Introduction to Photolysis AOSC 433/633 & CHEM 433

Ross Salawitch

Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2017

Lecture 10 7 March 2017

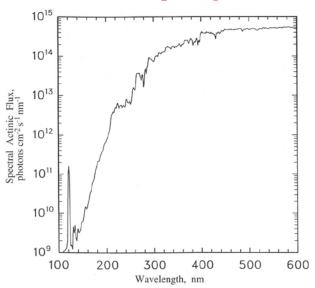
Importance of Radicals

- With a few exceptions, the only reactions between molecules that proceed at appreciable rates are those involving at least one radical
- Radicals require significant energy to form: a bond must be broken
- Radical formation is tied to absorption of photons that "photodissociate" a compound, leading to radical formation

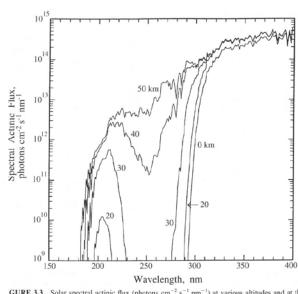
Initiation

 O_2 + photon \rightarrow O + O

Propagation


$$\begin{aligned} \text{O} + \text{O}_2 + \text{M} &\rightarrow \text{O}_3 + \text{M} \\ \text{O}_3 + \text{photon} &\rightarrow \text{O(1D)} + \text{O}_2 \\ \text{O(1D)} + \text{H}_2\text{O} &\rightarrow \text{OH} + \text{OH} \\ \text{OH} + \text{O}_3 &\rightarrow \text{HO}_2 + \text{O}_2 \\ \text{HO}_2 + \text{O} &\rightarrow \text{OH} + \text{O}_2 \end{aligned}$$

Termination


 $OH + HO_2 \rightarrow H_2O + O_2$

Motivation for Today's Lecture:

a) How does atmosphere go from this:

to this?

GURE 3.3 Solar spectral actinic flux (photons cm⁻² s⁻¹ nm⁻¹) at various altitudes and at the Earth's surface (DeMore et al., 1994).

From DeMore et al., Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation No. 11, 1994.

From Seinfeld and Pandis, Atmospheric Chemistry and Physics, 1998.

b) Biological Effects of UV Radiation

Energetics of Photolysis

$$O_3 + hv \rightarrow O(^1D) + O_2$$

hy represents a photon with specific energy.

Let's examine enthalpy of this reaction:

33.9 kcal/mole 104.7 kcal/mole 22.5 kcal/mole
$$O_3 + hv \rightarrow O(^1D) + O_2(^1\Delta_g)$$
 Δ Enthalpy =

Photon Energy:

$$\varepsilon = \frac{hc}{\lambda} \implies \lambda_{\text{max}} = \frac{hc}{\Delta \text{Enthalpy}}$$

For O_3 photo-dissociating to $O(^1D)$:

$$\lambda_{\text{max}} = \frac{hc}{\Delta \text{Enthalpy}} = \frac{2.85 \times 10^4 \text{kcal/mole nm}}{\Delta \text{Enthalpy}} = \frac{1.85 \times 10^4 \text{kcal/mole nm}}{\Delta \text{Entha$$

Energetics of Photodissociation

$$O_3 + h\nu \rightarrow O(^1D) + O_2(^1\Delta_g)$$

 Δ Enthalpy = kcal/mole λ_{max} =

nm

$$O_3 + h\nu \rightarrow O(^3P) + O_2(^3\Sigma_g)$$
 Δ Enthalpy = 25.7 kcal/mole $\lambda_{max} =$

nm

Atomic oxygen: (Note: you will not be "responsible" for the material below on any exam (9)

Ground state – two unpaired electrons in the 2p orbitals: $(1s)^2(2s)^2(2p_1)^2(2p_2)^1(2p_3)^1$ Called ³P:

"3" represents 2S+1, where S is spin of all of the unpaired electrons.

