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Review for Exam

AOSC 680
Ross Salawitch

Review of First Third of Class
4 October 2022

Exam will be in class on Thursday:
• Closed book
• Focus on concepts, no calculations
• Will cover material & required readings, Lectures 1 to 8
• Today, I will review:

− Problem Set
− Lectures 1 to 8

Class Web Sites: 
http://www2.atmos.umd.edu/~rjs/class/fall2022
https://umd.instructure.com/courses/1327017

http://www2.atmos.umd.edu/%7Erjs/class/fall2022
https://umd.instructure.com/courses/1327017
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Greenhouse Effect

Question 1.3, IPCC, 2007
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Radiative Forcing of Climate, 1750 to 2019

Question 2.1, IPCC, 2007

Figure 7.6, IPCC (2021)
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf

https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf
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Radiative Forcing

Question 1.1, IPCC, 2007

Radiative Forcing of Climate is Change in Energy
reaching the lower atmosphere (surface to tropopause) as GHGs rise.

“Back Radiation” is most important term.
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Absorption vs. Wavelength

CH4

N2O

CH4

N2O
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GHG Record Over Last Several Millennia

Figure 1.2, Paris Beacon of Hope (updated)
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Going Back 600,000 years

See https://epic.awi.de/id/eprint/18400/1/Oer2008a.pdf for description of EPICA , European Project for Ice Coring in Antarctica

Figure 6.3, IPCC 2007  

https://epic.awi.de/id/eprint/18400/1/Oer2008a.pdf
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GWP − Global Warming Potential
time final

CH4 4
time initial

4 time final

CO2 2
time initial

[CH (t)] dt
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[CO (t) dt]
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∫
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where:
aCH4 = Radiative Efficiency (W m−2 kg −1) due to an increase in CH4

aCO2 = Radiative Efficiency (W m−2 kg−1) due to an increase in CO2

CH4 (t) = time-dependent response to an instantaneous release of a pulse of certain mass of CH4

CO2 (t) = time-dependent response to an instantaneous release of a pulse of the same mass of CO2
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20 Year Time Horizon means time final = 20 years in these integrals

9

GWP − Global Warming Potential
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GWP − Global Warming Potential
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                  where all times are given in units 

− − −
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=
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100 Year Time Horizon means time final = 100 years in these integrals
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Modern CO2 Record

∆CO2 = 3.25 ppm per year
or  0.8 % per year

Legacy of Charles Keeling, Scripps Institution of Oceanography, La Jolla, CA
https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2_data_mlo.png

See also https://www.co2.earth/daily-co2

CO2 at MLO on 4 Sep 2022: 416.68 parts per million (ppm)
CO2 at MLO on 4 Sep 2021: 413.43 parts per million (ppm)

https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2_data_mlo.png
https://www.co2.earth/daily-co2
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Atmospheric CH4
AT6, Q1:
According to Table 3.2 of Chemistry in Context, what was pre-industrial atmospheric abundance of CH4 and is this consistent 
with Figure 3.7 of the Houghton reading?

700 ppb

Broadly015 EPA NAAQS Standard for O3 is 0.070 ppm
or 70 ppb
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Figure 3.7, Houghton
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Atmospheric CH4
AT6, Q2:
What is the approximate current atmospheric abundance of CH4?

as well as Fig 1.2 from
Paris Climate Agreement: Beacon of Hope also shown in Lecture 2
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Atmospheric CH4
AT6, Q2:
What is the approximate current atmospheric abundance of CH4?

NOAA Earth System Research Laboratory (Boulder, Co) is “go to” place for information regarding GHGs

Latest data indicate CH4 is over 1900 ppb and rising, and also that CH4 exceeded 1760 ppb in late-1990s
and exceeded 1.84 ppm in mid-2017.
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https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4

https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4
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Atmospheric CH4

Copyright © 2022 University of Maryland. 
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From prior slide:
[CH4]Preindustrial / [CH4]Present = SourcePreindustrial / SourcePresent

Presumably:
SourcePreindustrial = SourcePresent − SourceHuman (i.e., presumably “natural state” has not changed)

If so, then top equation can be written as:
[CH4]Preindustrial / [CH4]Present = (SourcePresent − SourceHuman) / SourcePresent

= 1 − SourceHuman / SourcePresent = 1 − (335 Tg yr−1) / (553 Tg yr−1)
=  1 − 0.61 = 0.39

Scientific utility of quantifying the human and natural sources of CH4

CH4 Sources:
Human: 335 Tg yr−1

Natural: 218 Tg yr−1

Total:   553 Tg yr−1

Human ≈ 60% of total
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The Nitrogen Cycle

Chapter 6, Chemistry in Context

The reactive forms of nitrogen in this cycle continuously change chemical forms.  Thus,
the ammonia that starts out as fertilizer may end up as NO, in turn increasing the acidity

of the atmosphere.  Or the NO may end up as N2O, a GHG that is currently rising.
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N2O Time Series

http://www.esrl.noaa.gov/gmd/hats/combined/N2O.html

which is about 0.4 % per year

N2O is rising at about 1.3 ppb per year,
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http://www.esrl.noaa.gov/gmd/hats/combined/N2O.html
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Simple Climate Model
BB H2O CO2 CH4+N2O OTHER GHGs AEROSOLS

