Overview of Global Warming, Ozone Depletion, and Air Quality

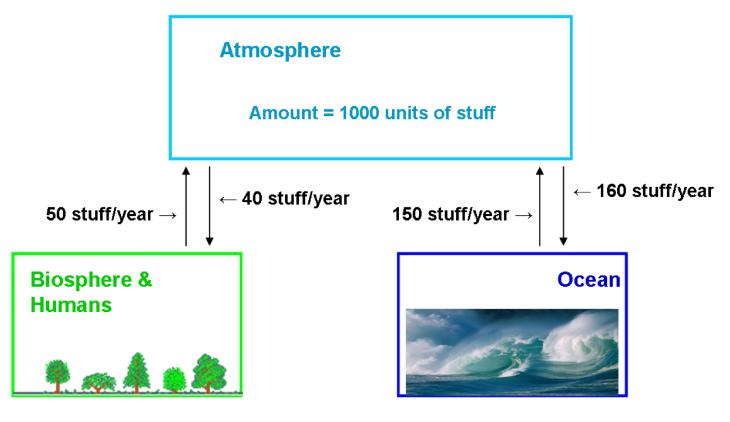
AOSC 433 & 633

Ross Salawitch

Class Web Site: <u>http://www.atmos.umd.edu/~rjs/class/spr2017</u>

Note:

- An entry for CHEM 433 has appeared on Testudo
- As far as I can tell, no one is actually registered for CHEM 433
- If it is important to anyone that they take CHEM 433 rather than AOSC 433, please see me after class


Lecture 2 31 January 2017

Copyright © 2017 University of Maryland.

Learning Outcome Quiz, Question #4

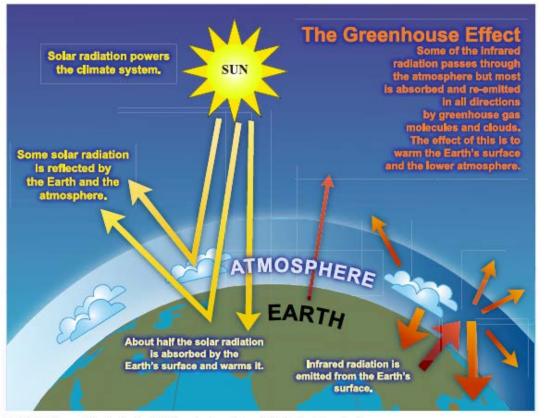
The image below shows the amount of some material in the atmosphere in units of "stuff", as well as flux of this material into and out of the atmosphere in units of "stuff/year".

What is the lifetime of this material in the atmosphere?

Answer here:

Copyright © 2017 University of Maryland.

Overview of Global Warming, Ozone Depletion, and Air Quality


Course theme: effect of human activity on atmospheric composition

- climate change
- air quality
- stratospheric ozone depletion and recovery

Today's goals:

- 1) Overview of climate change, air quality, and ozone depletion
- 2) Will provide lots of "detail" today ... do not expect all of these details to "stick". Do expect, however, that when you review this lecture at the end of semester, details will be understandable
- 3) Linkages between these topics, often thought of as "disparate", but are actually connected in **profoundly important manners**

Greenhouse Effect

FAQ 1.3, Figure 1. An idealised model of the natural greenhouse effect. See text for explanation.

Question 1.3, IPCC, 2007

Copyright © 2017 University of Maryland.

Radiative Forcing of Climate, 1750 to 2005

Radiative forcing of climate between 1750 and 2005 Radiative Forcing Terms CO, Long-lived N₂O greenhouse gases CH₄ Halocarbons Stratospheric Tropospheric Ozone Human activities (-0.05)Stratospheric water vapour Black carbon Surface albedo Land use on snow Direct effect Total Aerosol Coud a bedo effect Linear contrails (0.01) processes Natura Solar irradiance Tota net human activities -2 -1 0 2 Change in Radiative Forcing (watts per square metre)

FAQ 2.1, Figure 2. Summary of the principal components of the radiative forcing of climate change.

Question 2.1, IPCC, 2007

Copyright © 2017 University of Maryland.

Radiative Forcing of Climate, 1750 to 2011

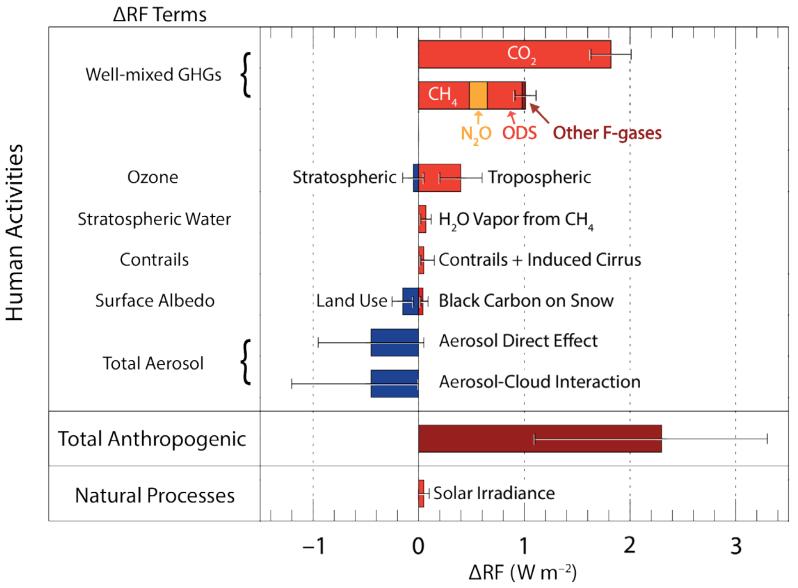
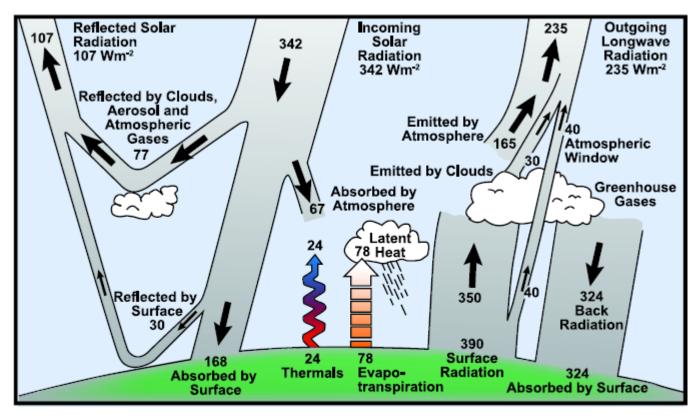
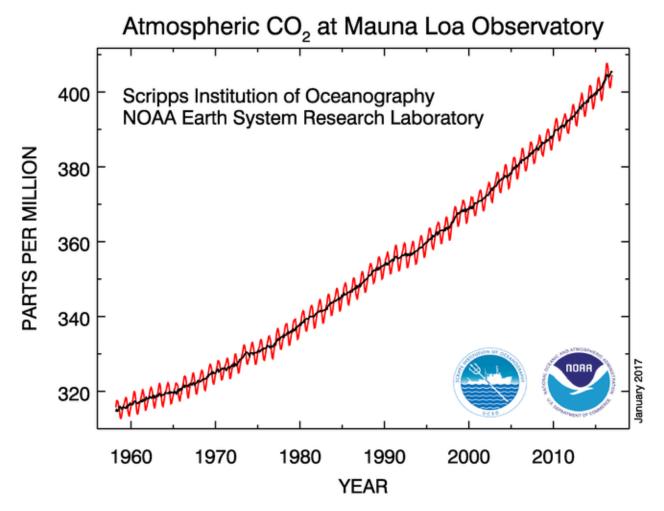



