucl.ac.uk/GeolSci/micropal/foram.html
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Pre-Cambrian     Ordovician Devonian Permian            Jurassic                               Tertiary           Quaternary
Cambrian     Silurian Carboniferous Triasssic                   Cretaceous                         (Pleistocene/Holocene)

Carboniferous Climate
(350 million years ago)

Source: http://www.scotese.com/serpukcl.htm

Rainforests covered the tropical regions of Pangea, which was
bounded to the north and south by deserts. 
An ice cap began to form on the South Pole.

http://www.scotese.com

Berner et al., Science, 1997

https://www.ucl.ac.uk/GeolSci/micropal/foram.html

http://www.scotese.com/serpukcl.htm
http://www.scotese.com/
https://www.ucl.ac.uk/GeolSci/micropal/foram.html
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Pre-Cambrian     Ordovician Devonian Permian     Jurassic Tertiary           Quaternary
Cambrian     Silurian Carboniferous Triasssic                   Cretaceous                         (Pleistocene/Holocene)

Late Jurassic Climate 
(150 million years ago)

Source: http://www.scotese.com/ljurclim.htm

Global climate began to change due to breakup of Pangea.
The interior of Pangea became moister and seasonal snow &
ice frosted the polar regions

http://www.scotese.com

Berner et al., Science, 1997

https://www.ucl.ac.uk/GeolSci/micropal/foram.html

http://www.scotese.com/ljurclim.htm
http://www.scotese.com/
https://www.ucl.ac.uk/GeolSci/micropal/foram.html
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Pre-Cambrian     Ordovician Devonian Permian     Jurassic Tertiary           Quaternary
Cambrian     Silurian Carboniferous Triasssic                   Cretaceous (Pleistocene/Holocene)

Late Cretaceous Climate 
(70 million years ago)

Source: http://www.scotese.com/lcretcli.htm

Global climate was much warmer than today. No ice existed at the Poles.
Dinosaurs migrated between Temperate Zones as the seasons changed.

http://www.scotese.com

Berner et al., Science, 1997

https://www.ucl.ac.uk/GeolSci/micropal/foram.html

http://www.scotese.com/lcretcli.htm
http://www.scotese.com/
https://www.ucl.ac.uk/GeolSci/micropal/foram.html
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Earth’s Climate History

8

Fig 1.1, Paris Beacon of Hope

Accordion-like unraveling of Earth’s climate and CO2
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Oxygen Isotopes and the Quaternary Climate Record

Oxygen has three stable isotopes 16O,17O, and 18O

Electrons Protons Neutrons Abundance

16O 8 8 8 99.76 %
17O 8 8 9 00.04 % 
18O 8 8 10 00.20 %

17O has such a low abundance that we shall focus on 16O and 18O

Chemical and biological reactions involving 18O require more energy
than reactions involving 16O due to increased atomic mass

This “isotope effect” can be used as a proxy to infer past temperature!
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Oxygen Isotopes and the Quaternary Climate Record

Scientists measured the ratio of 18O to 16O in a sample (sea water, shells, etc.) and 
compare to a “standard value”

Standard often referred to as SMOW: Standard Mean Ocean Water

If δ18O is negative, the sample is “depleted” with respect to current conditions.

If positive, the sample is “enriched”.  

How might δ18O become enriched or depleted?
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As temperatures drops, the δ18O of
precipitation decreases. 

Why does this occur?

Jouzel et al., 1994
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As an air mass travels poleward, H2
18O rains out more readily than H2

16O

When the air mass reaches the pole, its water can have up to  ~5% less 18O than SMOW.

http://earthobservatory.nasa.gov/Study/Paleoclimatology_OxygenBalance/oxygen_balance.html

Deuterium (heavy hydrogen) behaves in a way quite similar to 18O (heavy oxygen) !

http://earthobservatory.nasa.gov/Study/Paleoclimatology_OxygenBalance/oxygen_balance.html
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• As the air reaches the pole, ambient water precipitate  
(i.e., it snows!)

• Over many years, layers of snow accumulate, forming
an ice sheet.  The water in this ice sheet contains a record
of climate at the time the snow was deposited

• By drilling, extracting, and measuring the δ18O & δD
(deuterium/hydrogen ratio) of ice, scientists are able to
estimate past global temperature & ice volume

• In reconstructing climate during the quaternary
(last 1.6 million years), scientists also look at:

− CO2, CH4, and N2O of trapped air
− δ18O of trapped O2 in trapped air
− δ13C of CO2 in trapped air
− Particulate matter and a wide range of ions

atmospheric aerosol loading; oceanic circulation & biology

Isotopes in Ice Cores: Late Quaternary
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• January 1998: ice core with depth of 3.6 km extracted at Russian Vostok Station, Antarctica
• Vostok ice-core record extends back 400,000 years in time (Petit et al., Nature, 1999)
• Reconstructed temperature based on measurement of the deuterium content of ice
• δ18O shows tremendous variations in global ice volume (not shown)
• Ice core data show last four ice ages, punctuated by relatively brief interglacials