2
 BB

 

T = λ  (1 + ) ( F  F + F  F )  OHE

where
        λ  0.3 K   W m
       OHE = Ocean Heat Export

Climate models that consider water vapor feedback find:
        λ  

f

/ −

∆ ∆ + ∆ ∆ + ∆ −

=

≈ 20.63 K   W m ,  from which we deduce / −
H2Of = 1.08
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Lapse Rate Feedback

https://ourchangingclimate.wordpress.com/2013/03/01/klotzbach-revisited

 Photons emitted in UT can escape to space more easily than photons emitted near surface
 If UT warms more than surface, bulk atmospheric emissivity increases

UT :upper troposphere       Emissivity: efficiency in which thermal energy is radiated
 GCMs indicate water vapor & lapse rate feedbacks are intricately linked, with the former almost    

certainly being positive (in response to rising GHGs), the latter almost certainly being negative,
and the sum probably being positive

19

https://ourchangingclimate.wordpress.com/2013/03/01/klotzbach-revisited
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CMIP5: Sum of all feedback terms about 1.5 W m−2 K−1,
with a wide range from 1 W m−2 K−1 to 2.2 W m−2 K−1
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Modeling Climate Change

McBride et al., 2021: https://esd.copernicus.org/articles/12/545/2021

Similar to Lecture 2, Slide 16 (Handout)

CRU: Climate Research Unit of East Anglia, United Kingdom
EM-GC: Empirical Model of Global Climate, Univ of Maryland
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Model computes influence on global mean surface temperature    
(GMST) of:

a) RF due to GHGs & Tropospheric Aerosols

b) Total Solar Irradiance (TSI) & Stratospheric Aerosol Optical Depth 
(SAOD)

c) El Niño – Southern Oscillation (ENSO)

d) Atlantic Meridional Overturning Circulation (AMOC)

e) Transfer of heat from atmosphere to ocean

https://esd.copernicus.org/articles/12/545/2021
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Modeling Climate Change

McBride et al., 2021: https://esd.copernicus.org/articles/12/545/2021

Similar to Lecture 2, Slide 16 (Handout)

CRU: Climate Research Unit of East Anglia, United Kingdom
EM-GC: Empirical Model of Global Climate, Univ of Maryland

TOTAL CO2 CH4+N2O OTHER GHGs AEROSOLS

HUMAN
PT  = λ (1 + ) (ΔF +ΔF + ΔF +ΔF )  OHEf∆ −

TOTALwhere  is dimensionless climate sensitivty parameter that represents feedbacks,

          and is related to IPCC definition of feedbacks (Bony et al., . , 2006) via:      
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https://esd.copernicus.org/articles/12/545/2021
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Fig 1.10,  Paris, Beacon of Hope

Combining RF GHGs & Aerosols
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GHG − Aerosol RF →

Aerosol RF2011 = −0.4 W m−2

Value in 2011

25
Based upon Fig 1.10,  Paris, Beacon of Hope

Combining RF GHGs & Aerosols
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Combining RF GHGs & Aerosols

GHG − Aerosol RF →

Aerosol RF2011 = −0.9 W m−2

Value in 2011

Based upon Fig 1.10,  Paris, Beacon of Hope
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Combining RF GHGs & Aerosols

GHG − Aerosol RF →

Aerosol RF2011 = −1.5 W m−2

Value in 2011

Based upon Fig 1.10,  Paris, Beacon of Hope
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Uncertainty in RF of climate due to tropospheric aerosols is huge complication 
leading to fundamental uncertainty on forecasts of future global warming

McBride et al., 2021
https://esd.copernicus.org/articles/12/545/2021

TOTALPlanck

TOTAL

            ΔT = λ (1 ) RF OHE
where:
    feedbacks due to water vapor, clouds, lapse rate, etc
      OHE =  ocean heat export

f

f

× + ×∆ −

=

f TOTAL = 0.5=  1
Paris Goal

Paris Upper Limit

1850            1900            1950            2000           2050            2100

f TOTAL = 0.5=  1

We assume that whatever value of climate feedback is inferred from the climate record will persist into the future.
For Aerosol RF in 2011 of −0.4 W m−2 & assuming best estimate for H2O and Lapse Rate feedback is correct, 

this simulation implies sum of other feedbacks (clouds, surface albedo) must be close to zero.

https://esd.copernicus.org/articles/12/545/2021
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Uncertainty in RF of climate due to tropospheric aerosols is huge complication 
leading to fundamental uncertainty on forecasts of future global warming