Figure 1-4, Paris Beacon of Hope

Copyright © 2017 University of Maryland.

Radiative Forcing

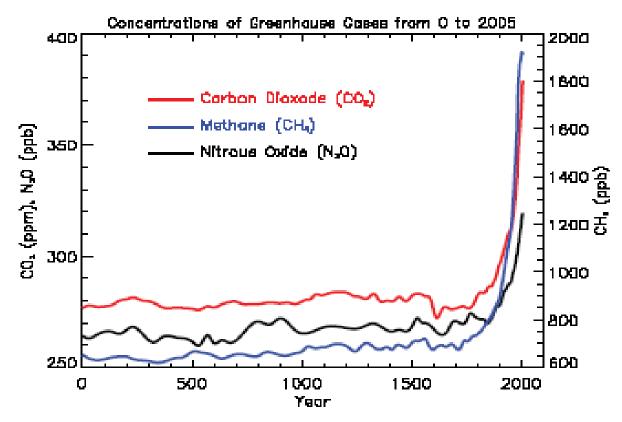

FAQ 1.1, Figure 1. Estimate of the Earth's annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and atmosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar radiation is absorbed by the Earth's surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by evapotranspiration and by longwave radiation that is absorbed by clouds and greenhouse gases. The atmosphere in turn radiates longwave energy back to Earth as well as out to space. Source: Kiehl and Trenberth (1997).

Question 1.1, IPCC, 2007

Radiative Forcing of Climate is Change in Energy reaching the lower atmosphere (surface to tropopause) as GHGs rise. "Back Radiation" is most important term.

Modern CO₂ Record

CO₂ at MLO on 29 Jan 2017: 405.8 parts per million (ppm) and rising !

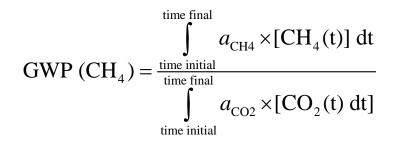


Legacy of Charles Keeling, Scripps Institution of Oceanography, La Jolla, CA <u>https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html</u>

See also <u>https://www.co2.earth/daily-co2</u>

Copyright © 2017 University of Maryland.

GHG Record Over Last Several Millennia



FAQ 2.1, Figure 1. Atmospheric concentrations of important long-lived greenhouse gases over the last 2,000 years. Increases since about 1750 are attributed to human activities in the industrial era. Concentration units are parts per million (ppm) or parts per billion (ppb),

Question 2.1, IPCC, 2007

Copyright © 2017 University of Maryland.

GWP – Global Warming Potential

where:

$$a_{CH4}$$
 = Radiative Efficiency (W m⁻² kg ⁻¹) due to an increase in CH₄

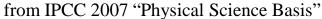
 a_{CO2} = Radiative Efficiency (W m⁻² kg⁻¹) due to an increase in CO₂

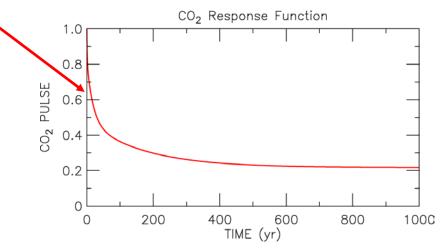
 $CH_4(t)$ = time-dependent response to an instantaneous release of a pulse of CH_4

 $CO_2(t)$ = time-dependent response to an instantaneous release of a pulse of CO_2

GWP – Global Warming Potential

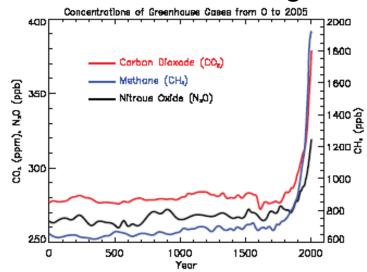
Table TS.2. Lifetimes, radiative efficiencies and direct (except for CH₄) global warming potentials (GWP) relative to CO₂. {Table 2.14}


Industrial Designation	Chemical Formula	Lifetime (years)	Radiative Efficiency (W m ⁻² ppb ⁻¹⁾	Global Warming Potential for Given Time Horizon			
or Common Name (years)				SAR‡ (100-yr)	20-yr	100-yr	500-yr
Carbon dioxide	CO ₂	See below ^a	^b 1.4x10 ^{−5}	1	1	1	1
Methanec	CH ₄	12°	3.7x10-4	21	72	25	7.6
Nitrous oxide	N ₂ O	114	3.03x10 ⁻³	310	289	298	153


Notes:

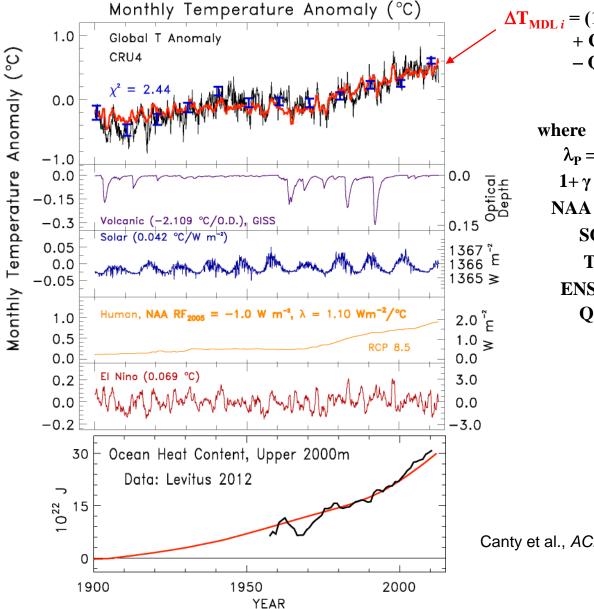
- [‡] SAR refers to the IPCC Second Assessment Report (1995) used for reporting under the UNFCCC.
- ^a The CO₂ response function used in this report is based on the revised version of the Bern Carbon cycle model used in Chapter 10 of this report (Bern2.5CC; Joos et al. 2001) using a background CO₂ concentration value of 378 ppm. The decay of a pulse of CO₂ with time t is given by

 $a_0 + \sum_{i=1}^{3} a_i \cdot e^{-t/\tau_i}$ where $a_0 = 0.217$, $a_1 = 0.259$, $a_2 = 0.338$, $a_3 = 0.186$, $\tau_1 = 172.9$ years, $\tau_2 = 18.51$ years, and $\tau_3 = 1.186$ years, for t < 1,000 years.


- ^b The radiative efficiency of CO₂ is calculated using the IPCC (1990) simplified expression as revised in the TAR, with an updated background concentration value of 3K8 ppm and a perturbation of +1 ppm (see Section 2.10.2).
- ^c The perturbation lifetime for CH₄ is 12 years as in the TAR (see also Section 7.4). The GWP for CH₄ includes indirect effects from enhancements of ozone and stratospheric water vapour (see Section 2.10).

Copyright © 2017 University of Maryland.

GWP – Global Warming Potential



FAQ 2.1, Figure 1. Atmospheric concentrations of important long-lived greenhouse gases over the last 2,000 years. Increases since about 1750 are attributed to human activities in the industrial era. Concentration units are parts per million (ppm) or parts per billion (ppb),

Over the time horizon of ~1750 to 2005:

RF CH₄ relative to CO₂ \approx 26.4 × 1250 ppb / 100 ppm = 26.4 × 0.0125 = 0.33 RF N₂O relative to CO₂ \approx 216 × 50 ppb / 100 ppm = 216 × 5×10⁻⁴ = 0.11 Total RF CH₄ + N₂O relative to CO₂ \approx 0.44

This rough estimate is not too different than the RF of $CH_4 + N_2O$ relative to RF of CO_2 , ~38%, from FAQ 2.1, Figure 2

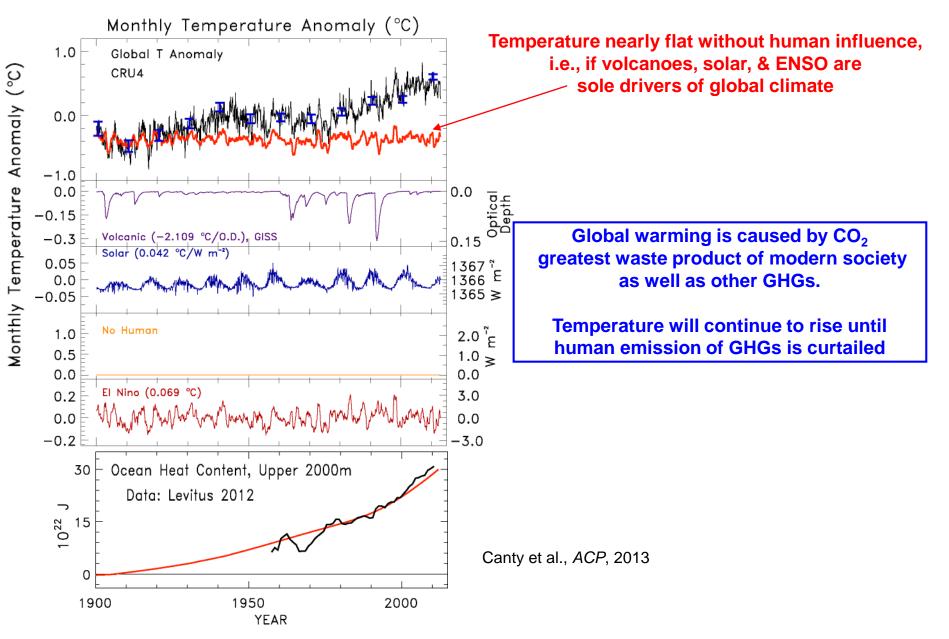
$$\Delta \mathbf{T}_{\text{MDL}\,i} = (1+\gamma) (\text{GHG RF}_{i} + \text{NAA RF}_{i}) / \lambda_{\text{P}} + C_{0} + C_{1} \times \text{SOD}_{i-6} + C_{2} \times \text{TSI}_{i-1} + C_{3} \times \text{ENSO}_{i-2} - Q_{\text{OCEAN}\,i} / \lambda_{\text{P}}$$

 $\lambda_{\rm P} = 3.2 \text{ W m}^{-2} / {}^{\circ}\text{C}$

 $1+\gamma = \{1 - \Sigma(\text{Feedback Parameters}) / \lambda_{P}\}^{-1}$

NAA RF = net RF due to anthropogenic aerosols

SOD = Stratospheric optical depth


TSI = Total solar irradiance

ENSO = Multivariate El Niño South. Osc Index

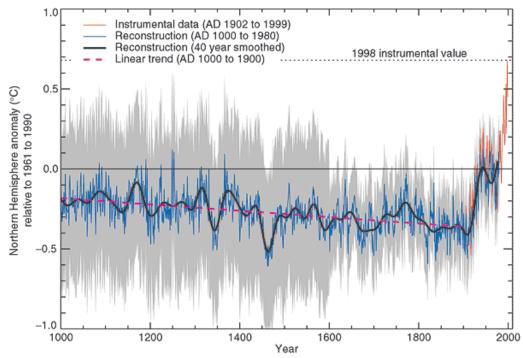
Q_{OCEAN} = Ocean heat export

Canty et al., ACP, 2013

Copyright © 2017 University of Maryland.

Copyright © 2017 University of Maryland.

