
Hydrology Groundwater and Groundwater Depletion

Presentation Led by Joo Eun Kim AOSC680

Image by the Water Education Foundation

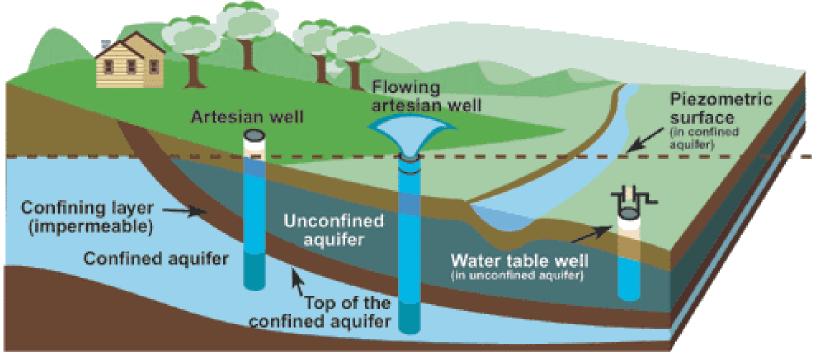
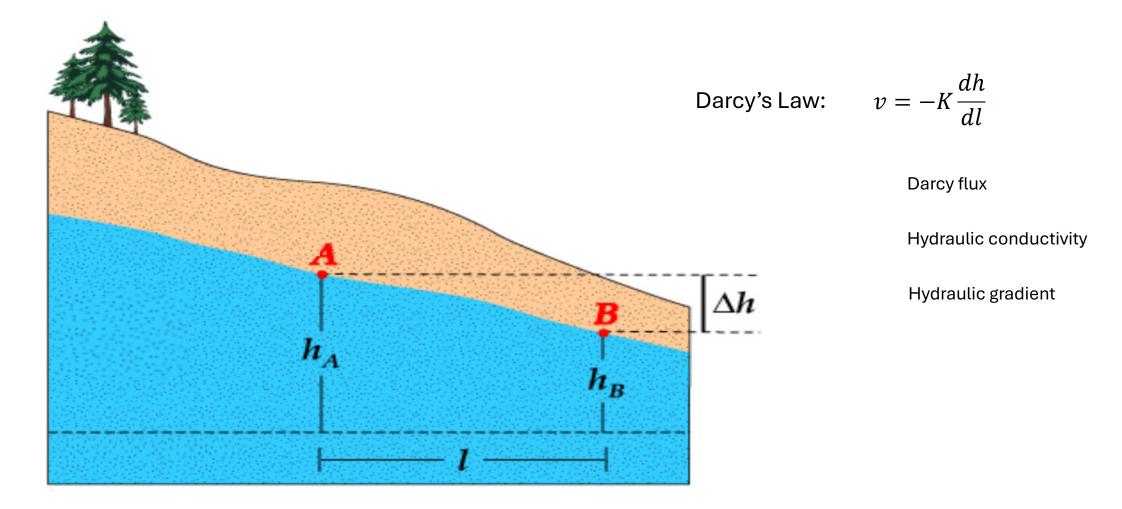
Outline:

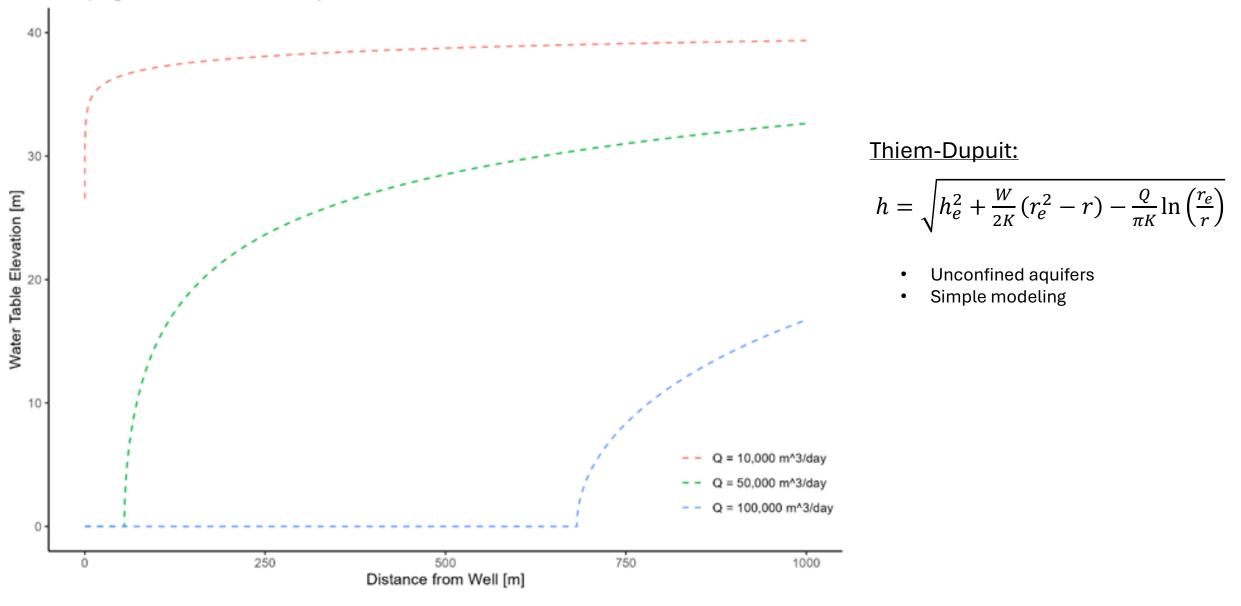
- Overview of aquifers
 - Confined and unconfined aquifers
 - Groundwater pumping at wells
 - Basic fluid mechanics
- Sustainability
 - Definition
 - Overview
- Trends in groundwater flow
 - Groundwater depletion
 - Observations in aquifer systems globally
 - Wells
- Sustainability and Groundwater
 - Current issues
 - What's next going forward

Aquifers

- Aquifer:
- Unconfined:
- Confined:

Aquifers and wells


Image from USGS, Aquifers and Groundwater

Henry Darcy

- Born in Dijon, France, on _____
- French Engineer
- Legacy:
 - Darcy's Law
 - Darcy-Weisbach

Groundwater Flow

Pumping from an Unconfined Aquifer

Importance of Groundwater

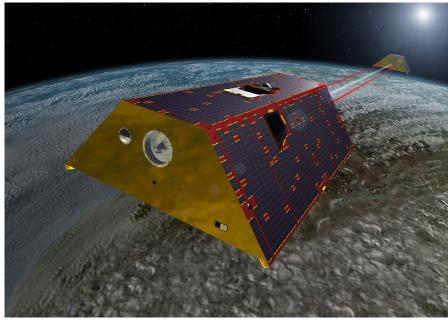
- Much of the world's unfrozen freshwater is beneath the surface in _____?
- Approximately what percent of unfrozen groundwater is in aquifers?
- Critical to global water supply and food security
 - Main source of water for _____ of people
 - Main source of water for nearly _____ of irrigated agriculture
- Importance often understated... out of sight, out of mind
- Consequently, there is a *hidden crisis beneath our feet*
 - <u>Unsustainable</u> pumping of groundwater
 - Groundwater depletion

Ogallala Aquifer

Original image by USGS

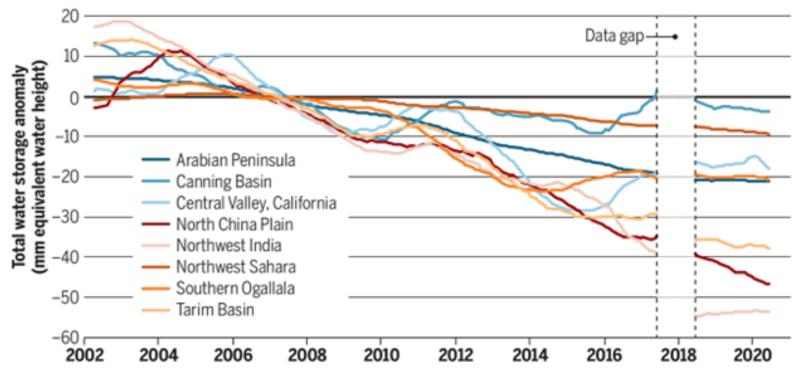
Significance:

- How many depend on this aquifer for drinking water?
- What sector is concentrated in this general area?
- What fraction of the country's agricultural groundwater comes from this aquifer?


