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Frequently Asked Questions

Frequently Asked Question 1.1

What Factors Determine Earth’s Climate?

The climate system is a complex, interactive system consisting 
of the atmosphere, land surface, snow and ice, oceans and other 
bodies of water, and living things. The atmospheric component of 
the climate system most obviously characterises climate; climate 
is often defined as ‘average weather’. Climate is usually described 
in terms of the mean and variability of temperature, precipitation 
and wind over a period of time, ranging from months to millions 
of years (the classical period is 30 years). The climate system 
evolves in time under the influence of its own internal dynamics 
and due to changes in external factors that affect climate (called 
‘forcings’). External forcings include natural phenomena such as 
volcanic eruptions and solar variations, as well as human-induced 
changes in atmospheric composition. Solar radiation powers the 
climate system. There are three fundamental ways to change the 
radiation balance of the Earth: 1) by changing the incoming solar 
radiation (e.g., by changes in Earth’s orbit or in the Sun itself); 2) 
by changing the fraction of solar radiation that is reflected (called 

‘albedo’; e.g., by changes in cloud cover, atmospheric particles or 
vegetation); and 3) by altering the longwave radiation from Earth 
back towards space (e.g., by changing greenhouse gas concentra-
tions). Climate, in turn, responds directly to such changes, as well 
as indirectly, through a variety of feedback mechanisms. 

The amount of energy reaching the top of Earth’s atmosphere 
each second on a surface area of one square metre facing the 
Sun during daytime is about 1,370 Watts, and the amount of en-
ergy per square metre per second averaged over the entire planet 
is one-quarter of this (see Figure 1). About 30% of the sunlight 
that reaches the top of the atmosphere is reflected back to space. 
Roughly two-thirds of this reflectivity is due to clouds and small 
particles in the atmosphere known as ‘aerosols’. Light-coloured  
areas of Earth’s surface – mainly snow, ice and deserts – reflect the 
remaining one-third of the sunlight. The most dramatic change in 
aerosol-produced reflectivity comes when major volcanic erup-
tions eject material very high into the atmosphere. Rain typically 

FAQ 1.1, Figure 1. Estimate of the Earth’s annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and 
atmosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar radiation is absorbed by the 
Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by evapotranspiration and by longwave radiation that is 
absorbed by clouds and greenhouse gases. The atmosphere in turn radiates longwave energy back to Earth as well as out to space. Source: Kiehl and Trenberth (1997).
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clears aerosols out of the atmosphere in a week or two, but when 
material from a violent volcanic eruption is projected far above 
the highest cloud, these aerosols typically influence the climate 
for about a year or two before falling into the troposphere and 
being carried to the surface by precipitation. Major volcanic erup-
tions can thus cause a drop in mean global surface temperature of 
about half a degree celsius that can last for months or even years. 
Some man-made aerosols also significantly reflect sunlight.

The energy that is not reflected back to space is absorbed by 
the Earth’s surface and atmosphere. This amount is approximately 
240 Watts per square metre (W m–2). To balance the incoming en-
ergy, the Earth itself must radiate, on average, the same amount 
of energy back to space. The Earth does this by emitting outgoing 
longwave radiation. Everything on Earth emits longwave radia-
tion continuously. That is the heat energy one feels radiating out 
from a fire; the warmer an object, the more heat energy it radi-
ates. To emit 240 W m–2, a surface would have to have a tem-
perature of around –19°C. This is much colder than the conditions 
that actually exist at the Earth’s surface (the global mean surface 
temperature is about 14°C). Instead, the necessary –19°C is found 
at an altitude about 5 km above the surface.