Orbital variations: drive the ice ages but too small to drive modern warming


Volcanoes: no sustained forcing

Solar variability:

Perhaps dominant forcing of Medieval Warming and Little Ice Age Small effect since ~1860

Internal variability (eg, El Niño / La Niña) :

Climate record from 1000 to 1850 shows nothing like sustained, present rate of warming

Copyright © 2017 University of Maryland. <u>http://www.grida.no/publications/other/ipcc_tar/?src=/climate/ipcc_tar/wg1/069.htm</u> This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Orbital variations: drive the ice ages but too small to drive modern warming

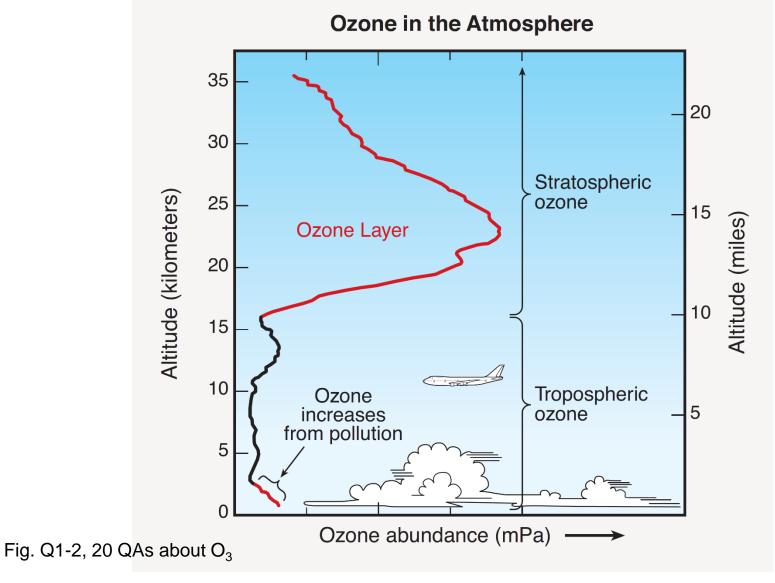
Volcanoes: no sustained forcing

Solar variability:

Perhaps dominant forcing of Medieval Warming and Little Ice Age Small effect since ~1860

Internal variability (eg, El Niño / La Niña) :

Climate record from 1000 to 1850 shows nothing like sustained, present rate of warming

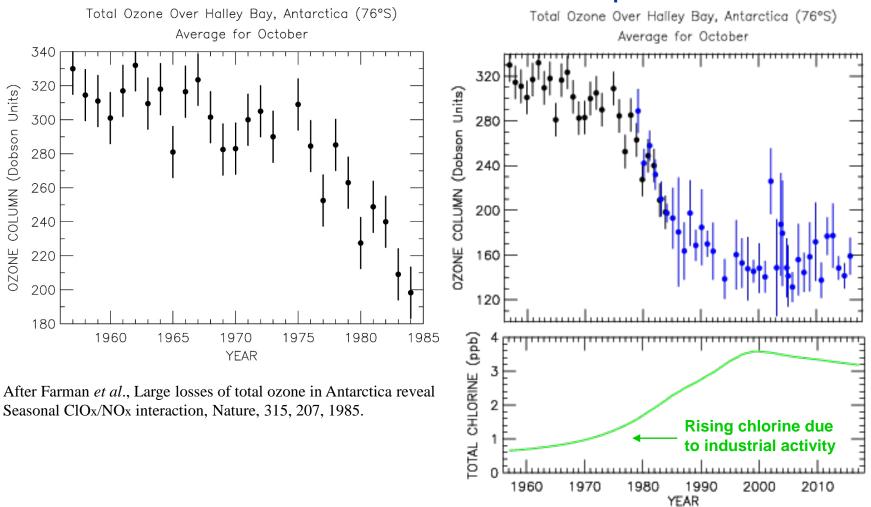

IPCC Climate Change 2013 concludes:

It is extremely likely* human activity has been the dominant cause of the observed warming since the mid-20th century

* At least a 95% chance of being correct

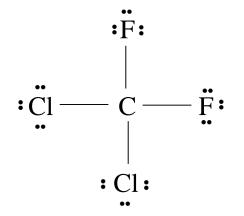
IPCC \Rightarrow Intergovernmental Panel on Climate Change

See <u>http://www.ipcc.ch/publications_and_data/ar4/syr/en/mainssyr-introduction.html</u> for definitions of high confidence, extremely likely, etc.


It is incredible that human activity both destroys stratospheric ozone (so-called good ozone) and produces tropospheric ozone (so-called bad ozone)

Copyright © 2017 University of Maryland.

Earth's Atmosphere – Effect of Humans


Stratospheric Ozone – shields surface from solar UV radiation

Update

Copyright © 2017 University of Maryland.

What is this compound?

How is it eventually removed from the atmosphere ?

What does it produce upon its removal ?

Measurements of Reactive Chlorine From Space

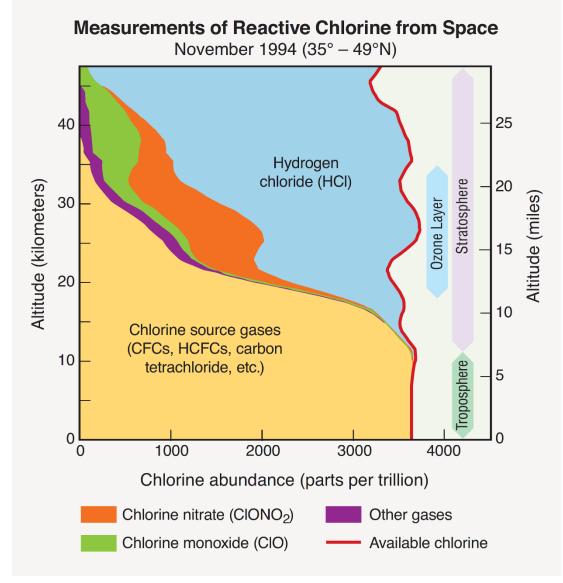


Fig. Q8-2, 20 QAs about O₃

Copyright © 2017 University of Maryland.