There are 2 unpaired electrons, each with spin of ½

Hence, S = 1 and $2S+1 = 3 \leftarrow spin angular momentum$

P represents orbital angular momentum, found from an electron diagram of filled orbitals:

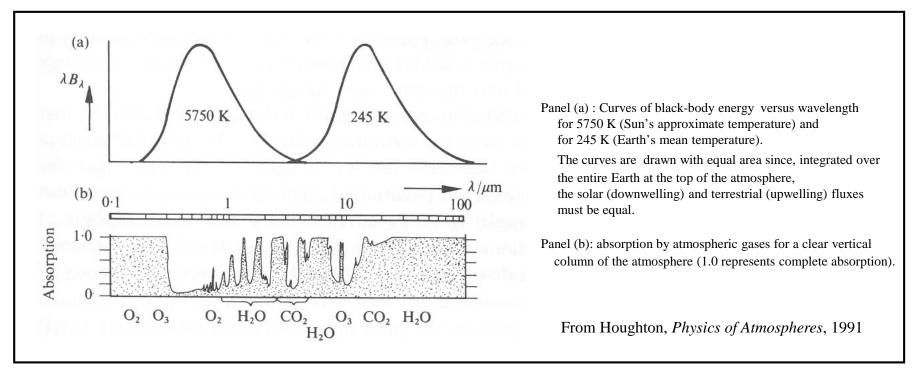
$$\begin{array}{ccc} (1s)^2 & (2s)^2 & (2p)^4 \\ \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \uparrow \end{array}$$

Excited state – one electron moves from $2p_3$ to $2p_2$: $(1s)^2(2s)^2(2p_1)^2(2p_2)^2$

Called ¹D:

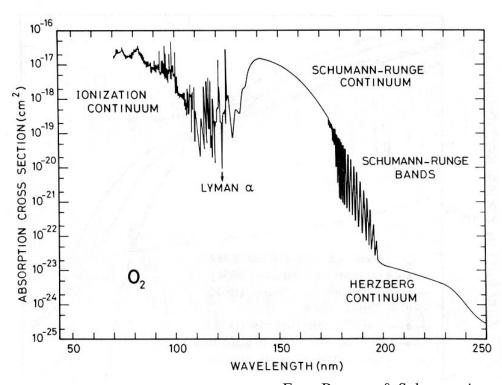
"1" represents 2S+1, where S is spin of all of the unpaired electrons.

There are no unpaired electrons!


Hence, S = 0 and $2S+1 = 1 \leftarrow spin$ angular momentum

D represents orbital angular momentum, found from an electron diagram of filled orbitals:

$$\begin{array}{cccc} (1s)^2 & (2s)^2 & (2p)^4 \\ \hline \uparrow \downarrow & \hline \uparrow \downarrow & \hline \uparrow \downarrow & \hline \uparrow \downarrow \end{array}$$


Atmospheric Radiation

• Solar irradiance (downwelling) at top of atmosphere occurs at wavelengths between ~200 and 2000 nm (~5750 K "black body" temperature)

• Absorption and photodissociation in the UV occurs due to changes in the electronic state (orbital configuration) of molecules

Absorption Cross Section of O₂

From Brasseur & Solomon, Aeronomy of the Middle Atmosphere, 1986

- O₂ can not dissociate longward of ~250 nm
- All absorption shown above is dissociative (e.g., leads to production of two O atoms)
- Structure in the O₂ cross section is related to whether the initial transition involves an unbound electronic state (smooth) or involves a specific vibrational level of an electronic state (banded, due to requirement of specific quanta of energy)

Beer-Lambert Law

$$F(z,\lambda) = F_{TOA}(\lambda) e^{-\tau(z,\lambda)}$$
 (TOA : Top of Atmosphere)

where:

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [C] dz'$$
 (τ : optical depth)

F : solar irradiance (photons/cm²/sec)