The reason the Earth’s surface is this warm is the presence of 
greenhouse gases, which act as a partial blanket for the longwave 
radiation coming from the surface. This blanketing is known as 
the natural greenhouse effect. The most important greenhouse 
gases are water vapour and carbon dioxide. The two most abun-
dant constituents of the atmosphere – nitrogen and oxygen – have 
no such effect. Clouds, on the other hand, do exert a blanketing 
effect similar to that of the greenhouse gases; however, this effect 
is offset by their reflectivity, such that on average, clouds tend to 
have a cooling effect on climate (although locally one can feel the 
warming effect: cloudy nights tend to remain warmer than clear 
nights because the clouds radiate longwave energy back down 
to the surface). Human activities intensify the blanketing effect 
through the release of greenhouse gases. For instance, the amount 
of carbon dioxide in the atmosphere has increased by about 35% 
in the industrial era, and this increase is known to be due to hu-
man activities, primarily the combustion of fossil fuels and re-
moval of forests. Thus, humankind has dramatically altered the 
chemical composition of the global atmosphere with substantial 
implications for climate.

Because the Earth is a sphere, more solar energy arrives for a 
given surface area in the tropics than at higher latitudes, where 

sunlight strikes the atmosphere at a lower angle. Energy is trans-
ported from the equatorial areas to higher latitudes via atmo-
spheric and oceanic circulations, including storm systems. Energy 
is also required to evaporate water from the sea or land surface, 
and this energy, called latent heat, is released when water vapour 
condenses in clouds (see Figure 1). Atmospheric circulation is pri-
marily driven by the release of this latent heat. Atmospheric cir-
culation in turn drives much of the ocean circulation through the 
action of winds on the surface waters of the ocean, and through 
changes in the ocean’s surface temperature and salinity through 
precipitation and evaporation. 

Due to the rotation of the Earth, the atmospheric circulation 
patterns tend to be more east-west than north-south. Embedded 
in the mid-latitude westerly winds are large-scale weather sys-
tems that act to transport heat toward the poles. These weather 
systems are the familiar migrating low- and high-pressure sys-
tems and their associated cold and warm fronts. Because of land-
ocean temperature contrasts and obstacles such as mountain 
ranges and ice sheets, the circulation system’s planetary-scale 
atmospheric waves tend to be geographically anchored by conti-
nents and mountains although their amplitude can change with 
time. Because of the wave patterns, a particularly cold winter 
over North America may be associated with a particularly warm 
winter elsewhere in the hemisphere. Changes in various aspects 
of the climate system, such as the size of ice sheets, the type and 
distribution of vegetation or the temperature of the atmosphere 
or ocean will influence the large-scale circulation features of the 
atmosphere and oceans.

There are many feedback mechanisms in the climate system 
that can either amplify (‘positive feedback’) or diminish (‘negative 
feedback’) the effects of a change in climate forcing. For example, 
as rising concentrations of greenhouse gases warm Earth’s cli-
mate, snow and ice begin to melt. This melting reveals darker 
land and water surfaces that were beneath the snow and ice, 
and these darker surfaces absorb more of the Sun’s heat, causing 
more warming, which causes more melting, and so on, in a self-
reinforcing cycle. This feedback loop, known as the ‘ice-albedo 
feedback’, amplifies the initial warming caused by rising levels 
of greenhouse gases. Detecting, understanding and accurately 
quantifying climate feedbacks have been the focus of a great deal 
of research by scientists unravelling the complexities of Earth’s 
climate. 
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Frequently Asked Question 1.2

What is the Relationship between Climate Change 
and Weather?

Climate is generally defined as average weather, and as such, 
climate change and weather are intertwined. Observations can 
show that there have been changes in weather, and it is the statis-
tics of changes in weather over time that identify climate change. 
While weather and climate are closely related, there are important 
differences. A common confusion between weather and climate 
arises when scientists are asked how they can predict climate 50 
years from now when they cannot predict the weather a few weeks 
from now. The chaotic nature of weather makes it unpredictable 
beyond a few days. Projecting changes in climate (i.e., long-term 
average weather) due to changes in atmospheric composition or 
other factors is a very different and much more manageable issue. 
As an analogy, while it is impossible to predict the age at which 
any particular man will die, we can say with high confidence that 
the average age of death for men in industrialised countries is 
about 75. Another common confusion of these issues is thinking 

that a cold winter or a cooling spot on the globe is evidence against 
global warming. There are always extremes of hot and cold, al-
though their frequency and intensity change as climate changes. 
But when weather is averaged over space and time, the fact that 
the globe is warming emerges clearly from the data.