Sustainability

- What is sustainability?
 - Dictionary definitions:
 - The ability to be maintained at a certain rate or level.
 - Avoidance of the depletion of natural resources in order to maintain an ecological balance.
 - 1987 Brundtland Report Our Common Future
- Sustainable development by finding a balance between:
 - Social
 - Economic
 - Environment

Quantifying Groundwater Storage


- GRACE
 - Gravity Recovery and Climate Experiment
 - Joint mission between NASA and DLR
 - Deutsches Zentrum für Luft-und Raumfahrt
 - Twin satellites
 - GRACE-1 and GRACE-2 (2002–2017)
 - GRACE-1FO and GRACE-2FO (2018–Present)
- Purpose of the GRACE Satellites:
 - Tracking Earth's water movement
 - Monitor changes in...
 - Underground water storage
 - Amount of water in lakes and rivers
 - Soil moisture
 - Ice sheets
 - Glaciers
 - Sea level

GRACE-1FO and GRACE-2FO

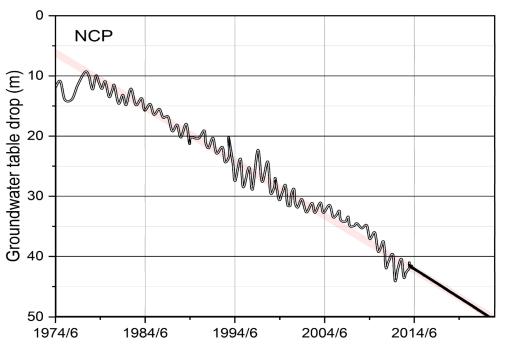
Artist rendition by NASA

Watching groundwater depletion from the sky

What is the graph showing us?

Is there a general trend?

Any particular regions having it worse than others?


From *The Hidden Crisis Beneath our Feet* Original graphic by David Ferris, University of Saskatchewan

- Includes several regions within mid-latitude aquifer systems
- Data collection:
 - GRACE: March 2002 to October 2017
 - GRACE-FO: May 2018 to June 2020

Groundwater Depletion in the North China Plain

- Depletion and degradation as a result of...
 - •
- Review by Du et al. (2024)
 - Aquifer system consist of 4 layers
 - Fulfills 60% of drinking water requirements
 - Used for 70% of irrigation
 - Groundwater pumping exceeds recharge
 - Low recharge = low P, high ET
 - First aquifer is already depleted
 - Second aquifer nearing depletion
 - "World's fastest depleting groundwater region"

Historical Groundwater Water Table Drop in the NCP

Graphic by Du et al. (2024), adapted from doi: https://doi.org/10.1371/journal.pone.0115269.g004

Limitations with GRACE

- What GRACE can do: Identify large-scale trends in groundwater storage changes
- What GRACE can't do: Measure water table height and fluctuations

- Out of sight, making it difficult to observe groundwater...
 - Difficulties in characterizing the hydraulic properties of the subsurface
 - Need breakthroughs in characterization and monitoring of groundwater systems
- The key challenge in groundwater hydrology
 - Understanding when and where wells might go dry
 - Predicting changes in water levels

Consequences of Groundwater Depletion

- What does groundwater depletion mean?
 - •
 - _____
 - •
- Consequences:
 - Major threats to food production and security
 - Adversely affects the health and livelihoods of people who depend on groundwater
 - Famiglietti and Ferguson bring up the potential for civil unrest
 - Groundwater depletion itself

Paper by Jasechko and Perrone (2021)

- Groundwater level decline observed globally
 - Agriculture?
 - People?
- Outline of study:
 - ~39 million wells
 - Each contains a record:
 - Location
 - Depth
 - Purpose
 - Construction date
 - Understand spatiotemporal patterns
- A B B Well drilling data compiled Well drilling data not compiled

- Things of note:
 - Groundwater data is difficult to obtain
 - Wells represent 40% of global ice-free land
 - Half of global groundwater pumping within areas of study
- Image by Jasechko and Perrone (2021)