 σ_{λ} : absorption cross section

C : concentration of absorbing gas (molecules/cm³)

m: ratio of slant path to vertical path, equal to $1/\cos(\theta)$ for $\theta < \sim 75^{\circ}$

 θ : solar zenith angle

Governs basics of radiative transfer in the UV and near IR regions

Photolysis Frequency

For a specific spectral interval, the photolysis frequency (*partial J value*) of a gas is given by the product of its absorption cross section and the solar irradiance:

$$J_{gas}(z,\!\lambda) = Quantum_Yield(\lambda) \; \sigma_{gas} \; (\lambda,\!T) \; F(z,\!\lambda)$$

$$Units: \; s^{-1} \; nm^{-1}$$

The total *photolysis frequency* (*J value*) is found by integrating $J_{gas}(z,\lambda)$ over all wavelengths for which the gas photodissociates:

$$J_{gas}(z) = \int_{\lambda}^{\lambda_{max}} J_{gas}(z, \lambda) d\lambda$$
Units: s⁻¹

Rate of Reaction =
$$\frac{dO_3}{dt} = J$$
 [O₃]; Units of J are s⁻¹

More precisely, calculations of photolysis frequencies consider the "spectral actinic flux", which represents the amount of available photons integrated over all angles, rather than "solar irradiance". These two quantities differ because of scattering of solar radiation by gases and aerosols, and reflection of radiation by clouds and the surface.

Optical Depth of O₂ Absorption

Recall the *Beer-Lambert Law*:

$$F(z,\lambda) = F_{TOA}(\lambda) e^{-\tau(z,\lambda)}$$
 (TOA : Top of Atmosphere)

where:

$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [C] dz'$$
 (τ : optical depth)

Also:

$$\int_{0}^{\infty} [O_2] dz' \approx 4 \times 10^{24} \text{ molecules/cm}^2$$

$$O_2$$
 Optical Depth for $\theta = 0^\circ$, $z = 0$ km

$$\sigma_{max}\left(cm^{2}\right) \quad \tau\left(0\,\mathrm{km}\right) \qquad e^{-\tau\left(\,0\,\mathrm{km}\right)}$$

Schumann-Runge Continuum Schumann-Runge Bands

Herzberg Continuum

Photolysis Frequency of O₂

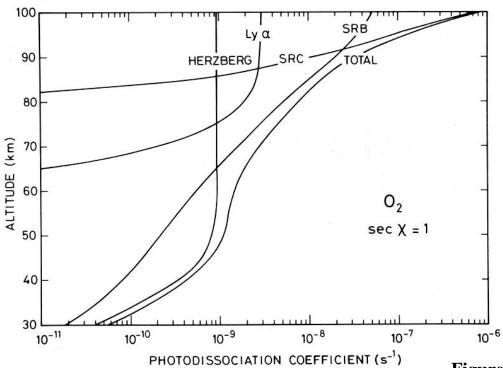
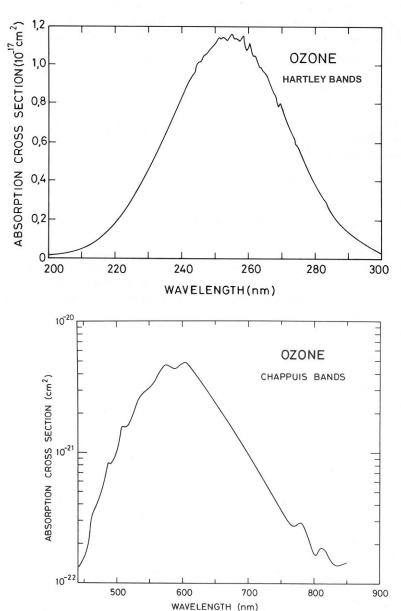


Figure 4.31, Brasseur and Solomon

Where Does Optical Depth = 1.0 for O_2 ?


