Global Carbon Cycle

AOSC 680
Ross Salawitch

Class Web Sites:
http://www?2.atmos.umd.edu/~rjs/class/fall2022
https://umd.instructure.com/courses/1327017

Goals for today:
» Overview of the Global Carbon Cycle “scratching below the surface”

* Ocean and land uptake of CO, : past and future
* Policy to reduce emissions of CO,
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Background
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* SSP: Share Socioeconomic Pathways (SSPs)
Number represents ARF of climate (W m~2) at the end of this century

* GHG mixing ratio time series for CO,, CH,, N,O, as well as CFCs, HCFCs, and HFCs that are provided
to climate model groups

Figure from McBride et al., 2021: https://esd.copernicus.org/articles/12/545/2021
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Motivation 1
Carbon Dioxide Stabilization
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Image: “Global Warming Art” : http://archive.is/JT5rO
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* Prior slides examined atmospheric CO, from
a single model of the global carbon cycle

* Friedlingstein et al. (2006) compared CO, from
11 different coupled climate-carbon cycle models,
each constrained by the same specified time series
of anthropogenic CO, emission and found:

1) future climate change will reduce the efficiency
of the Earth system to absorb the anthropogenic
carbon perturbation

2) difference in CO, between a simulation using an
interactive carbon-cycle and another run with a
non-interactive carbon-cycle varies from
20 to 200 ppm among these 11 models (yikes!)



Fossil Fuel, Cement, and Land Use Change Emissions
1860 to Present Emissions for 2021 preliminary
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Note: Gt is an abbreviation for giga tons, or 10° tons. Here we are using metric tons:
1 metric ton = 103 kg ; therefore, 1 Giga ton = 10'% g, where g is grams.

Copyright © 2022 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.



Modern CO, Record

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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Modern CO, Record

CO, at MLO on 4 Sep 2022: 416.68 parts per million (ppm)
CO, at MLO on 4 Sep 2021: 413.43 parts per million (ppm)
ACO, = 3.25 ppm per year
or 0.8%  peryear

Atmospheric CO; at Mauna Loa Observatory

420 _ Scripps Institution of Oceanography

NOAA Global Monitoring Laboratory
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Legacy of Charles Keeling, Scripps Institution of Oceanography, La Jolla, CA
https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2 data mlo.png
See also https://www.co2.earth/daily-co2
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Carbon Dioxide (CO,): The Past Eight Millennium

Combustion:
Gasoline (octane) 2 CgH;g + 25 O, + Small Source of Energy — 16 CO, + 18 H,O + Lots of Energy
Natural gas (methane) CH,+ 2 O, + Small Source of Energy — CO, + 2H,0 + Lots of Energy

Coal Ci135Hg6OgNS + 309 O, + Small Source of Energy — 135 CO, + 48 H,0O + Lots of Energy + Other Pollutants

10,000 Years of Carbon Diqxide
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https://twitter.com/RARohde/status/1443890623371677698

Robert Rohde: https://twitter.com/RARohde
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Modern CO, Record
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Figure 3.5, Chemistry in Context, 7th Edition
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Fossil Fuel, Cement, and Land Use Change Emissions

1860 to Present
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Human “Fingerprints” on Atmospheric CO,
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Figure 3.4 Atmospheric concentrations observed at representative stations of (a) carbon dioxide from Mauna Loa (MLO)
Northern Hemisphere and South Pole (SPO) Southern Hemisphere; (b) Oxygen from Alert (ALT) Canada, 82°N, and
Cape Grim (CGO), Australia, 41°S; (c) "*C/"*C from Mauna Loa (MLO) and South Pole (SPO) stations.

Fig 3.4, Houghton
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Human “Fingerprints” on Atmospheric CO,
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SPO: South Pole Observatory Fig 1.8 updated, Paris Beacon of Hope
FOS: Fossil Fuel Combustion
LUC: Land Use Change (Deforestation)

Copyright © 2022 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.



I
IIIIIIIW]l\\I\IIIIIII

o

Population
(Billion)

o 2~ 0O 0 =

Market Crash

10_—""|""|"' |
e 8l 1 ¢ Emission
o ' B
@ > 6 Population
2 o0 =
E +— 4—
w o Tl
2_
0
:l [T T 1
1.2
c u
2 1=
k%] -
5 o8
w & -
=0 B
%;O.Bj
Q B
D 0.4 :_Steel Manufacture
02

IIII|IIJ

llll

2nd Oil Shock

1st Oil Shock 7
US-USSR-Europe Growth

WWI T WWII

Great Depression

ltllllllll

China érowth —>

80s Recession

III|III|\I\]III|IIIIIII|I

IIJJI[JIII

1825 1850 1875

Figure courtesy Walt Tribett

Copyright © 2022 University of Maryland.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