McBride et al., 2021
https://esd.copernicus.org/articles/12/545/2021

TOTALPlanck

TOTAL

            ΔT = λ (1 ) RF OHE
where:
    feedbacks due to water vapor, clouds, lapse rate, etc
      OHE =  ocean heat export

f

f

× + ×∆ −

=

Paris Goal

Paris Upper Limit

1850            1900            1950            2000           2050            2100

f TOTAL = 1.0=  1

We assume that whatever value of climate feedback is inferred from the climate record will persist into the future.
For Aerosol RF in 2011 of −0.9 W m−2 & assuming best estimate for H2O and Lapse Rate feedback is correct, 

this simulation implies sum of other feedbacks (clouds, surface albedo) must be moderately positive.

https://esd.copernicus.org/articles/12/545/2021
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Uncertainty in RF of climate due to tropospheric aerosols is huge complication 
leading to fundamental uncertainty on forecasts of future global warming

McBride et al., 2021
https://esd.copernicus.org/articles/12/545/2021

TOTALPlanck

TOTAL

            ΔT = λ (1 ) RF OHE
where:
    feedbacks due to water vapor, clouds, lapse rate, etc
      OHE =  ocean heat export

f

f

× + ×∆ −

=

Paris Goal

Paris Upper Limit

1850            1900            1950            2000           2050            2100

We assume that whatever value of climate feedback is inferred from the climate record will persist into the future.
For Aerosol RF in 2011 of −1.5 W m−2 & assuming best estimate for H2O and Lapse Rate feedback is correct, 

this simulation implies sum of other feedbacks (clouds, surface albedo) must be strongly positive.

f TOTAL = 3.0=  1

https://esd.copernicus.org/articles/12/545/2021
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End of Century Warming, SSP4-3.4, as a fn of Feedback & Aerosol RF

Same as 
FBTOTAL

Model space for which at χ2 ≤ 2 , where:

McBride et al., 2021
https://esd.copernicus.org/articles/12/545/2021

AR5 best
estimate

RF due to
Tropospheric

Aerosols

https://esd.copernicus.org/articles/12/545/2021
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IPCC AR5 “downgraded” warming forecast by CMIP5 models

Fig 11.25b, IPCC (2013)

Chapter 11 of IPCC (2013) suggested CMIP5 GCMs warm too quickly
compared to observations, resulting in “likely range” (red trapezoid)

for rise in GMST relative to pre-industrial baseline (∆T) being
considerably less than actual archived ∆T from the CMIP5 GCM runs
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Probabilistic Forecast of Human-Induced Rise in GMST for model trained
on data acquired until end of 2019 and future GHG levels from SSP2-4.5

If GHGs follow SSP2-4.5, 2% chance rise GMST stays below 1.5°C and 33% chance stays below 2.0°C

EM-GC: University of Maryland Empirical Model of Global Climate 
∆T: rise in GMST (Global Mean Surface Temperature) relative to pre-industrial

CRU: Climate Research Unit, Easy Anglia, UK: Premier source of data for ∆T 

McBride et al., 2021:  https://esd.copernicus.org/articles/12/545/2021

https://esd.copernicus.org/articles/12/545/2021
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Probabilistic Forecast of Human-Induced Rise in GMST for model trained
on data acquired until end of 2019 and future GHG levels from SSP4-3.4

EM-GC: University of Maryland Empirical Model of Global Climate 
∆T: rise in GMST (Global Mean Surface Temperature) relative to pre-industrial

CRU: Climate Research Unit, Easy Anglia, UK: Premier source of data for ∆T 

McBride et al., 2021:  https://esd.copernicus.org/articles/12/545/2021

If GHGs follow SSP4-3.4, 19% chance rise GMST stays below 1.5°C and 64% chance stays below 2.0°C

https://esd.copernicus.org/articles/12/545/2021
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Probabilistic Forecast of Human-Induced Rise in GMST for model trained
on data acquired until end of 2019 and future GHG levels from SSP1-2.6

If GHGs follow SSP1-2.6, 53% chance rise GMST stays below 1.5°C and 86% chance stays below 2.0°C

EM-GC: University of Maryland Empirical Model of Global Climate 
∆T: rise in GMST (Global Mean Surface Temperature) relative to pre-industrial

CRU: Climate Research Unit, Easy Anglia, UK: Premier source of data for ∆T 

McBride et al., 2021:  https://esd.copernicus.org/articles/12/545/2021

https://esd.copernicus.org/articles/12/545/2021
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Probabilistic Forecast of Human-Induced Rise in GMST for model trained
on data acquired until end of 2019 and future GHG levels from SSP1-1.9

If GHGs follow SSP1-1.9, 81% chance rise GMST stays below 1.5°C and 98% chance stays below 2.0°C

EM-GC: University of Maryland Empirical Model of Global Climate 
∆T: rise in GMST (Global Mean Surface Temperature) relative to pre-industrial

CRU: Climate Research Unit, Easy Anglia, UK: Premier source of data for ∆T 

McBride et al., 2021:  https://esd.copernicus.org/articles/12/545/2021

https://esd.copernicus.org/articles/12/545/2021
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