Paper by Jasechko and Perrone (2021)

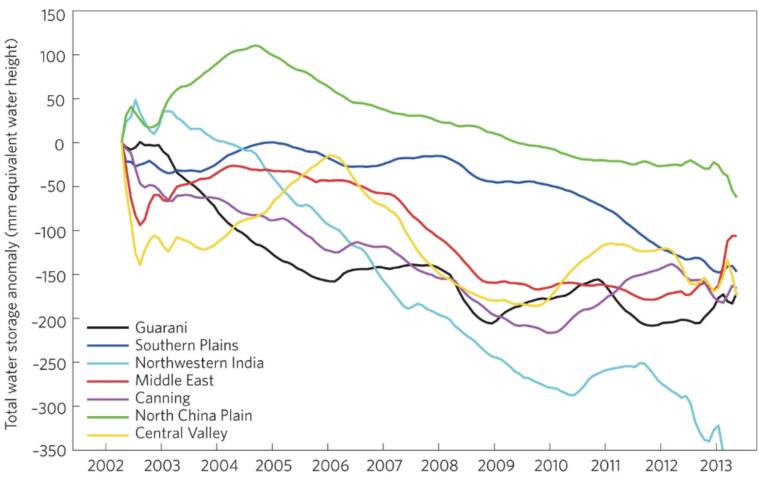
Results and/or findings:

- ___% to ___% of wells affected if water table declines by a few meters
- Some shallow wells may run dry because of _____ and _____
- Generally, newer wells are constructed ______ than older wells.

Paper by Jasechko and Perrone (2021)

- Jasechko and Perrone list some solutions to a well running dry:
 - ______
- What about _____?

 \rightarrow We will explore these two further


The Global Groundwater Crisis

- Importance of groundwater
 - Accounts for ____% of total water withdrawals worldwide
 - Again, contributes half of irrigation water globally
 - The savings account
- However, despite its importance, groundwater is poorly managed and monitored
 - Insufficient attention compared to surface water
 - Out of sight, out of mind

"Groundwater depletion the world over poses a far greater threat to global water security than is currently acknowledged"

Figure 2: Water storage declines (mm equivalent water height) in several of the world's major aquifers in Earth's arid and semi-arid mid-latitudes, derived from the NASA GRACE satellite mission.

From: The global groundwater crisis

The Global Groundwater Crisis

- Issues stemming from poor and/or insufficient management of groundwater:
 - "Free for all" Those who can, will
 - Productivity fueled by unsustainable consumption
- Drivers of groundwater depletion
 - Rate of groundwater pumping exceeds rate of recharge. Why?
 - •
 - Climate change
 - Changing patterns of precipitation
 - Increasing frequency and severity of extreme events
 - "Wet gets wetter, and dry gets drier"

The Global Groundwater Crisis

Consequences of groundwater depletion:

- Decreasing freshwater availability
 - Drinking water
- Need to dig deeper wells
 - Can get expensive and physically infeasible
 - Accessible only to the relatively wealthy
- Impacts on agriculture
 - Irrigation
- Other unintended consequences:
 - Land surface subsidence
 - Saltwater intrusion
 - Sea-level rise
 - Streamflow depletion
 - Loss of springs
 - Loss of wetlands
 - Ecological damages
 - Climate feedbacks from irrigation

The Path to Groundwater Sustainability

- Challenges to be addressed:
 - Effective management
 - Definition of groundwater sustainability
 - Governance
- Governance is especially important
 - Major aquifer systems are regional and transboundary
 - New institutions and networks on a global scale
 - A global coordinating body to...
 - Share knowledge, tools, and best practices
 - Raise the importance of groundwater with respect to SDGs

Image by the United Nations Department of Economic and Social Affairs

Bringing Everything Together

- What needs to be done to ensure groundwater sustainability?
 - AT 18: Question 3b
 - Famiglietti states five essential steps that warrant "immediate, international" attention if we want to manage our way through the global groundwater crisis

• 1.)

Implicit in the 1st step is the need for _______

• 2.)

• 3.)

• 4.)

• 5.)

The global economy, geopolitics, and the water-energy-food nexus are intertwined

To tackle the issue of groundwater sustainability, we need to address...