1900

1925 1950

1975 2000

After Fig 3.1 Paris Beacon of Hope

13



Fossil Fuel Emissions
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= = =World minus USA, China, and India

Carbon Emission 1950 to 2019

1970 1980 1990 2000 2010
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Per-Capita Carbon Emission 1950 to 2019
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Fossil Fuel Emission Animation
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Obama & Xi
US / China Announcement = Paris Climate Agreement

Nov 2014: Presidents Obama & Xi announced
U.S. would reduce GHG emissions to 27% below 2005 by 2025
China would peak GHG emissions by 2030 with best effort to peak early

Paris Climate Agreement:
Article 2, Section 1, Part a):

Objective to hold “increase in GMST to well below 2°C above pre-industrial levels and
to pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels”

NDC: Nationally Determined Contributions to reduce GHG emissions
® Submitted prior to Dec 2015 meeting in Paris
* Consist of either unconditional (promise) or conditional (contingent) pledges
* Generally extend from early 2016 to year 2030

Copyright © 2022 University of Maryland. 19
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Global Carbon Cycle

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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CC: Fig 3.20, Chemistry in Context
Land Sink = (61 + 0.5) - (60) GtC/yr=1.5GtC /yr
Ocean Sink=92-90GtC/yr=2GtC/yr

In other words, ~3.5 Gt C /yr out of 7.5 Gt C /yr from burning fossil fuel & deforestation
was being absorbed by world’s oceans & terrestrial biosphere.

Copyright © 2022 University of Maryland. 20
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Houghton: _
Land Sink =2.6+1.2GtC/yr Fig 3.1, Houghton
Ocean Sink =23+0.7GtC/yr

In other words, ~4.9 Gt C /yr out of 7.8 + 1.1 = 8.9 Gt C / yr from burning fossil fuel & deforestation
was being absorbed by world’s oceans & terrestrial biosphere for the time period of this figure,
which is 2000 to 2009
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Fig 3.3, Houghton
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Inferring CO, Uptake Based on AO,

Figure courtesy
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Uptake of Atmospheric CO, by Trees (Land Sink)

Land sink: relatively short lived reservoir
e |n this model, future water stress due to climate change eventually limits plant growth
e Feedbacks between climate change & plants could lead to almost 100 ppm additional CO,
by end of century

T N A | AL DL L . . . .
J  Future fate of land sink highly uncertain according
. Emissions /1 to 11 coupled climate-carbon cycle models examined
1500 . . .
by Friedlingstein et al. (2006)
[ 12.0 ' ——
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Figure 3.5 lllustrating the possible effects of climate feedbacks on the carbon 1850 1900 1950 2000 2050 2100
cycle. Results are shown of the changing budgets of carbon
Figure 3.5, Houghton 3¢ Edition
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Uptake of Atmospheric CO, by Trees (Land Sink)

Land sink

As CO, 1, photosynthesis (all things being equal) will increase.
Known as the “CO, fertilizer” effect

The carbon dioxide fertilisation effect is an example of a biological feedback process. It is a

negative feedback because, as carbon dioxide increases, it tends to increase the uptake of

carbon dioxide by plants and therefore reduce the amount in the atmosphere, decreasing the

rate of global warming.
Page 43, Houghton

Copyright © 2022 University of Maryland.
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Uptake of Atmospheric CO, by Trees (Land Sink)

Land sink

As CO, 1, photosynthesis (all things being equal) will increase.
Known as the “CO, fertilizer” effect

Difficult to quantify empirically in a greenhouse setting because ?

The results of this study suggest that competition for light
was the major factor influencing community composition, and that CO,
influenced competitive outcome largely through its effects on canopy archi-
tecture. Early in the experiment competition for nutrients was intense.

Fakhri A. Bazzaz, 1990: https://www.|stor.org/stable/pdf/2097022.pdf

Many Free-Air Carbon dioxide Enrichment (FACE)
experiments have been developed, throughout the
world including a new experiment in Brazil, to attempt
to understand how the terrestrial biosphere will
respond to rising levels of atmospheric CO,

http://aspenface.mtu.edu

https://www.nature.com/news/polopoly fs/1.12855!/menu/main/topColum
ns/topLeftColumn/pdf/496405a.pdf?origin=ppub

https://www.nature.com/scitable/knowledge/library/effects-of-rising-
atmospheric-concentrations-of-carbon-13254108

Copyright © 2022 University of Maryland.
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Uptake of Atmospheric CO, by Trees (Land Sink)

Land sink: relatively short lived reservoir
e |n this model, future water stress due to climate change eventually limits plant growth
e Feedbacks between climate change & plants could lead to almost 100 ppm additional CO,
by end of century
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Figure 3.5 lllustrating the possible effects of climate feedbacks on the carbon
cycle. Results are shown of the changing budgets of carbon

