Agriculture and Climate Change

AOSC 680

Ross Salawitch

Class Web Sites:

http://www2.atmos.umd.edu/~rjs/class/fall2024 https://umd.instructure.com/courses/1367293

Today, we'll begin with an overview of tropospheric ozone

Lecture 21

Fig Q1-2, WMO/UNEP 20 QAs Ozone

14 November 2024

OH + CO
$$\rightarrow$$
 CO₂ + H
H + O₂ + M \rightarrow HO₂ + M
NO + HO₂ \rightarrow NO₂ + OH
NO₂ + hv \rightarrow NO + O
O + O₂ + M \rightarrow O₃ + M
Net: CO + 2 O₂ \rightarrow CO₂ + O₃

Oxidation of CO in the presence of NO_x (NO & NO_2) leads to production of tropospheric O_3

OH + CO
$$\rightarrow$$
 CO₂ + H
H + O₂ + M \rightarrow HO₂ + M
NO + HO₂ \rightarrow NO₂ + OH
NO₂ + hv \rightarrow NO + O
O + O₂ + M \rightarrow O₃ + M
Net: CO + 2 O₂ \rightarrow CO₂ + O₃

NO & NO₂: Emitted by fossil fuel combustion & biomass burning $N_2 + O_2 \xrightarrow{\text{High T}} 2 \text{ NO}$

CO: Emitted by fossil fuel combustion & biomass burning

Complete combustion:

$$2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O$$

Extreme, incomplete combustion:

$$2 C_8 H_{18} + 17 O_2 \rightarrow 16 CO + 18 H_2 O$$

OH & HO₂, termed HOx: produced by the reaction of O(¹D) with H₂O

OH + CO
$$\rightarrow$$
 CO₂ + H
H + O₂ + M \rightarrow HO₂ + M
NO + HO₂ \rightarrow NO₂ + OH
NO₂ + hv \rightarrow NO + O
O + O₂ + M \rightarrow O₃ + M
Net: CO + 2 O₂ \rightarrow CO₂ + O₃

Oxidation of CO in the presence of NO_x (NO & NO_2) leads to production of tropospheric O_3

Key chemical aspect : NO converted to NO_2 without consumption of O_3

Suppose NO is converted to NO₂ by reaction with O₃:

$$OH + CO \rightarrow CO_2 + H$$

$$H + O_2 + M \rightarrow HO_2 + M$$

$$NO + O_3 \rightarrow NO_2 + O_2$$

$$NO_2 + hv \rightarrow NO + O$$

$$O + O_2 + M \rightarrow O_3 + M$$

$$???????? \rightarrow ????????$$

Net:

Suppose NO is converted to NO₂ by reaction with O₃:

$$OH + CO \rightarrow CO_2 + H$$

$$H + O_2 + M \rightarrow HO_2 + M$$

$$NO + O_3 \rightarrow NO_2 + O_2$$

$$NO_2 + h\nu \rightarrow NO + O$$

$$O + O_2 + M \rightarrow O_3 + M$$

$$Net: CO + O_2 + OH \rightarrow CO_2 + HO_2$$

No ozone production!

Suppose NO is converted to NO_2 by reaction with O_3 :

$$OH + CO \rightarrow CO_2 + H$$

$$H + O_2 + M \rightarrow HO_2 + M$$

$$NO + O_3 \rightarrow NO_2 + O_2$$

$$NO_2 + hv \rightarrow NO + O$$

$$O + O_2 + M \rightarrow O_3 + M$$

$$Net: CO + O_2 + OH \rightarrow CO_2 + HO_2$$

Next key question: ????????

Suppose NO is converted to NO_2 by reaction with O_3 :

OH + CO
$$\rightarrow$$
 CO₂ + H
H + O₂ + M \rightarrow HO₂ + M
NO + O₃ \rightarrow NO₂ + O₂
NO₂ + hv \rightarrow NO + O
O + O₂ + M \rightarrow O₃ + M
Net: CO + O₂ + OH \rightarrow CO₂ + HO₂

Next key question: how does HO₂ go back to OH?

Suppose NO is converted to NO₂ by reaction with O₃:

$$OH + CO \rightarrow CO_2 + H$$

$$H + O_2 + M \rightarrow HO_2 + M$$

$$NO + O_3 \rightarrow NO_2 + O_2$$

$$NO_2 + h\nu \rightarrow NO + O$$

$$O + O_2 + M \rightarrow O_3 + M$$

$$Net: CO + O_2 + OH \rightarrow CO_2 + HO_2$$

$$HO_2 + O_3 \rightarrow OH + 2 O_2$$

$$Net: CO + O_3 \rightarrow CO_2 + O_2$$

Suppose NO is converted to NO₂ by reaction with O₃:

$$OH + CO \rightarrow CO_2 + H$$

$$H + O_2 + M \rightarrow HO_2 + M$$

$$NO + O_3 \rightarrow NO_2 + O_2$$

$$NO_2 + hv \rightarrow NO + O$$

$$O + O_2 + M \rightarrow O_3 + M$$

$$Net: CO + O_2 + OH \rightarrow CO_2 + HO_2$$

$$HO_2 + O_3 \rightarrow OH + 2 O_2$$

$$Net: CO + O_3 \rightarrow CO_2 + O_2$$

Have now consumed O_3 because it is used to convert NO to NO_2 and HO_2 to OH!