CIO (Chlorine Monoxide) is a Radical

Radicals

- Odd number of electrons unpaired electron in outer valence shell
- Go to great lengths to pair off lone electron
- Exceptionally reactive

$$: \overset{\ddot{C}l}{\cdot} \cdot \overset{\ddot{O}}{\cdot} \\ : \overset{\ddot{C}l}{-} \overset{\ddot{O}}{\cdot} \cdot \overset{\ddot{O}}{\cdot}$$
ClO : Chlorine monoxide

See pages 71 to 75, Ch 2, Chemistry in Context, for description of Lewis Dot Structures of atmospherically important species

Note: you will not be tested on Lewis Dot Structures. But ,we want the non-chemists to at least have been exposed to this concept for tracking the position of electrons, which is central for understanding atmospheric chemical reactions. Chlorine Radicals Lead to Ozone Loss

$$ClO + ClO + M \rightarrow ClOOCl + M$$

$$Cl + O_3 \rightarrow ClO + O_2$$

$$Cl + O_3 \rightarrow ClO + O_2$$

$$ClOOCl + h\nu \rightarrow ClOO + Cl$$

$$ClOO + heat \rightarrow Cl + O_2$$

Ozone Depletion and Halocarbons

Table Q7-1. Atmospheric Lifetimes and Ozone Depletion Potentials of some halogen source & HFC substitute gases.

Gas	Atmospheric Lifetime (years)	Ozone Depletion Potential (ODP) ^c	
Halogen source gases			
Chlorine gases			
CFC-11	45	1	
CFC-12	100	0.82	
CFC-113	85	0.85	
Carbon tetrachloride (CCl ₄)	26	0.82	
HCFCs	1–17	0.01-0.12	
Methyl chloroform (CH ₃ CCl ₃)	5	0.16	
Methyl chloride (CH ₃ Cl)	1	0.02	
Bromine gases			
Halon-1301	65	15.9	
Halon-1211	16	7.9	
Methyl bromide (CH ₃ Br)	0.8	0.66	
Hydrofluorocarbons (HFCs)			
HFC-134a	13.4	0	
HFC-23	222	0	

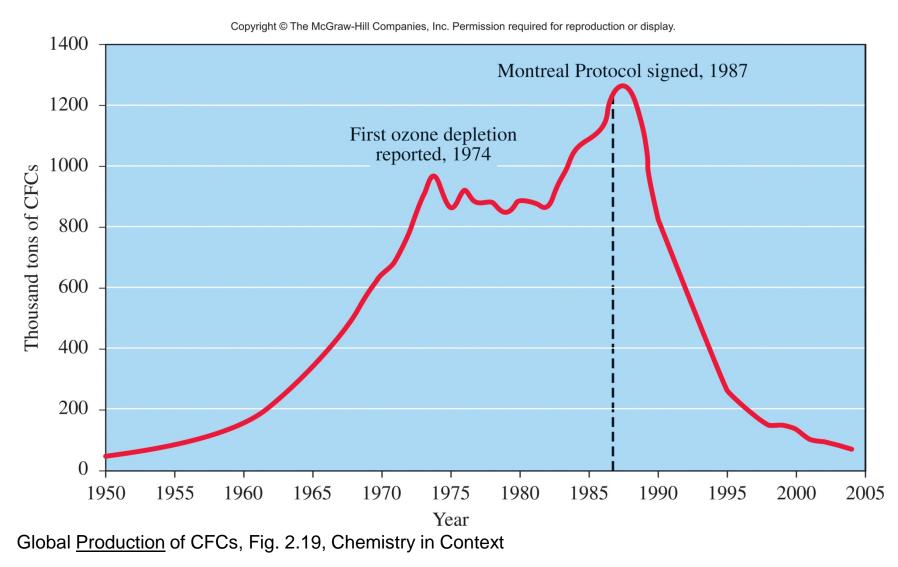
ODP (species "i") =

global loss of O_3 due to unit mass emission of "*i*" global loss of O_3 due to unit mass emission of CFC-11

$$\approx \frac{(\alpha \ n_{\rm Br} + n_{\rm Cl})}{3} \ \frac{\tau_i}{\tau_{\rm CFC-11}} \ \frac{MW_{\rm CFC-11}}{MW_i}$$

where :

au is the global atmospheric lifetime


MW is the molecular weight

n is the number of chlorine or bromine atoms

 α is the effectiveness of ozone loss by bromine relative to ozone loss by chlorine

Copyright © 2017 University of Maryland.

Montreal Protocol Has Banned Industrial Production of CFCs and Halons

Copyright © 2017 University of Maryland.

And Atmospheric Levels of these Pollutants are Declining

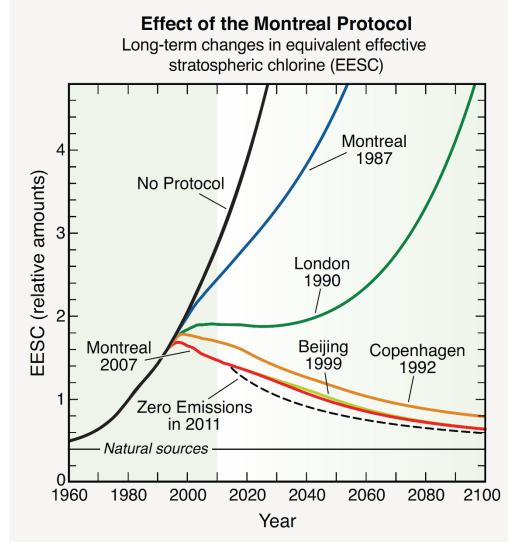
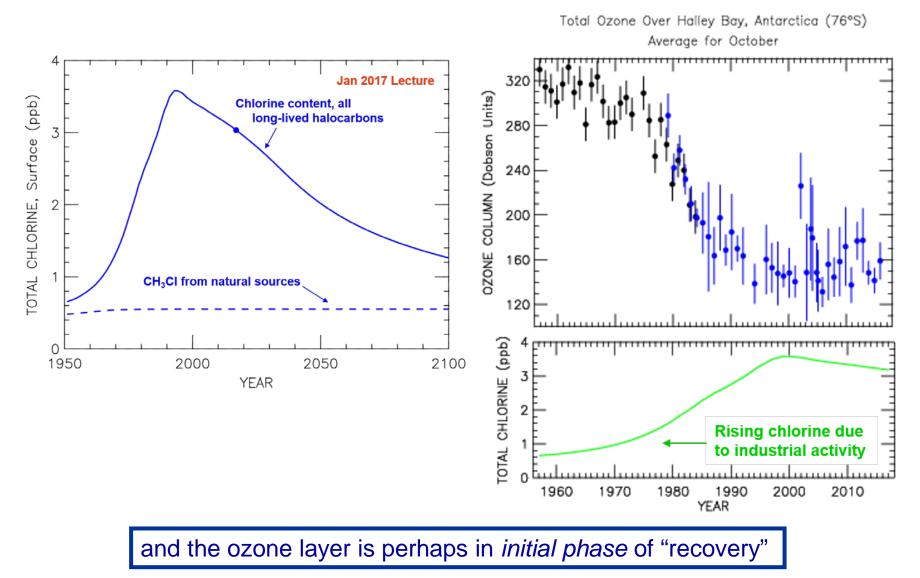
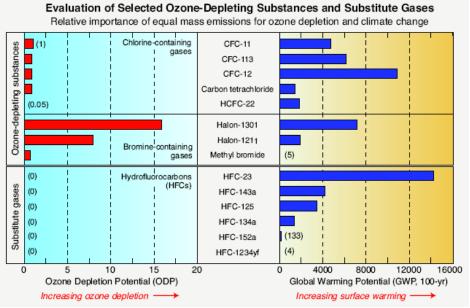
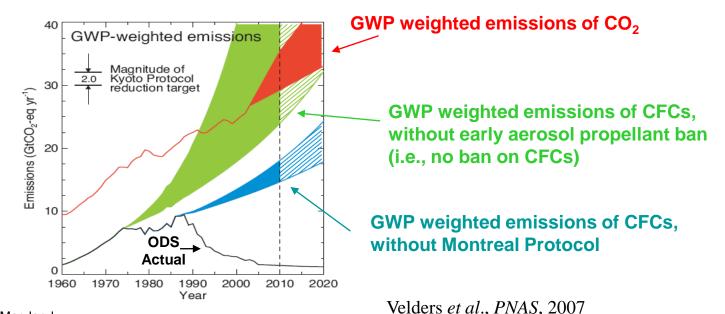