Meteorologists put a great deal of effort into observing, un-
derstanding and predicting the day-to-day evolution of weath-
er systems. Using physics-based concepts that govern how the 
atmosphere moves, warms, cools, rains, snows, and evaporates 
water, meteorologists are typically able to predict the weather 
successfully several days into the future. A major limiting factor 
to the predictability of weather beyond several days is a funda-
mental dynamical property of the atmosphere. In the 1960s, me-
teorologist Edward Lorenz discovered that very slight differences 
in initial conditions can produce very different forecast results. 

FAQ 1.2, Figure 1. Schematic view of the components of the climate system, their processes and interactions. 
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This is the so-called butterfly effect: a butterfly flapping its wings 
(or some other small phenomenon) in one place can, in principle, 
alter the subsequent weather pattern in a distant place. At the 
core of this effect is chaos theory, which deals with how small 
changes in certain variables can cause apparent randomness in 
complex systems. 

Nevertheless, chaos theory does not imply a total lack of or-
der. For example, slightly different conditions early in its history 
might alter the day a storm system would arrive or the exact path 
it would take, but the average temperature and precipitation (that 
is, climate) would still be about the same for that region and that 
period of time. Because a significant problem facing weather fore-
casting is knowing all the conditions at the start of the forecast 
period, it can be useful to think of climate as dealing with the 
background conditions for weather. More precisely, climate can 
be viewed as concerning the status of the entire Earth system, in-
cluding the atmosphere, land, oceans, snow, ice and living things 
(see Figure 1) that serve as the global background conditions that 
determine weather patterns. An example of this would be an El 
Niño affecting the weather in coastal Peru. The El Niño sets limits 
on the probable evolution of weather patterns that random effects 
can produce. A La Niña would set different limits.

Another example is found in the familiar contrast between 
summer and winter. The march of the seasons is due to changes in 
the geographical patterns of energy absorbed and radiated away 
by the Earth system. Likewise, projections of future climate are 

shaped by fundamental changes in heat energy in the Earth sys-
tem, in particular the increasing intensity of the greenhouse effect 
that traps heat near Earth’s surface, determined by the amount of 
carbon dioxide and other greenhouse gases in the atmosphere. 
Projecting changes in climate due to changes in greenhouse gas-
es 50 years from now is a very different and much more easily 
solved problem than forecasting weather patterns just weeks from 
now. To put it another way, long-term variations brought about 
by changes in the composition of the atmosphere are much more 
predictable than individual weather events. As an example, while 
we cannot predict the outcome of a single coin toss or roll of the 
dice, we can predict the statistical behaviour of a large number 
of such trials.

While many factors continue to influence climate, scientists 
have determined that human activities have become a dominant 
force, and are responsible for most of the warming observed over 
the past 50 years. Human-caused climate change has resulted pri-
marily from changes in the amounts of greenhouse gases in the 
atmosphere, but also from changes in small particles (aerosols), as 
well as from changes in land use, for example. As climate changes, 
the probabilities of certain types of weather events are affected. 
For example, as Earth’s average temperature has increased, some 
weather phenomena have become more frequent and intense (e.g., 
heat waves and heavy downpours), while others have become less 
frequent and intense (e.g., extreme cold events). 
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Frequently Asked Question 1.3

What is the Greenhouse Effect?