OH + CO
$$\rightarrow$$
 CO₂ + H
H + O₂ + M \rightarrow HO₂ + M
HO₂ + NO \rightarrow OH + NO₂
NO₂ + hv \rightarrow NO + O
O + O₂ + M \rightarrow O₃ + M
Net: CO + 2 O₂ \rightarrow CO₂ + O₃

Chain Mechanism for production of ozone

Chemical Initiation: $H_2O+O(^1D) \rightarrow 2OH$ & human emission of NO, CO

Since method for conversion of NO to NO_2 is <u>crucial</u> for whether O_3 is produced by this chain mechanism, chemists consider production of tropospheric ozone to be "limited" by k[HO₂][NO]

$$CO + OH \rightarrow CO_2 + H$$

$$H + O_2 + M \rightarrow HO_2 + M$$

$$HO_2 + NO \rightarrow OH + NO_2$$

$$NO_2 + hv \rightarrow NO + O$$

$$O + O_2 + M \rightarrow O_3 + M$$
Net:
$$CO + 2 O_2 \rightarrow CO_2 + O_3$$

$$RH + OH \rightarrow R + H_2O$$

$$R + O_2 + M \rightarrow RO_2 + M$$

$$RO_2 + NO \rightarrow RO + NO_2$$

$$RO + O_2 \rightarrow HO_2 + R'CHO$$

$$HO_2 + NO \rightarrow OH + NO_2$$

$$2 \times NO_2 + hv \rightarrow NO + O$$

$$2 \times O + O_2 + M \rightarrow O_3 + M$$
Net:
$$RH + 4O_2 \rightarrow R'CHO + H_2O + 2O_3$$

VOC: Volatile Organic Compounds

Produced by trees, fossil fuel vapor, and non-controlled auto emissions Strong source of HO_x (OH & HO_2) & O_3 (depending on NO_x levels)

```
Examples of RH and R'CHO : CH_4 (methane) \rightarrow CH_2O (formaldehyde) : C_2H_6 (ethane) \rightarrow CH_3CHO (acetaledhyde) : C_3H_8 (propane) \rightarrow CH_3COCH_3 (acetone)
```

Ozone Production "limited" by $k[HO_2][NO] + \sum_i k_i [RO_2]_i [NO]$

Stratospheric Photochemistry: Odd Oxygen Loss By Families

Fraction of O_x Loss Due to Each Catalytic Family JPL 2002 Kinetics

Calculated fraction of odd oxygen loss due to various families of radicals

After Osterman et al., GRL, 24, 1107, 1997; Sen et al., JGR, 103, 3571, 1998; Sen et al., JGR, 104, 26653, 1999.

One Atmosphere – One Photochemistry Troposphere

Stratosphere

HO₂ formation: $OH + O_3 \rightarrow HO_2 + O_2$ HO_2 loss: $HO_2 + O_3 \rightarrow OH + 2 O_2$ Net: $O_3 + O_3 \rightarrow 3 O_2$

Rate HO_2 Formation = $k_{OH+O3} \times [OH][O_3] + k_{OH+CO} \times [OH][CO]$ Rate HO_2 Loss = $k_{HO2+O3} \times [HO_2][O_3] + k_{HO2+NO} \times [HO_2][NO]$

HO₂ formation:

$$OH + CO \xrightarrow{O_2} HO_2 + CO_2$$

HO₂ loss:
 $HO_2 + NO \rightarrow OH + NO_2$
Followed by:
 $NO_2 + hv \rightarrow NO + O$
 $O+ O_2 + M \rightarrow O_3 + M$
Net: $CO + 2 O_2 \rightarrow CO_2 + O_3$

Rate HO_2 Formation = $k_{OH+O3} \times [OH][O_3] + k_{OH+CO} \times [OH][CO]$ Rate HO_2 Loss = $k_{HO2+O3} \times [HO_2][O_3] + k_{HO2+NO} \times [HO_2][NO]$

US Trends: NO₂

US Trends: NO₂

Probability of Surface O₃ Exceedance: DC, MD, and Northern VA

CAAA: Clean Air Act Amendment

EGU: Electrical Generating Units (aka Power Plants)

SCR: Selective Catalytic Reduction

Roberts et al., Atmos. Envir., 2022

https://www.sciencedirect.com/science/article/pii/S1352231022003041

Top: Space-borne measurement of NO_2 in lower troposphere, 2019 **Bottom:** 15 year trend in NO_2 Observations from the NASA OMI & European TropOMI instruments

Cooper et al., Nature, 2022 https://www.nature.com/articles/s41586-021-04229-0

Effect of surface ozone on crop production is a major research topic