Vostok Ice Core

• CO2 (air trapped in ice bubbles) and inferred temperature very highly correlated
• Variations in ∆T & CO2 synchronous upon correction of movement of air bubbles (CO2)

relative to ice (∆T) (Parrenin et al., Science, 2013: http://science.sciencemag.org/content/339/6123/1060

http://science.sciencemag.org/content/339/6123/1060
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Going Back 600,000 years

See https://epic.awi.de/id/eprint/18400/1/Oer2008a.pdf for description of EPICA , European Project for Ice Coring in Antarctica

Figure 6.3, IPCC 2007  

https://epic.awi.de/id/eprint/18400/1/Oer2008a.pdf
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Glacial Maximum

http://www.johnstonsarchive.net/spaceart/cylmaps.html

http://www.johnstonsarchive.net/spaceart/cylmaps.html
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No Polar Ice

http://www.johnstonsarchive.net/spaceart/cylmaps.html

http://www.johnstonsarchive.net/spaceart/cylmaps.html
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Fairly Late Appreciation that Earth Undergoes Ice Ages

http://www.museum-neuchatel.ch/new/images/dynamic/pages/12/agassiz.jpg

Portrait of Louis Agassiz
at the Unteraar Glacier

On 24 July 1837, at the annual meeting of the
Swiss Society of Natural Sciences, Louis Agassiz
(1807−1873) startled his learned associates by
presenting a paper dealing not, as expected, with
the fossil fishes found in far-off Brazil, but with
the scratched and faceted boulders that dotted the
Jura mountains around Neuchâtel itself.  Agassiz
argues that these erratic boulders … chunks of
rock appearing in locations far removed from
their areas of origin … could only be interpreted
as evidence of past glaciation.

This began a dispute − one of the most violent in
the history of geology − that was to rage for more
than a quarter century and would end with the 
universal acceptance of the ice-age theory.

Although this concept did not begin with Agassiz,
he served to bring the glacial theory out of scientific
obscurity and into the public eye.

Ice Ages, Imbrie and Imbrie, Harvard Univ Press, 1979.

http://www.museum-neuchatel.ch/new/images/dynamic/pages/12/agassiz.jpg
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Ice Ages, Imbrie and Imbrie, Harvard Univ Pres, 1979

100,000 year cycle due to changes in the 
eccentricity of Earth's orbit, mainly due to 

gravitational pull of Jupiter and Saturn.

Fourier analysis reveals Earth’s climate
is changing in a periodic fashion
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Ice Ages, Imbrie and Imbrie, Harvard Univ Pres, 1979

43,000 year cycle due to changes
in tilt of Earth's axis (obliquity).

Fourier analysis reveals Earth’s climate
is changing in a periodic fashion
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Ice Ages, Imbrie and Imbrie, Harvard Univ Pres, 1979

24,000 and 19,000 year cycles due to
Earth “wobbling” on its axis.

Fourier analysis reveals Earth’s climate
is changing in a periodic fashion
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Glacial Periods MUCH Dustier than 
Interglacials

Fischer et al., Reviews of Geophysics, 2007
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Biology in Today’s Ocean

23

http://www.whoi.edu/page.do?pid=130796

http://www.whoi.edu/page.do?pid=130796
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Connection to Glacial CO2

24

http://onlinelibrary.wiley.com/doi/10.1029/PA005i001p00001/abstract

Vostok Ice Core

http://onlinelibrary.wiley.com/doi/10.1029/PA005i001p00001/abstract
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Let’s relate a change in temperature to a change in radiative forcing:

λ is the climate sensitivity factor in units of

T = λ F∆ ∆

2

K
W/m

For an ideal blackbody: 4

3

   F =  T
F  4  T
T

d
d

σ

σ=

Above equation can be re-arranged to yield:

If we plug in value of Boltzmann’s constant and
Earth’s effective temperature of 255 K,
we find λBB ≈ 0.266 K / (W m−2)

Here: BB refers to Black Body

3

1 T   F 
4  Tσ

∆ ≈ ∆

So:
3

1  =   
4  T

λ
σ

Time to get quantitative:
how do changes in radiative forcing affect temperature?
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Let’s relate a change in temperature to a change in radiative forcing:

λ is the climate sensitivity factor in units of

T = λ F∆ ∆

2

K
W/m

For an ideal blackbody: 4

3

   F =  T
F  4  T
T

d
d

σ

σ=

Above equation can be re-arranged to yield:

3

1 T   F 
4  Tσ

∆ ≈ ∆

So:
3

1  =   
4  T

λ
σ

Another estimate of the response of ΔT to ΔF
can be found using a climate model representing
that as the atmosphere warms, it can hold more 
H2O:

λACTUAL ≈ 0.63 ± 0.13 K / (W m−2)

Time to get quantitative:
how do changes in radiative forcing affect temperature?