The Sun powers Earth’s climate, radiating energy at very short 
wavelengths, predominately in the visible or near-visible (e.g., ul-
traviolet) part of the spectrum. Roughly one-third of the solar 
energy that reaches the top of Earth’s atmosphere is reflected di-
rectly back to space. The remaining two-thirds is absorbed by the 
surface and, to a lesser extent, by the atmosphere. To balance the 
absorbed incoming energy, the Earth must, on average, radiate the 
same amount of energy back to space. Because the Earth is much 
colder than the Sun, it radiates at much longer wavelengths, pri-
marily in the infrared part of the spectrum (see Figure 1). Much 
of this thermal radiation emitted by the land and ocean is ab-
sorbed by the atmosphere, including clouds, and reradiated back 
to Earth. This is called the greenhouse effect. The glass walls in 
a greenhouse reduce airflow and increase the temperature of the 
air inside. Analogously, but through a different physical process, 
the Earth’s greenhouse effect warms the surface of the planet. 
Without the natural greenhouse effect, the average temperature at 
Earth’s surface would be below the freezing point of water. Thus, 

Earth’s natural greenhouse effect makes life as we know it pos-
sible. However, human activities, primarily the burning of fossil 
fuels and clearing of forests, have greatly intensified the natural 
greenhouse effect, causing global warming. 

The two most abundant gases in the atmosphere, nitrogen 
(comprising 78% of the dry atmosphere) and oxygen (comprising 
21%), exert almost no greenhouse effect. Instead, the greenhouse 
effect comes from molecules that are more complex and much less 
common. Water vapour is the most important greenhouse gas, and 
carbon dioxide (CO2) is the second-most important one. Methane, 
nitrous oxide, ozone and several other gases present in the atmo-
sphere in small amounts also contribute to the greenhouse effect. 
In the humid equatorial regions, where there is so much water 
vapour in the air that the greenhouse effect is very large, add-
ing a small additional amount of CO2 or water vapour has only a 
small direct impact on downward infrared radiation. However, in 
the cold, dry polar regions, the effect of a small increase in CO2 or 

FAQ 1.3, Figure 1. An idealised model of the natural greenhouse effect. See text for explanation.

(continued)
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water vapour is much greater. The same is true for the cold, dry 
upper atmosphere where a small increase in water vapour has a 
greater influence on the greenhouse effect than the same change 
in water vapour would have near the surface.

Several components of the climate system, notably the oceans 
and living things, affect atmospheric concentrations of green-
house gases. A prime example of this is plants taking CO2 out of 
the atmosphere and converting it (and water) into carbohydrates 
via photosynthesis. In the industrial era, human activities have 
added greenhouse gases to the atmosphere, primarily through the 
burning of fossil fuels and clearing of forests. 

Adding more of a greenhouse gas, such as CO2, to the at-
mosphere intensifies the greenhouse effect, thus warming Earth’s 
climate. The amount of warming depends on various feedback 
mechanisms. For example, as the atmosphere warms due to rising 
levels of greenhouse gases, its concentration of water vapour 

 increases, further intensifying the greenhouse effect. This in turn 
causes more warming, which causes an additional increase in 
 water vapour, in a self-reinforcing cycle. This water vapour feed-
back may be strong enough to approximately double the increase 
in the greenhouse effect due to the added CO2 alone.

Additional important feedback mechanisms involve clouds. 
Clouds are effective at absorbing infrared radiation and therefore 
exert a large greenhouse effect, thus warming the Earth. Clouds 
are also effective at reflecting away incoming solar radiation, thus 
cooling the Earth. A change in almost any aspect of clouds, such 
as their type, location, water content, cloud altitude, particle size 
and shape, or lifetimes, affects the degree to which clouds warm 
or cool the Earth. Some changes amplify warming while others 
diminish it. Much research is in progress to better understand how 
clouds change in response to climate warming, and how these 
changes affect climate through various feedback mechanisms.



Frequently Asked Questions

Frequently Asked Question 2.1

How do Human Activities Contribute to Climate Change 
and How do They Compare with Natural Influences?