$$\tau(z, \lambda) = m \int_{z}^{\infty} \sigma_{\lambda} [O_{2}] dz'$$
$$\approx \sigma_{\lambda} m 4 \times 10^{24} e^{-z/H}$$

Setting $\tau = 1$ and re-arranging gives:

$$z = H \ln (\sigma_{\lambda} \cdot m \cdot 4 \times 10^{24})$$

$\sigma_{max}\left(cm^{2}\right) \quad z\left(km\right)$ Schumann-Runge Continuum 10^{-17} Schumann-Runge Bands 10^{-20} 3×10^{-23} Herzberg Continuum 10^{-23}

Absorption Cross Section of O₃

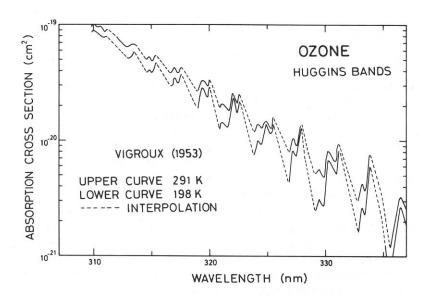
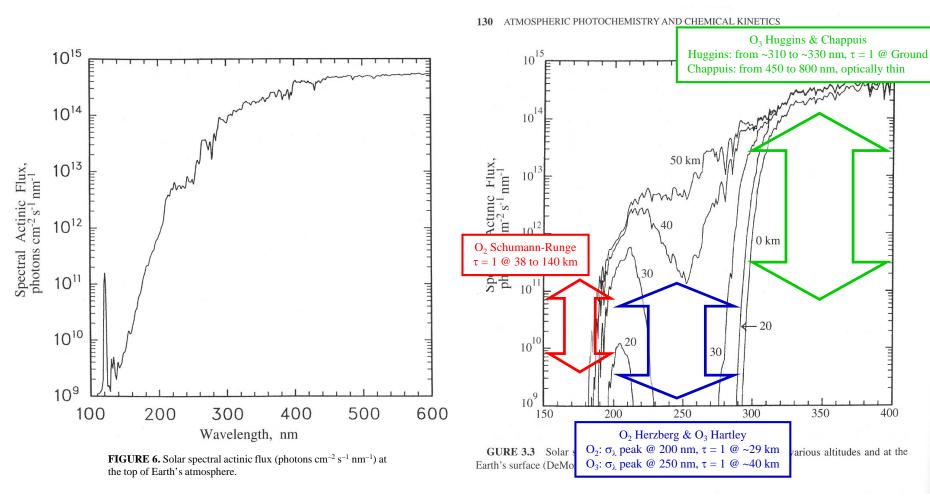


Table 4.6 Theoretical limits corresponding to different photolysis products (nm).

	$O_2(^3\Sigma_g)$	$O_2(^1\Delta_g)$	$O_2(^1\Sigma_g +)$	$O_2(^3\Sigma_u^{}+)$	$O_2(^3\Sigma_u^{\;-})$
$O(^3P)$	1180 g/	590 g'	460	230	170
$O(^1D)$	410	310	260	167	150
$O(^1S)$	234	196	179	129	108
0(5)	201	100	110	120	100