Figure Q15-1, 20 QAs about O₃


Copyright © 2017 University of Maryland.

Montreal Protocol Has Banned Most Industrial Production of CFCs and Halons


Copyright © 2017 University of Maryland.

Link Between Ozone-Depleting Substances (ODS) and Climate Change

Most ozone depleting substances have a significant "GWP"

Twenty Questions and Answers About The Ozone Layer: 2010 Update (WMO, 2010)

Copyright © 2017 University of Maryland.

Air Quality Index

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 1.4	Levels for the Air Quality Index		
Air Quality Index (AQI) Values	Levels of Health Concern	Colors	
When the AQI is in this range:	air quality conditions are:	<i>as symbolized by this color.</i>	
0–50	Good	Green	
51–100	Moderate	Yellow	
101–150	Unhealthy for sensitive groups	Orange	
151–200	Unhealthy	Red	
201–300	Very unhealthy	Purple	
301–500	Hazardous	Maroon	

- Computed for each criteria pollutant even though many newspapers only give a single value (usually for worse index)
- In the U.S. health officials are generally concerned about elevated O₃, PM_{2.5}, and ultra-fine particles

Copyright © 2017 University of Maryland.

Tropospheric Pollutants (The Air We Breathe)

Table 1.2 U.S. National Ambient Air Quality Standards				
Pollutant	Standard (ppm)	Approximate Equivalent Concentration (µg/m³)		
Carbon monoxide				
8-hr average	9	10,000		
1-hr average	35	40,000		
Nitrogen dioxide				
Annual average	0.053	100		
Ozone				
8-hr average	0.075	147		
1-hr average	0.12	235		
Particulates*				
PM ₁₀ , annual average	—	50		
PM ₁₀ , 24-hr average	—	150		
PM _{2.5} , annual average	—	15		
$PM_{2.5}$, 24-hr average [†]		35		
Sulfur dioxide				
Annual average	0.03	80		
24-hr average	0.14	365		
3-hr average	0.50	1,300		

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Note: A standard also exists for lead, but lead does not appear in this table since U.S. localities are in compliance

 $^{*}\text{PM}_{10}$ refers to all airborne particles 10 μm in diameter or less. $\text{PM}_{2.5}$ refers to particles 2.5 μm in diameter or less.

-The unit of ppm is not applicable to particulates.

[†]PM_{2.5} standards are likely to be revised after 2011.

Chapter 1

Source: U.S. Environmental Protection Agency. Standards also exist for lead, but are not included here.

Chemistry in Context

Criteria pollutant: identified as being common-place and detrimental to human welfare (i.e., ubiquitous pollutant)

Copyright © 2017 University of Maryland.

Pollutant [links to historical ta NAAQS reviews]	ables of	Primary/ Secondary	Averaging Time	Level	Form	
Carbon Monoxide (CO)		primary	8 hours	9 ppm	Not to be exceeded more than once per year	
		primary	1 hour	35 ppm		
<u>Lead (Pb)</u>		primary and secondary	Rolling 3 month average	0.15 μg/m ^{3 <u>(1)</u>}	Not to be exceeded	
		primary	1 hour	100 ppb	98th percentile of 1-hour daily maximum concentrations, averaged over 3 years	
<u>Nitrogen Dioxide (NO₂)</u>		primary and secondary	1 year	53 ppb ⁽²⁾	Annual Mean	
<u>Ozone (O3)</u>		primary and secondary	8 hours	0.070 ppm ⁽³⁾	Annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years	
		primary	1 year	12.0 µg/m ³	annual mean, averaged over 3 years	
	PM2.5	secondary	1 year	15.0 µg/m ³	annual mean, averaged over 3 years	
Particle Pollution (PM)	Particle Pollution		24 hours	35 µg/m ³	98th percentile, averaged over 3 years	
	PM ₁₀	primary and secondary	24 hours	150 µg/m ³	Not to be exceeded more than once per year on average over 3 years	
<u>Sulfur Dioxide (SO₂)</u>		primary	1 hour	75 ppb ⁽⁴⁾	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years	
		secondary	3 hours	0.5 ppm	Not to be exceeded more than once per year	

https://www.epa.gov/criteria-air-pollutants/naaqs-table as of 30 Jan 2017

Copyright © 2017 University of Maryland.