Human activities contribute to climate change by causing 
changes in Earth’s atmosphere in the amounts of greenhouse gas-
es, aerosols (small particles), and cloudiness. The largest known 
contribution comes from the burning of fossil fuels, which releases 
carbon dioxide gas to the atmosphere. Greenhouse gases and aero-
sols affect climate by altering incoming solar radiation and out- 
going infrared (thermal) radiation that are part of Earth’s energy 
balance. Changing the atmospheric abundance or properties of 
these gases and particles can lead to a warming or cooling of the 
climate system. Since the start of the industrial era (about 1750), 
the overall effect of human activities on climate has been a warm-
ing influence. The human impact on climate during this era greatly 
exceeds that due to known changes in natural processes, such as 
solar changes and volcanic eruptions.

Greenhouse Gases 

Human activities result in emissions of four principal green-
house gases: carbon dioxide (CO2), methane (CH4), nitrous oxide 
(N2O) and the halocarbons (a group of gases containing fluorine, 
chlorine and bromine). These gases accumulate in the atmosphere, 
causing concentrations to increase with time. Significant increases 
in all of these gases have occurred in the industrial era (see Figure 
1). All of these increases are attributable to human activities.

• Carbon dioxide has increased from fossil fuel use in transpor-
tation, building heating and cooling and the manufacture of 
cement and other goods. Deforestation releases CO2 and re-
duces its uptake by plants. Carbon dioxide is also released in 
natural processes such as the decay of plant matter.

• Methane has increased as a result of human activities related 
to agriculture, natural gas distribution and landfills. Methane 
is also released from natural processes that occur, for example, 
in wetlands. Methane concentrations are not currently increas-
ing in the atmosphere because growth rates decreased over the 
last two decades.

• Nitrous oxide is also emitted by human activities such as fertil-
izer use and fossil fuel burning. Natural processes in soils and 
the oceans also release N2O. 

• Halocarbon gas concentrations have increased primarily due 
to human activities. Natural processes are also a small source. 
Principal halocarbons include the chlorofluorocarbons (e.g., 
CFC-11 and CFC-12), which were used extensively as refrig-
eration agents and in other industrial processes before their 
presence in the atmosphere was found to cause stratospheric 
ozone depletion. The abundance of chlorofluorocarbon gases is 
decreasing as a result of international regulations designed to 
protect the ozone layer.

• Ozone is a greenhouse gas that is continually produced and 
destroyed in the atmosphere by chemical reactions. In the tro-
posphere, human activities have increased ozone through the 
release of gases such as carbon monoxide, hydrocarbons and 
nitrogen oxide, which chemically react to produce ozone. As 
mentioned above, halocarbons released by human activities 
destroy ozone in the stratosphere and have caused the ozone 
hole over Antarctica. 

• Water vapour is the most abundant and important greenhouse 
gas in the atmosphere. However, human activities have only 
a small direct influence on the amount of atmospheric wa-
ter vapour. Indirectly, humans have the potential to affect 
 water vapour substantially by changing climate. For example, 
a warmer atmosphere contains more water vapour. Human 
 activities also influence water vapour through CH4 emissions, 
because CH4 undergoes chemical destruction in the strato-
sphere, producing a small amount of water vapour.

• Aerosols are small particles present in the atmosphere with 
widely varying size, concentration and chemical composition. 
Some aerosols are emitted directly into the atmosphere while 
others are formed from emitted compounds. Aerosols contain 
both naturally occurring compounds and those emitted as a re-
sult of human activities. Fossil fuel and biomass burning have 
increased aerosols containing sulphur compounds, organic 
compounds and black carbon (soot). Human activities such as 

FAQ 2.1, Figure 1. Atmospheric concentrations of important long-lived green-
house gases over the last 2,000 years. Increases since about 1750 are attributed to 
human activities in the industrial era. Concentration units are parts per million (ppm) 
or parts per billion (ppb), indicating the number of molecules of the greenhouse gas 
per million or billion air molecules, respectively, in an atmospheric sample. (Data 
combined and simplified from Chapters 6 and 2 of this report.)

(continued)
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FAQ 2.1, Box 1:  What is Radiative Forcing? 

