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Goals for today: Climates of the Past
1) Techniques for quantifying past climate
2) Remarkable changes in past climate

3) Challenge in applying past climate sensitivity to future climate

The details of this “challenge” are quantitative and come at end of lecture.
| generally do not like to place quantitative material at the end of lecture;
please bear with me today as this arrangement seems best way to organize material.
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The climate of the Cambrian is not well known.
It was probably not very hot, nor very cold.
There is no evidence of ice at the poles.

Source: http://www.scotese.com/ecambcli.htm
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Earth’s Climate History

Climate History, 500 Million ybp to Present
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Oxygen Isotopes and the Quaternary Climate Record

Oxygen has three stable isotopes °0,’O, and 80

Electrons Protons Neutrons Abundance
160 8 8 8 99.76 %
170 8 8 9 00.04 %
180 8 8 10 00.20 %

170 has such a low abundance that we shall focus on %0 and 80O

Chemical and biological reactions involving 80 require more energy
than reactions involving 0O due to increased atomic mass

This “isotope effect” can be used as a proxy to infer past temperature!

Copyright © 2017 University of Maryland.
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Oxygen Isotopes and the Quaternary Climate Record

Scientists measured the ratio of 10 to 0 in a sample (sea water, shells, etc.) and

compare to a “standard value”

510 (per mil)=

]Sample [
O ]Standard

O jStandard

x 10°

Standard often referred to as SMOW: Standard Mean Ocean Water

If 3180 is negative, the sample is “depleted” with respect to current conditions.

If positive, the sample is “enriched”.

How might 880 become enriched or depleted?

Copyright © 2017 University of Maryland.
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Temperature (°C)

As temperatures drops, the 380 of
precipitation decreases.

Why does this occur?
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As an air mass travels poleward, H,'®0 rains out more readily than H,**O

When the air mass reaches the pole, its water can have up to ~5% less 180 than SMOW.

MNedar the poles, atmospheric water vapor
is increasingly depleted in 0. -"-\

./

Snow in the interior
of Antarctica has
5 percent less 80
than ocean water,

Heavy, "MO-rich water
condensas over

micHotitudes.

¥

evapaorates fromwdrm sub-fropical ':.-'-:.'J’re-:;;..'L

Water, slighily deplefedin C

http://earthobservatory.nasa.gov/Study/Paleoclimatology OxygenBalance/oxygen balance.html

Deuterium (heavy hydrogen) behaves in a way quite similar to 8O (heavy oxygen) !

Copyright © 2017 University of Maryland.
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Isotopes in Ice Cores: Late Quaternary

¢ As the air reaches the pole, ambient water precipitate
(i.e., it snows!)

e Over many years, layers of snow accumulate, forming
an ice sheet. The water in this ice sheet contains a record
of climate at the time the snow was deposited

e By drilling, extracting, and measuring the 620 & dD

(deuterium/hydrogen ratio) of ice, scientists are able to
estimate past global temperature & ice volume

¢ |n reconstructing climate during the quaternary
(last 1.6 million years), scientists also look at:
— CO,, CH,, and N,O of trapped air
— 080 of trapped O, in trapped air
— O13C of CO, in trapped air
— Particulate matter and a wide range of ions

Copyright © 2017 University of Maryland.
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Vostok Ice Core

e Reconstructed temperature clearly based on
measurement of the deuterium content of ice

e 5180 shows tremendous variations in global ice volume

e Charts show last four ice ages, punctuated by relatively brief inter-glacials
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Vostok Ice Core

e CO, (air trapped in ice bubbles) and inferred temperature
are very highly correlated

¢ \Why might CO, have dropped during glacial times?

Temperature and CO, concentration in the aimosphere over the past 400 000 years

€Oy coR SentFation, ppe (from the Viostok ice core)
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Quaternery Climate Record
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Figure 6.3, IPCC 2007
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Present Day

http://www.planetaryvisions.com/release2007-1/satmap.jpq
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Glaclal Maximum

http://www.johnstonsarchive.net/spaceart/cylmaps.html
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No Polar Ice

http://www.johnstonsarchive.net/s
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Fairly Late Appreciation that Earth Undergoes Ice Ages

On 24 July 1837, at the annual meeting of the
Swiss Society of Natural Sciences, Louis Agassiz
(1807-1873) startled his learned associates by
presenting a paper dealing not, as expected, with
the fossil fishes found in far-off Brazil, but with
the scratched and faceted boulders that dotted the
Jura mountains around Neuchatel itself. Agassiz
argues that these erratic boulders ... chunks of
rock appearing in locations far removed from
their areas of origin ... could only be interpreted
as evidence of past glaciation.

This began a dispute — one of the most violent in
the history of geology — that was to rage for more
than a quarter century and would end with the
universal acceptance of the ice-age theory.

Although this concept did not begin with Agassiz,
he served to bring the glacial theory out of scientific
obscurity and into the public eye.