Notes to table, prior page:

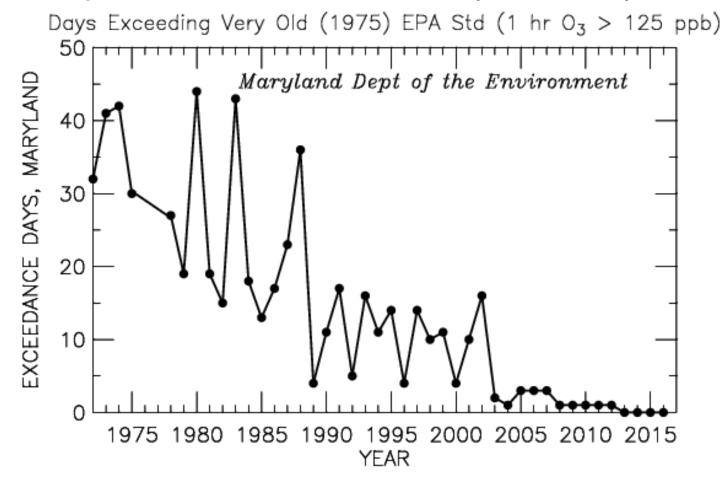
(1) In areas designated nonattainment for the Pb standards prior to the promulgation of the current (2008) standards, and for which implementation plans to attain or maintain the current (2008) standards have not been submitted and approved, the previous standards (1.5 µg/m3 as a calendar quarter average) also remain in effect.

(2) The level of the annual NO2 standard is 0.053 ppm. It is shown here in terms of ppb for the purposes of clearer comparison to the 1-hour standard level.

(3) Final rule signed October 1, 2015, and effective December 28, 2015. The previous (2008) O3 standards additionally remain in effect in some areas. Revocation of the previous (2008) O3 standards and transitioning to the current (2015) standards will be addressed in the implementation rule for the current standards.

(4) The previous SO2 standards (0.14 ppm 24-hour and 0.03 ppm annual) will additionally remain in effect in certain areas: (1) any area for which it is not yet 1 year since the effective date of designation under the current (2010) standards, and (2) any area for which an implementation plan providing for attainment of the current (2010) standard has not been submitted and approved and which is designated nonattainment under the previous SO2 standards or is not meeting the requirements of a SIP call under the previous SO2 standards (40 CFR 50.4(3)). A SIP call is an EPA action requiring a state to resubmit all or part of its State Implementation Plan to demonstrate attainment of the required NAAQS.

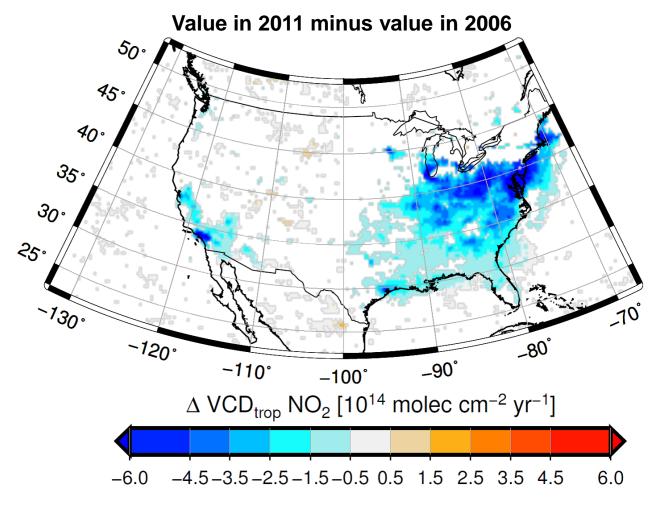
https://www.epa.gov/criteria-air-pollutants/naags-table as of 30 Jan 2017


Tropospheric Ozone Production

 $OH + CO \rightarrow CO_2 + H$ $H + O_2 + M \rightarrow HO_2 + M$ $HO_2 + NO \rightarrow OH + NO_2$ $NO_2 + h\nu \rightarrow NO + O$ $O + O_2 + M \rightarrow O_3 + M$

NO & NO₂: Emitted by fossil fuel combustion & biomass burning $N_2 + O_2 \xrightarrow{\text{High T}} 2 \text{ NO}$

CO: Emitted by fossil fuel combustion & biomass burning

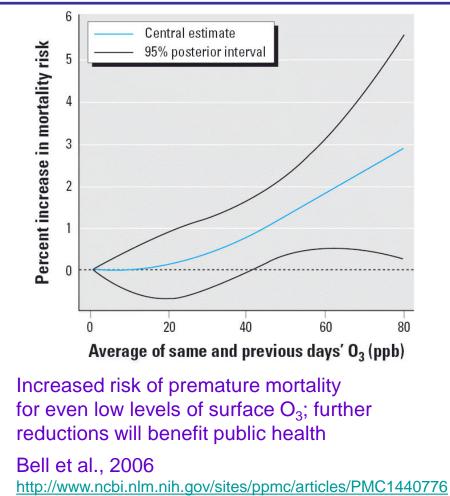

Significant Improvements in *Local* Air Quality since early 1980s

http://www.mde.state.md.us/programs/Air/AirQualityMonitoring/Pages/SeasonalReports.aspx

Copyright © 2017 University of Maryland.

Nitrogen Dioxide (NO₂): Combustion product that leads to formation of tropospheric ozone

VCD_{trop} = Vertical Column Density in the Troposphere

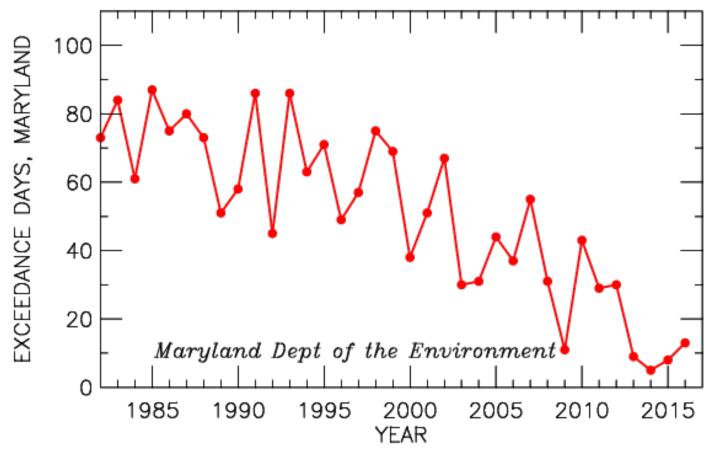

Copyright © 2017 University of Maryland.