What is radiative forcing? The influence of a factor that can cause climate change, such as a greenhouse gas, is often evaluated in 
terms of its radiative forcing. Radiative forcing is a measure of how the energy balance of the Earth-atmosphere system is influenced 
when factors that affect climate are altered. The word radiative arises because these factors change the balance between incoming solar 
radiation and outgoing infrared radiation within the Earth’s atmosphere. This radiative balance controls the Earth’s surface temperature. 
The term forcing is used to indicate that Earth’s radiative balance is being pushed away from its normal state. 

Radiative forcing is usually quantified as the ‘rate of energy change per unit area of the globe as measured at the top of the atmo-
sphere’, and is expressed in units of ‘Watts per square metre’ (see Figure 2). When radiative forcing from a factor or group of factors 
is evaluated as positive, the energy of the Earth-atmosphere system will ultimately increase, leading to a warming of the system. In 
contrast, for a negative radiative forcing, the energy will ultimately decrease, leading to a cooling of the system. Important challenges 
for climate scientists are to identify all the factors that affect climate and the mechanisms by which they exert a forcing, to quantify the 
radiative forcing of each factor and to evaluate the total radiative forcing from the group of factors. 

FAQ 2.1, Figure 2. Summary of the principal components of the radiative forcing of climate change. All these 
radiative forcings result from one or more factors that affect climate and are associated with human activities or 
natural processes as discussed in the text. The values represent the forcings in 2005 relative to the start of the 
industrial era (about 1750). Human activities cause significant changes in long-lived gases, ozone, water vapour, 
surface albedo, aerosols and contrails. The only increase in natural forcing of any significance between 1750 and 
2005 occurred in solar irradiance. Positive forcings lead to warming of climate and negative forcings lead to a 
cooling. The thin black line attached to each coloured bar represents the range of uncertainty for the respective 
value. (Figure adapted from Figure 2.20 of this report.)

surface mining and industrial processes 
have increased dust in the atmosphere. 
Natural aerosols include mineral dust re-
leased from the surface, sea salt aerosols, 
biogenic emissions from the land and 
oceans and sulphate and dust aerosols 
produced by volcanic eruptions. 

Radiative Forcing of Factors Affected by 
Human Activities

The contributions to radiative forcing 
from some of the factors influenced by hu-
man activities are shown in Figure 2. The 
values reflect the total forcing relative to the 
start of the industrial era (about 1750). The 
forcings for all greenhouse gas increases, 
which are the best understood of those due 
to human activities, are positive because each 
gas absorbs outgoing infrared radiation in the 
atmosphere. Among the greenhouse gases, 
CO2 increases have caused the largest forcing 
over this period. Tropospheric ozone increas-
es have also contributed to warming, while 
stratospheric ozone decreases have contrib-
uted to cooling. 

Aerosol particles influence radiative forc-
ing directly through reflection and absorption 
of solar and infrared radiation in the atmo-
sphere. Some aerosols cause a positive forcing 
while others cause a negative forcing. The di-
rect radiative forcing summed over all aerosol 
types is negative. Aerosols also cause a nega-
tive radiative forcing indirectly through the 
changes they cause in cloud properties. 

Human activities since the industrial era 
have altered the nature of land cover over 
the globe, principally through changes in 

(continued)
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follow an 11-year cycle. Solar energy directly heats the climate 
system and can also affect the atmospheric abundance of some 
greenhouse gases, such as stratospheric ozone. Explosive volcanic 
eruptions can create a short-lived (2 to 3 years) negative forcing 
through the temporary increases that occur in sulphate aerosol 
in the stratosphere. The stratosphere is currently free of volcanic 
aerosol, since the last major eruption was in 1991 (Mt. Pinatubo). 

The differences in radiative forcing estimates between the 
present day and the start of the industrial era for solar irradiance 
changes and volcanoes are both very small compared to the differ-
ences in radiative forcing estimated to have resulted from human 
activities. As a result, in today’s atmosphere, the radiative forcing 
from human activities is much more important for current and 
future climate change than the estimated radiative forcing from 
changes in natural processes.  

 croplands, pastures and forests. They have also modified the reflec-
tive properties of ice and snow. Overall, it is likely that more solar  
radiation is now being reflected from Earth’s surface as a result of 
human activities. This change results in a negative forcing. 