Figure 3.5, older (Third) edition of Houghton
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Uptake of Atmospheric CO, by Oceans
When CO, dissolves:

Net: CO,(aq) + CO32_ + H,0 — 2 HCO3_

Atmospheric 280 ppm 411 ppm 560 ppm
CO, Pre-Industrial | Present Day | 2 X Pre-Indus.
Ocean Carbon | 2020 x10M | 2079 x10°M | 2122 x10°M
[HCO;7] 1771 x10°M | 1882 x10°°M | 1958 x10°M
[CO,(aq)] [9.13x10M | 13.4%x10°M |18.3x10°M
[CO5*7] 239 x10°M | 148 x10°M | 146 x10°M
pH 8.32 8.18 8.06

Ocean Carbon [ CO,] = [CO,(aq)] +[HCO;] + [CO; ]

Notes:

T =293 K; Alkalinity=2.25%x1073 M

M = mol/liter

Mathematics supporting this calculation on Extra Slides 1 to 3 of Class Notes.

Copyright © 2022 University of Maryland.
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Uptake of Atmospheric CO, by Oceans

Oceanic uptake of atmospheric CO, leads to ocean acidification
Bad news for ocean dwelling organisms that precipitate shells (basic materials)
THE (RAGGED]) FUTURE OF ARAGONITE

Diminishing pH levels will weaken the ability of certain marine organisms to build their hard parts and will be felt soonest and
most severely by those creatures that make those parts of aragonite, the form of calcium carbonate thatis most prone to
dissolution. The degree of threat will vary regionally.

Before the Industrial Revolution (/eft), most surface waters were substantially “oversaturated” with respect to aragonite (light blue),
allowing marine organisms to form this mineral readily. But now (center), polar surface waters are only marginally oversaturated (dark blue).
At the end of this century (right], such chilly waters, particularly those surrounding Antarctica, are expected to become undersaturated
(purple), makingit difficult for organisms to make aragonite and causing aragonite already formed to dissolve.

Pteropods form a key linkin the food
chain throughout the Southern Ocean.
For these animals (and creatures that
depend on them), the coming changes
may be disastrous, as the images at
theright suggest. The shell of a
pteropod kept for 48 hours in water
undersaturated with respect to
aragonite shows corrosion on the
surface (a), seen most clearly at high
magnification (b). The shell of a normal
pteropod shows no dissolution (c).

o

Doney, The Dangers of Ocean Acidification, Scientific American, March, 2006
Copyright © 2022 University of Maryland. 29
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Uptake of Atmospheric CO, by Oceans
When CO, dissolves:

Net: CO,(aq) + CO32_ + H,0 — 2 HCO3_

Atmospheric 280 ppm 411 ppm 560 ppm
CO, Pre-Industrial | Present Day | 2 x Pre-Indus.
Ocean Carbon | 2020 x10°M | 2079 x10°M | 2122 x10°M
[HCO;7] 1771 x10°M | 1882 x10°°M | 1958 x10°M

[CO,(aq)] |9.13x106M |13.4x10M |18.3 x10°M

[CO2] | 239x106M | 148 x10°M | 146 x106 M

pH 8.32 8.18 8.06
Revelle Factor:
AAtmMos ., B 131 ppm _0.34
(AtMOSc0 ) ppnce  0-5%(4114280) ppm
AOcean Carbon B 59 x 10° M —0.029
<A0cean Carb0n>AVERAGE 0.5x(2020+2079)x 10° M .

Pre-industrial to present: Ocean carbon rose by 2.9% for a 34% increase in atmospheric CO,

Copyright © 2022 University of Maryland.
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Uptake of Atmospheric CO, by Oceans
When CO, dissolves:

Net: CO,(aq) + CO32_ + H,0 — 2 HCO3_

Atmospheric 280 ppm 411 ppm 560 ppm
CO, Pre-Industrial | Present Day | 2 x Pre-Indus.
Ocean Carbon | 2020 x10M | 2079 x10°M | 2122 x10°M
[HCO;7] 1771 x10°M | 1882 x10°°M | 1958 x10°M
[CO,(aq)] [9.13x10M | 13.4%x10°M |18.3x10°M
[CO5*7] 239 x10°M | 148 x10°M | 146 x10°M
pH 8.32 8.18 8.06
Revelle Factor:
AAtmMos ., B 149 ppm 031
(AtMOSc0 ), nce  0-5%(560+411) ppm
AOcean Carbon 43 x 10° M
= =0.020
<A0cean Carb0n>AVERAGE 0.5x(2079+2122)x 10° M

Present to a future we hope to avoid: Ocean carbon will rise by 2.0% for a 31% increase in atmospheric CO,
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