From Brasseur & Solomon, Aeronomy of the Middle Atmosphere, 1986

Optical Depth of O₃ Absorption

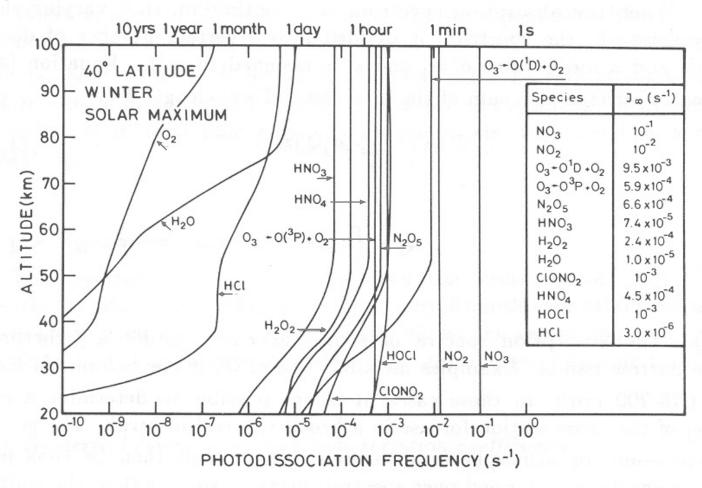

A typical mid-latitude column abundance for O₃ is 300 Dobson units (DU):

$$1 \text{ DU} = 2.687 \times 10^{16} \text{ molecules/cm}^2$$
; $300 \text{ DU} = 8 \times 10^{18} \text{ molecules/cm}^2$

Aside:
$$\frac{\text{Column O}_3}{\text{Column Air}} = \frac{8 \times 10^{18}}{2 \times 10^{25}} = 0.4 \text{ parts per million } \Rightarrow \text{Ozone is a trace species!}$$

O_3 Optical Depth for $\theta = 0^\circ$, $z = 0$ km							
Hartley (~220 to 280 nm)	$\sigma_{max} (cm^2) \tau (0 \text{ km})$	$e^{-\tau (0 \text{ km})}$	O_3 Column, $\tau = 1.0$				
Huggins (~310 to 330 nm)							
Chappuis (~500 to 700 nm)							

Solar Spectral Actinic Flux



From DeMore et al., *Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling*, Evaluation No. 11, 1994.

From Seinfeld and Pandis, Atmospheric Chemistry and Physics, 1998.

Photodissociation Frequencies

Next goal is to understand:

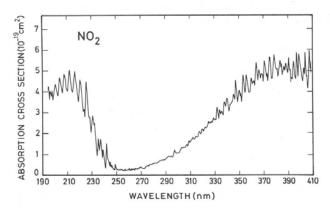
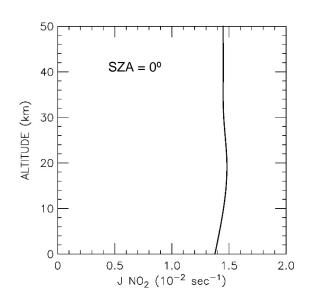
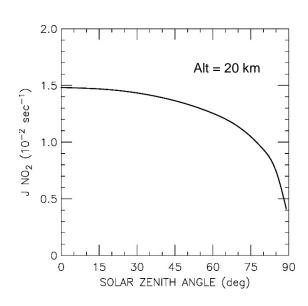
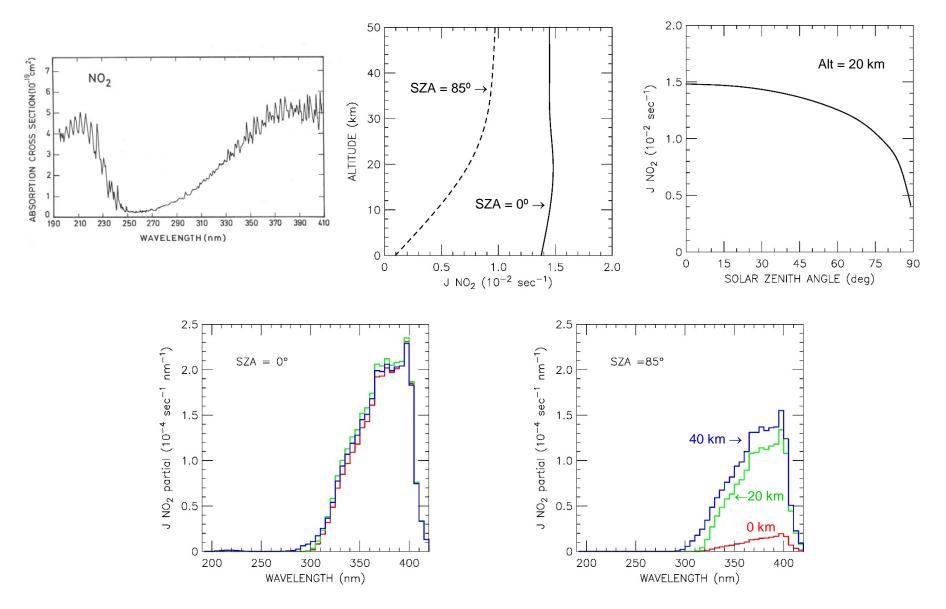