Aircraft produce persistent linear trails of condensation (‘con-
trails’) in regions that have suitably low temperatures and high 
humidity. Contrails are a form of cirrus cloud that reflect solar ra-
diation and absorb infrared radiation. Linear contrails from global 
aircraft operations have increased Earth’s cloudiness and are esti-
mated to cause a small positive radiative forcing. 

Radiative Forcing from Natural Changes

Natural forcings arise due to solar changes and explosive 
 volcanic eruptions. Solar output has increased gradually in the 
 industrial era, causing a small positive radiative forcing (see Figure 
2). This is in addition to the cyclic changes in solar radiation that 
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Instrumental observations over the past 157 years show that 
temperatures at the surface have risen globally, with important 
regional variations. For the global average, warming in the last 
century has occurred in two phases, from the 1910s to the 1940s 
(0.35°C), and more strongly from the 1970s to the present (0.55°C). 
An increasing rate of warming has taken place over the last 25 
years, and 11 of the 12 warmest years on record have occurred 
in the past 12 years. Above the surface, global observations since 
the late 1950s show that the troposphere (up to about 10 km) has 
warmed at a slightly greater rate than the surface, while the strato-
sphere (about 10–30 km) has cooled markedly since 1979. This 
is in accord with physical expectations and most model results. 
Confirmation of global warming comes from warming of the oceans, 
rising sea levels, glaciers melting, sea ice retreating in the Arctic 
and diminished snow cover in the Northern Hemisphere.

There is no single thermometer measuring the global tempera-
ture. Instead, individual thermometer measurements taken every 
day at several thousand stations over the land areas of the world 
are combined with thousands more measurements of sea surface 
temperature taken from ships moving over the oceans to produce 
an estimate of global average temperature every month. To ob-
tain consistent changes over time, the main analysis is actually 
of anomalies (departures from the climatological mean at each 
site) as these are more robust to changes in data availability. It is 
now possible to use these measurements from 1850 to the present, 
although coverage is much less than global in the second half of 
the 19th century, is much better after 1957 when measurements 
began in Antarctica, and best after about 1980, when satellite 
measurements began.

Expressed as a global average, surface temperatures have in-
creased by about 0.74°C over the past hundred years (between 
1906 and 2005; see Figure 1). However, the warming has been 
neither steady nor the same in different seasons or in different 
locations. There was not much overall change from 1850 to about 
1915, aside from ups and downs associated with natural variabil-
ity but which may have also partly arisen from poor sampling. An 
increase (0.35°C) occurred in the global average temperature from 
the 1910s to the 1940s, followed by a slight cooling (0.1°C), and 
then a rapid warming (0.55°C) up to the end of 2006 (Figure 1). 
The warmest years of the series are 1998 and 2005 (which are sta-
tistically indistinguishable), and 11 of the 12 warmest years have 
occurred in the last 12 years (1995 to 2006). Warming, particu-
larly since the 1970s, has generally been greater over land than 
over the oceans. Seasonally, warming has been slightly greater in 
the winter hemisphere. Additional warming occurs in cities and 
urban areas (often referred to as the urban heat island effect), but 
is confined in spatial extent, and its effects are allowed for both 
by excluding as many of the affected sites as possible from the 
global temperature data and by increasing the error range (the 
light grey band in the figure).

Frequently Asked Question 3.1

How are Temperatures on Earth Changing?

A few areas have cooled since 1901, most notably the north-
ern North Atlantic near southern Greenland. Warming during this 
time has been strongest over the continental interiors of Asia and 
northern North America. However, as these are areas with large 
year-to-year variability, the most evident warming signal has oc-
curred in parts of the middle and lower latitudes, particularly the 
tropical oceans. In the lower left panel of Figure 1, which shows 
temperature trends since 1979, the pattern in the Pacific Ocean 
features warming and cooling regions related to El Niño.