Portrait of Louis Agassiz
at the Unteraar Glacier

http://www.museum-neuchatel.ch/new/images/dynamic/pages/12/agassiz.jpg

Ice Ages, Imbrie and Imbrie, Harvard Univ Press, 1979.
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Fourier analysis reveals Earth’s climate
Pacemaker of the Ice Ages 171 IS Changlng In a perIOdIC faShIOn
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Figure 42. Spectrum of climatic variation over the past half-million
years. This graph—showing the relative importance of different climatic
cycles in the isotopic record of two Indian Ocean cores—confirmed many
predictions of the Milankovitch theory. (Data from J.D. Hays et al.,
1976.)

Ice Ages, Imbrie and Imbrie, Harvard Univ Pres, 1979
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Fourier analysis reveals Earth’s climate
Pacemaker of the Ice Ages 171 IS Changlng In a perIOdIC faShIOn
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Figure 42. Spectrum of climatic variation over the past half-million
years. This graph—showing the relative importance of different climatic
cycles in the isotopic record of two Indian Ocean cores—confirmed many
predictions of the Milankovitch theory. (Data from J.D. Hays et al.,
1976.)

Axis of Rotation

Ice Ages, Imbrie and Imbrie, Harvard Univ Pres, 1979
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Figure 42. Spectrum of climatic variation over the past half-million
years. This graph—showing the relative importance of different climatic
cycles in the isotopic record of two Indian Ocean cores—confirmed many
predictions of the Milankovitch theory. (Data from J.D. Hays et al.,
1976.)

Ice Ages, Imbrie and Imbrie, Harvard Univ Pres, 1979
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Fourier analysis reveals Earth’s climate
Is changing in a periodic fashion

24,000 and 19,000 year cycles due to
Earth “wobbling” on its axis.
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(current pole star}]

P

gL Vega
{14000 AD}
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Glacial Periods MUCH Dustier than
Interglacials
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Figure 3. Temporal evolution of 6D representing changes in the average local condensation temperature
during snow formation, the particulate dust, and the sea-salt component Na' over the last four glacial
cycles as recorded in the East Antarctic Vostok ice core [Petit et al., 1999]. Dashed-dotted lines indicate

the mean Holocene level from 0 to 10,000 years B.P.
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Time to get quantitative:
how do changes in radiative forcing affect temperature?

Let’s relate a change in temperature to a change in radiative forcing:

AT =N AF
A is the climate sensitivity factor in units of
Y W/m?*
For an ideal blackbody: F=o T*
dF
—=40T°
dT
Above equation can be re-arranged to yield:
1
AT ~ —=— AF
4oT
So: 1 If we plug in value of Boltzmann’s
' A= constant and global mean T at which Earth

3
4ol radiates to space, we find Agg ~ 0.3 K/ (W m?)

Here: BB refers to Black Body
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Time to get quantitative:
how do changes in radiative forcing affect temperature?

Let’s relate a change in temperature to a change in radiative forcing:

AT = A AF
A is the climate sensitivity factor in units of
Y w/m?
For an ideal blackbody: F= o T* We write:
dE ; Mactuac= Mgs (1+f0)
d_T =401 where f,,ois the H,O feedback
Here, f,,o=~ 1.08

Above equation can be re-arranged to yield:

AT =~ 1 AF Another estimate of the response of T to AF
40T can be found using a climate model representing
that as the atmosphere warms, it can hold more
So: 4 _ 1 H,O:
45T McTuaL ® 0.63£0.13 K/ (W m™)

Table 9.5, IPCC (2013)
Copyright © 2017 University of Maryland.
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Time to get quantitative:
how do changes in radiative forcing affect temperature?

K
W/m

Hence: AT ~ 0.63 AF

2

How much does AF change when CO, changes?

As we will explore in more detail later in class (16 Feb 2017):

Final
AF ~ 5.35W/m? In (goz j

Initial
2

Changes in AF can be caused by changes in chemical composition (GHGS),
albedo, aerosol loading, as well as solar output

Copyright © 2017 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

32



Glacial to interglacial changes in T, CO, and dust

120 - Vostok ice core data for changes in temperature
- (] (units of 0.1 K), CO, (ppmv), and dust aerosols
A CO2 (linear scale normalized to unity for Holocene)

80 1 . m Oust Black line shows 5 point running mean of dust.

60 L s —T
r = q Chylek and Lohmann, GRL, 2008

40 L o a__A M i ‘0‘@(

20 f

0 =

0 10000 20000 30000 40000

Years Before Present

Chylek and Lohmann (2008) assume:
a) global avg AT, glacial to interglacial, was 4.65 K *
b) AFco, = 2.4 W M2, AFcyainze = 0.27 WM™, AR, gepo = 3.5 W M2, & AFaerosors = 3-3 W m™

From this they deduce A 1, = 0.49 K /W m~2

Since 0.49 K/W m=2 < 0.63 K/ W m~2, one would conclude that either the H,O feedback is
smaller than found in IPCC climate models and/or changes in clouds serve as a negative feedback

* Global AT is about half that recorded at Vostok, as noted on page 68 of the Houghton
(Additional reading for this class)

Copyright © 2017 University of Maryland.
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Glacial to interglacial changes in T, CO, and dust

Chylek and Lohmann (2008) are trying to calculate the sensitivity of climate to various forcings,
with and without the consideration of aerosols

AF with aerosols(W/m?)