FIGURE 4.58 Photodissociation frequencies for numerous important atmospheric species.

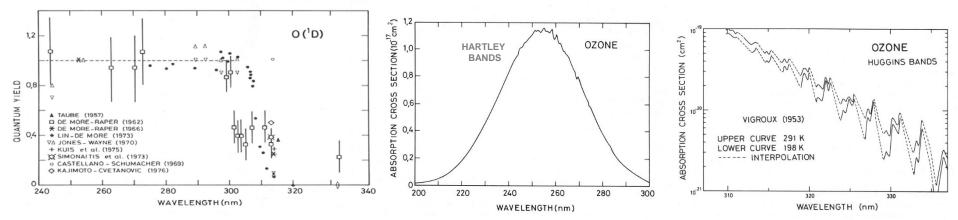

From Brasseur & Solomon, Aeronomy of the Middle Atmosphere, 1986


NO₂ Photolysis

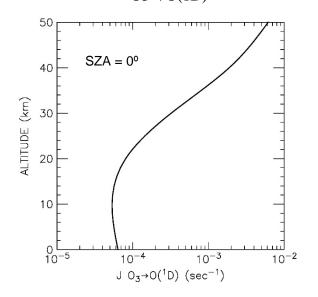
The majority of NO_2 photolysis occurs longward of 300 nm, where the atmosphere is optically thin with respect to absorption by O_3 and O_2 :

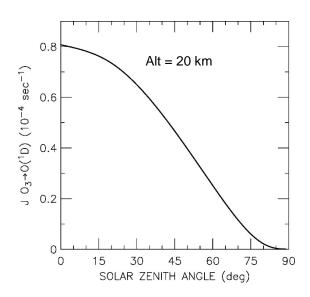


leading to a value for J_{NO2} that is nearly <u>independent</u> of height and SZA:

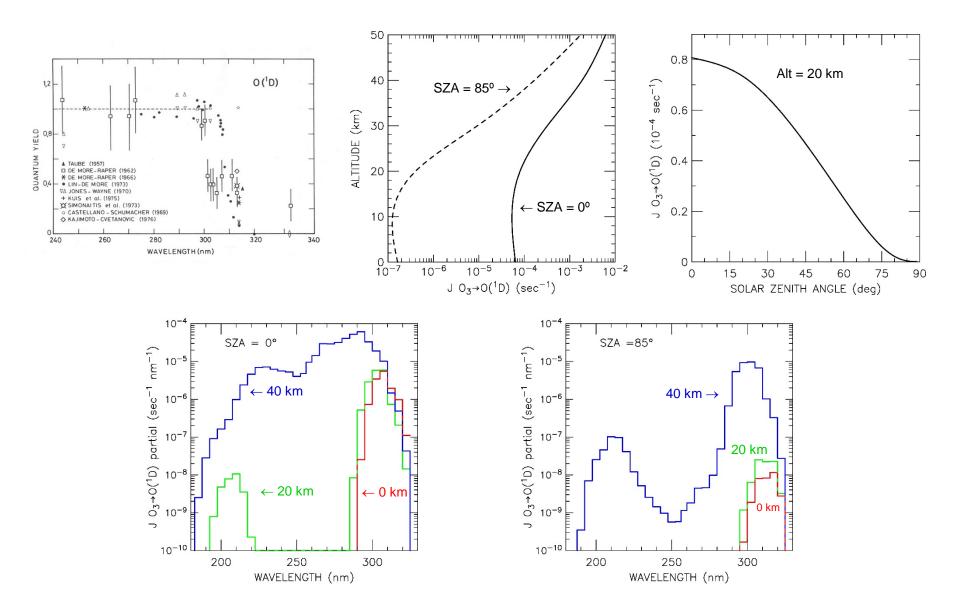


NO₂ Photolysis

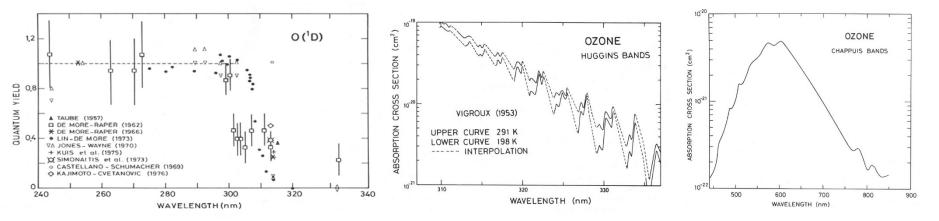



$O_3 \rightarrow O(^1D)$ Photolysis

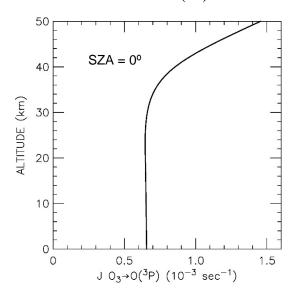
The production of $O(^1D)$ from photolysis of O_3 occurs shortward of 320 nm, where the atmosphere is basically optically thick with respect to absorption by O_3 :

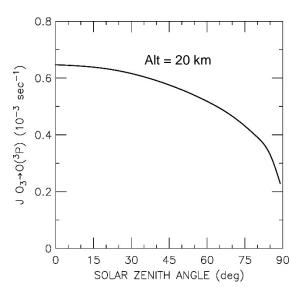


leading to a value for $J_{O3\rightarrow O(1D)}$ that is <u>dependent</u> on height and SZA:

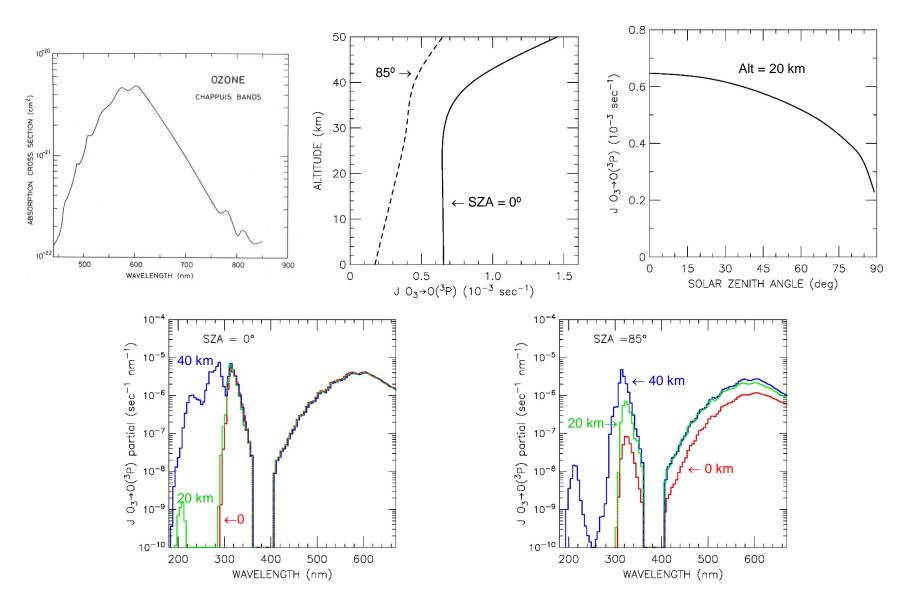


$O_3 \rightarrow O(^1D)$ Photolysis




$O_3 \rightarrow O(^3P)$ Photolysis

The production of $O(^3P)$ from photolysis of O_3 occurs mainly longward of 500 nm, where the atmosphere is optically thin with respect to absorption by O_3 :



leading to a value for $J_{O3\rightarrow O(3P)}$ that is essentially <u>independent</u> of height and SZA:

$O_3 \rightarrow O(^3P)$ Photolysis

Biological Effects of UV Radiation

Table 2.4	Types of UV Radiation				
Туре	Wavelength	Relative Energy	Comments		
UV-A	320–400 nm	Lowest energy	Least damaging and reaches the Earth's surface in greatest amount		
UV-B	280–320 nm	Higher energy than UV-A but less energetic than UV-C	More damaging than UV-A but less damaging than UV-C. Most UV-B is absorbed by O_3 in the stratosphere		
UV-C Chemistry in	200–280 nm	Highest energy	Most damaging but not a problem because it is totally absorbed by O_2 and O_3 in the stratosphere		

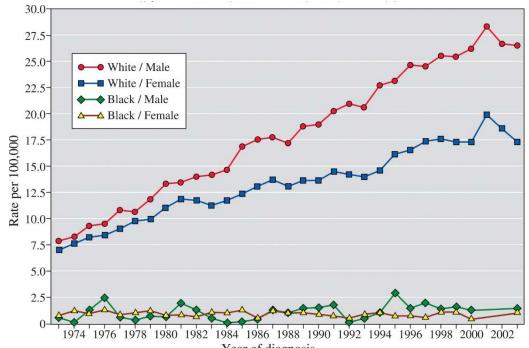
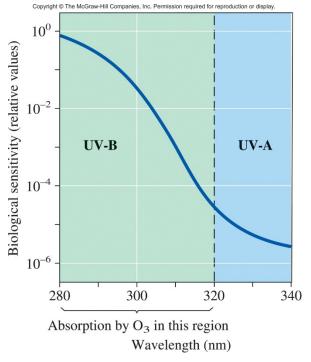



Figure 2.11, Chemistry in Context

Increase in incidence of melanoma skin cancer, U.S. Figure 2.12, Chemistry in Context

1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 Year of diagnosis

Copyright ⊌ ∠∪17 University of integration.

Biological Effects of UV Radiation

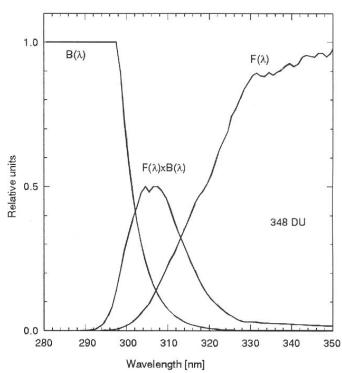


Fig. 1. Biologically active UV radiation. The overlap between the spectral irradiance $F(\lambda)$ and the erythemal action spectrum $B(\lambda)$ given by McKinlay and Diffey [6] shows the spectrum of biologically active radiation, $F(\lambda)B(\lambda)$. The area under the product function $F(\lambda)B(\lambda)$ is the biologically active dose rate. For a total ozone column of 348 DU.

Humans are:

- strongly affected by exposure to UV-C radiation (100 to 280 nm)
- moderately affected by exposure to UV-B radiation (280 to 315 nm)
- weakly affected by exposure to UV-A radiation (315 to 400 nm)

http://www.who.int/uv/uv_and_health/en

From Mandronich et al., *J. Photochemistry and Photobiology*, vol. 46, pg. 5, 1998

The "biologically active dose rate" maximizes in the UV-B region at ~305 nm, where σ_{O3} = 3 × 10⁻¹⁹ cm² \Rightarrow τ (0 km) = 2.4 (for O₃ column= 300 DU)