Analysis of long-term changes in daily temperature extremes 
has recently become possible for many regions of the world (parts 
of North America and southern South America, Europe, north-
ern and eastern Asia, southern Africa and Australasia). Especially 
since the 1950s, these records show a decrease in the number 
of very cold days and nights and an increase in the number of 
extremely hot days and warm nights (see FAQ 3.3). The length of 
the frost-free season has increased in most mid- and high-latitude 
regions of both hemispheres. In the Northern Hemisphere, this is 
mostly manifest as an earlier start to spring.

In addition to the surface data described above, measurements 
of temperature above the surface have been made with weather 
balloons, with reasonable coverage over land since 1958, and 
from satellite data since 1979. All data are adjusted for changes in 
instruments and observing practices where necessary. Microwave 
satellite data have been used to create a ‘satellite temperature re-
cord’ for thick layers of the atmosphere including the troposphere 
(from the surface up to about 10 km) and the lower stratosphere 
(about 10 to 30 km). Despite several new analyses with improved 
cross-calibration of the 13 instruments on different satellites used 
since 1979 and compensation for changes in observing time and 
satellite altitude, some uncertainties remain in trends. 

For global observations since the late 1950s, the most re-
cent versions of all available data sets show that the troposphere 
has warmed at a slightly greater rate than the surface, while the 
stratosphere has cooled markedly since 1979. This is in accord 
with physical expectations and most model results, which dem-
onstrate the role of increasing greenhouse gases in tropospheric 
warming and stratospheric cooling; ozone depletion also contrib-
utes substantially to stratospheric cooling. 

Consistent with observed increases in surface temperature, 
there have been decreases in the length of river and lake ice sea-
sons. Further, there has been an almost worldwide reduction in 
glacial mass and extent in the 20th century; melting of the Green-
land Ice Sheet has recently become apparent; snow cover has de-
creased in many Northern Hemisphere regions; sea ice thickness 
and extent have decreased in the Arctic in all seasons, most dra-
matically in spring and summer; the oceans are warming; and sea 
level is rising due to thermal expansion of the oceans and melting 
of land ice.

(continued) 



Frequently Asked Questions

FAQ 3.1, Figure 1. (Top) Annual global mean observed temperatures1 (black dots) along with simple fits to the data. The left hand axis shows anomalies relative to the 1961 
to 1990 average and the right hand axis shows the estimated actual temperature (°C). Linear trend fits to the last 25 (yellow), 50 (orange), 100 (purple) and 150 years (red) are 
shown, and correspond to 1981 to 2005, 1956 to 2005, 1906 to 2005, and 1856 to 2005, respectively. Note that for shorter recent periods, the slope is greater, indicating accel-
erated warming. The blue curve is a smoothed depiction to capture the decadal variations. To give an idea of whether the fluctuations are meaningful, decadal 5% to 95% (light 
grey) error ranges about that line are given (accordingly, annual values do exceed those limits). Results from climate models driven by estimated radiative forcings for the 20th 
century (Chapter 9) suggest that there was little change prior to about 1915, and that a substantial fraction of the early 20th-century change was contributed by naturally oc-
curring influences including solar radiation changes, volcanism and natural variability. From about 1940 to 1970 the increasing industrialisation following World War II increased 
pollution in the Northern Hemisphere, contributing to cooling, and increases in carbon dioxide and other greenhouse gases dominate the observed warming after the mid-1970s. 
(Bottom) Patterns of linear global temperature trends from 1979 to 2005 estimated at the surface (left), and for the troposphere (right) from the surface to about 10 km altitude, 
from satellite records. Grey areas indicate incomplete data. Note the more spatially uniform warming in the satellite tropospheric record while the surface temperature changes 
more clearly relate to land and ocean.

1 From the HadCRUT3 data set. 