CO, 2.40
CH,+N,O 0.27
Albedo 3.50
Aerosols 3.30

v 4

AT - ﬂ’Considering Aerosols (AFCOZ + AI:CH4+N20 + AI:ALBEDO + AI:AEROSOLS)

; ~ AT _ 465K
considering Aerosol AI:COZ + AI:CH4+N20 t AI:ALBEDO + AI:AEROSOLS 947 W m—2
=049K / Wm™
If ﬂ’Considering Aerosols — /IBB (1+ f) and /IBB — 03 K / W m_z’

then f =0.63

Copyright © 2017 University of Maryland.
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Glacial to interglacial changes in T, CO, and dust

Chylek and Lohmann (2008) are trying to calculate the sensitivity of climate to various forcings,

with and without the consideration of aerosols

AF with aerosols(W/m?2) AF without aerosols (W/m?)
Co, 2.40 2.40
CH,+N,O 0.27 0.27
Albedo 3.50 3.50
Aerosols 3.30 0.

~

AT = ﬁ’No Aerosols (AFCOZ + AI:CH4+N20 + AI:ALBEDO)
AT 465K
Z’NO Aerosols — - 2 =
AFco, + AFcisinzo T AR geDO 6.17Wm
=0.75K / Wm™
If ZNerrosols :/IBB (1+ f) and ;]“BB =03K /W m_z’
then f =15

Copyright © 2017 University of Maryland.
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Let’s apply these two climate sensitivities to future temperature

Both future scenarios assume;

a) CO, doubles: i.e., AF-g, = 5.35 In(2) W/m? or = 3.7 W/m?
b) surface radiative forcing of CH, + N,O will be 40% of CO, (future mimics past)

Scenario #1: Weak Feedback found considering aerosol radiative forcing in paleo data &
no future change in Earth’s albedo

Scenario #2: Strong Feedback found assuming no aerosol radiative forcing in paleo data &
additional surface radiative forcing of 3.4 W/m? due to decline in Earth’s albedo
(i.e., the positive ice-albedo feedback will occur)

Scenario #1 Scenario #2

AF (W m ~?) AF (W m™)
CO, 3.7 3.7
CH,+ N,O 1.5 1.5
Albedo 0.0 3.4
Total AF 5.2 8.6

AT =

Take away messages:
1. Climate sensitivity inferred from ice core record depends on how aerosols are handled

2. Future climate will be quite sensitive to:
» the efficacy of atmospheric feedbacks (H,0, clouds)
* the radiative forcing of aerosols (not considered in our simple future scenario)

* how surface albedo changes

Copyright © 2017 University of Maryland.
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Final Thought

There is much more “recent climate history”, such as:
a) Younger Dryas cooling event at end of last ice age

b) Medieval climate maximum
c) the Little Ice Age (1650 to 1850)

that is deserving of our attention. A few slides on these topics are included
in the Extra Material that follows (you will not be tested on the material in these 3 slides)

Problem Set #1 is due at start of class on Tuesday, February 14 (one week from today)
and covers material presented in Lectures 1 to 5

If you have questions, please stop by our offices (Ross: Atlantic 2403; Pam: Jull 2106)
during either our office hours or normal working hours.

You're also welcome to email us to set up a time to meet

Copyright © 2017 University of Maryland.
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Extra Slide 1

Younger Dryas (about 12,000 years ago)

Around 12,000 years ago, mean annual temperatures abruptly
dropped to levels similar to those during the last glacial maximum
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Most scientists believe the cool conditions of
the Youger Dryas resulted from a flood of fresh
water into the North Atlantic that shut down
ocean’s thermohaline circulation.

The flood of fresh water was due to discharge
from glacial lakes, formed by the melt water of
retreating glaciers.

Some geologists (Firestone et al., PNAS, 2007)
believe that the Younger Dryas was
compounded by a terrestrial impact.

http://www.ncdc.noaa.gov/paleo/abrupt/data4.html
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Medieval Warm Period (MWP) Extra Slide 2
~800 to 1300 AD
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http://en.wikipedia.org/wiki/Medieval Warm Period
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Extra Slide 3
Little Ice Age (~1350 to 1900)

Major rivers (Thames) & waterways (NY harbor)
frequently froze.

Crops and livestock failed.
Cities flooded.

Glaciers expanded.

Why did this happen?

htp://www.sissedc.ch/qlcir/qussarv/Iittle-ice-aqe-two-en.html

1. Little ice age was an extended period of quiet solar activity:
coldest time period is associated with the Maunder Minimum
(time of very low sunspot activity = reduced solar irradiance).

2. Several large volcanic eruptions during this period; resulting aerosol loading led to a reduction
in amount solar radiation reaching the surface.

3. Increase in albedo associated with the colder temperatures (colder T results in more ice)
led to even more cooling.

Copyright © 2017 University of Maryland.
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