We write:
λACTUAL= λP (1+fH2O)

where fH2O is the H2O feedback
Here, fH2O ≈ 1.08

Table 9.5, IPCC (2013)
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Hence:

How much does ∆F change when CO2 changes?

2

KT  0.63 F
W/m

∆ ≈ ∆

As we will explore in more detail later in class (22 Sep 2022):

2 2

2

COF  5.35 W/m  ln 
CO

Final

Initial

 
∆ ≈  

 

Changes in ∆F can be caused by changes in chemical composition (GHGs),
albedo, aerosol loading, as well as solar output

Time to get quantitative:
how do changes in radiative forcing affect temperature?
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Glacial to interglacial changes in T, CO2 and dust
Vostok ice core data for changes in temperature
(units of 0.1 K), CO2 (ppmv), and dust aerosols 
(linear scale normalized to unity for Holocene)
Black line shows 5 point running mean of dust.

Chylek and  Lohmann, GRL, 2008

Chylek and Lohmann (2008) assume:
a) global avg ∆T, glacial to interglacial, was 4.65 K *
b) ΔFCO2 = 2.4 W m−2 , ΔFCH4+N2o = 0.27 W m−2 , ΔFALBEDO = 3.5 W m−2 , & ΔFAEROSOLS = 3.3 W m−2

From this they deduce λACTUAL = 0.49 K / W m−2

Since 0.49 K / W m−2  < 0.63 K / W m−2 , one would conclude that either the H2O feedback is
smaller than found in IPCC climate models or changes in clouds serve as a negative feedback

* Global ∆T is about half that recorded at Vostok, as stated in the caption of Fig 4.9a of Houghton
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Glacial to interglacial changes in T, CO2 and dust

ΔF with aerosols(W/m2) ΔF with aerosols (W/m2)
CO2 2.40 2.40
CH4+N2O 0.27 0.27
Albedo 3.50 3.50
Aerosols 3.30 3.30
“Feedback” 0.03

Chylek and Lohmann (2008) are trying to calculate the sensitivity of climate to various forcings, 
with and without the consideration of aerosols

Considering Aerosols CO2 CH4+N2O ALBEDO

Considering Aerosols 2
CO2 CH4+N2O ALBEDO

2

Con

AEROSOLS

AEROSOLS

T = ( F  F + F  )
T 4.65 K  = 

F  F + F  9.47 W m

                         = 0.49 

F

K   W m

F

   

/

If

λ

λ

λ

−

−

∆ ∆ + ∆ ∆

=

∆+

∆
=

∆ + ∆+ ∆ ∆

2
sidering Aerosols P P(1 )  and  0.3 K   W m ,

                   then   0.63
f /

f
λ λ −= + =

=
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Glacial to interglacial changes in T, CO2 and dust

ΔF with aerosols(W/m2) ΔF without aerosols (W/m2)
CO2 2.40 2.40 
CH4+N2O 0.27 0.27
Albedo 3.50 3.50
Aerosols 3.30 0.
“Feedback” 0.

Chylek and Lohmann (2008) are trying to calculate the sensitivity of climate to various forcings, 
with and without the consideration of aerosols

No Aerosols CO2 CH4+N2O ALBEDO

No Aerosols 2
CO2 CH4+N2O ALBEDO

2

No Aerosols P P

T = ( F  F + F )
T 4.65 K  = 

F  F + F 6.17 W m

                         = 0.75 K   W m

            (1 )  and  0.3 K  

/

If f

λ

λ

λ λ λ

−

−

∆ ∆ + ∆ ∆
∆

= =
∆ + ∆ ∆

= + = 2 W m ,
                   then   1.5

/
f

−

=
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Let’s apply these two climate sensitivities to future temperature
Both future scenarios assume:

a) CO2 doubles: i.e., ∆FCO2 = 5.35 ln(2) W/m2 or = 3.7 W/m2

b) surface radiative forcing of CH4 + N2O will be 40% of CO2 (future mimics past)

Scenario #1: Weak  Feedback found considering aerosol radiative forcing in paleo data &
no future change in Earth’s albedo

Scenario #2: Strong Feedback found assuming no aerosol radiative forcing in paleo data &  
additional surface radiative forcing of 3.4 W/m2 due to decline in Earth’s albedo
(i.e., the positive ice-albedo feedback will occur)

Scenario #1 Scenario  #2
ΔF (W m −2) ΔF (W m−2)

CO2 3.7 3.7
CH4+ N2O 1.5 1.5
Albedo                                     0.0                               3.4

Total ΔF 5.2 8.6
ΔT ⇒ 2.5 K or             6.5 K  ???
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Earth’s Climate History
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https://news.ucsc.edu/2020/09/climate-variability.html
https://news.ucsc.edu/2020/09/images/climate-states-lg-cap.jpg

What message are they trying to convey?

https://news.ucsc.edu/2020/09/images/climate-states-lg-cap.jpg
https://news.ucsc.edu/2020/09/images/climate-states-lg-cap.jpg
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