Hilboll et al., ACP, 2013

Air Quality Standards and Why We Care

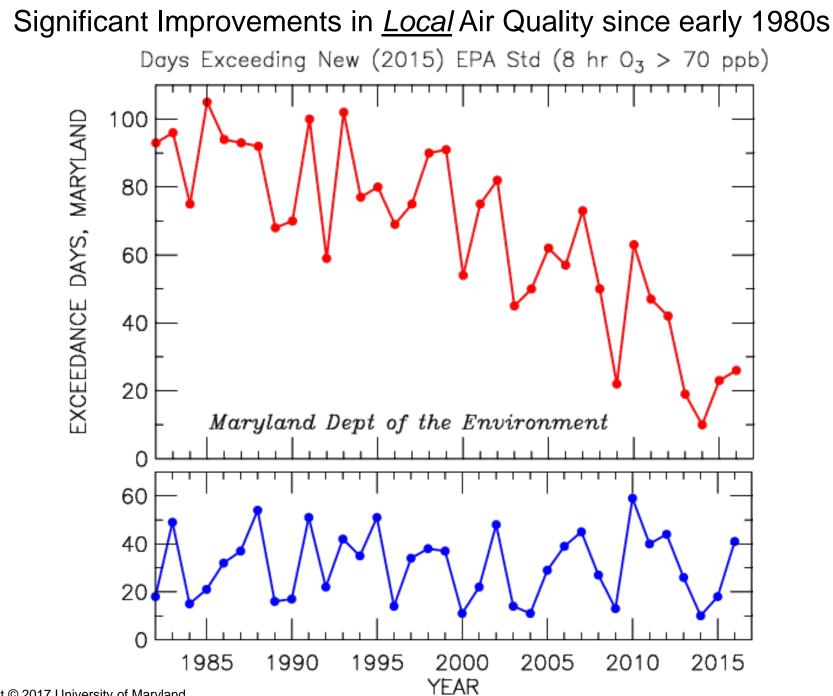
Year	Averaging Period	EPA Surface Ozone Standard
1979	1 hr	125 ppb
1997	8 hr	85 ppb
2008	8 hr	75 ppb
2015 [#]	8 hr *	70 ppb

* The 8 hr standard is met when the 3-yr average of the annual 4th highest daily maximum 8 hr O₃ is less than 70 ppb



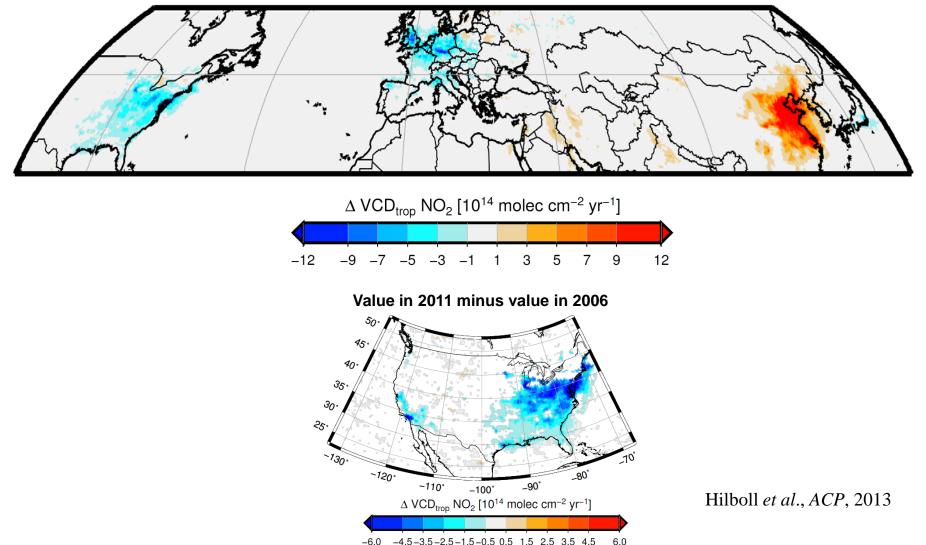
[#] On October 1, 2015 the EPA lowered the NAAQS for ground-level ozone 70 ppb, based on extensive scientific evidence about the harmful effects of tropospheric ozone

Copyright © 2017 University of Maryland.

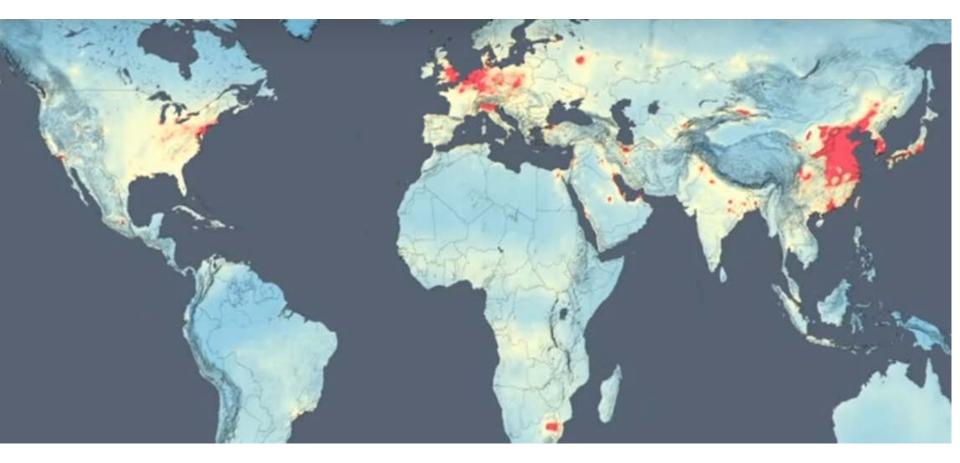

Significant Improvements in *Local* Air Quality since early 1980s

Days Exceeding Old (2008) EPA Std (8 hr $O_3 > 75$ ppb)

http://www.mde.state.md.us/programs/Air/AirQualityMonitoring/Pages/SeasonalReports.aspx


Copyright © 2017 University of Maryland.

Copyright © 2017 University of Maryland.


Nitrogen Dioxide (NO₂): Combustion product that leads to formation of tropospheric ozone

Value in 2011 minus value in 2006

Copyright © 2017 University of Maryland.

Let's Go to Video

NO₂ column measurements: hot colors correspond to high values

https://www.youtube.com/watch?v=LKe5FdKInJs

Next Lecture: Fundamentals of Earth's Atmosphere

Please complete Learning Outcome Quizes following lecture to review salient "take away" messages

Next Reading:

Chemistry in Context, Secs 1.0 to 1.2,1.5 to 1.8, 1.14, 2.1, 3.6 & 3.7 (~28 pgs) Copies available for those who do not yet have text

as well as 7 pages from *Atmospheric Environment* by McElroy

Also, you are responsible for reading all of Chapter 1, *Paris Beacon of Hope* (minus Methods) prior to the first exam, which is penciled in for 28 Feb

Admission Ticket for Lecture 3 is posted on ELMS

Please bring a calculator to class on Thursday