Mid-Latitude Stratospheric Chemistry
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Today:

 Importance of how a chemical cycle is completed wrt odd-oxygen loss
* Role of halogens and aerosol loading on mid-latitude ozone

« Connection to recent research
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Ozone Depletion and Halocarbons

Table Q7-1. Atmospheric Lifetimes and o continuous
Ozone Depletion Potentials of some ODP (species "i") = \

halogen source & HFC substitute gases. ) .. )
I J global loss of O, due to unit mass emission of "i"

Atmospheric Ozone Depletion . . .
Gas global loss of O, due to unit mass emission of CFC-11

Halogen source gases

Chlorine gases ~ (a nBr + nCI) Z-i MWCFC-ll Continuous
CFC-11 45 1 3 TCFC-ll |\/|WI

CFC-12 100 0.82

CFC-113 as 0.85 where :

Carbon tetrachloride (CCla) 26 082 7 is the global atmospheric lifetime

HCFCs 1-17 0.01-0.12

Methyl chloroform (CH;CCl) 5 016 MW is the molecular weight

Methyl chloride (CH5Cl) 1 0.02

Bromine gases n is the number of chlorine or bromine atoms
Halon-1301 65 159

a is the effectiveness of ozone loss by bromine

Halon-1211 16 7.9 - -
Methy bromide (CH.81) os o relative to ozone loss by chlorine
Hydrofluorocarbons (HFCs)

HFC-134a 134 : Halons (anthropogenic halocarbons

HrC2s 222 0 containing bromine) much worse for ozone
than CFCs (anthropogenic halocarbons
containing chlorine)
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Montreal Protocol and Various Amendments
Have Banned Industrial Production of CFCs and Halons

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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Global Production of CFCs, Fig. 2.19, Chemistry in Context
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Montreal Protocol and Various Amendments
Have Banned Industrial Production of CFCs and Halons
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Montreal Protocol and Various Amendments
Have Banned Industrial Production of CFCs and Halons

Effect of the Montreal Protocol
Long-term changes in equivalent effective
stratospheric chlorine (EESC)
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Figure Q15-1, WMO 2010 QAs
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Chlorine Source Gases
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And Atmospheric Levels of these Pollutants are Declining
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Ozone Depletion at Mid-Latitudes

Column Ozone Anomoly(SS S to 55°N))
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% In (SSA) +

—0.02 DU/ ms! x QBO

TSI = total solar irradiance
Halogens=stratospheric chlorine &

bromine loading

. SSA = Sulfate Surface Area
E QBO = Quasi-biennial oscillation

of the direction of winds in
the tropical lower strat


http://acdb-ext.gsfc.nasa.gov/Data_services/merged

Chapman Chemistry
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FIGURE 4.6 Comparison of stratospheric ozone concentrations as a function of altitude as pre-
dicted by the Chapman mechanism and as observed over Panama (9° N) on November 13, 1970,

[O,] falls off with increasing altitude (high in stratosphere), at a rate determined by [M]¥ 2, because:

[O,] falls off with decreasing altitude (low in stratosphere) due to a rapid drop in J,, reflecting:

Observed [O5] < Chapman [Og] : why ?1?
Lecture 9
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Stratospheric Photochemistry: Odd Oxygen Loss By Families

Fraction of O, Loss Due to Each Catalytic Family
JPL 2002 Kinetics
35°N, Sept
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Calculated fraction of Ozone loss due to various family of radicals.
After Osterman et al., GRL, 1997.

Copyright © 2017 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Lecture 9

10



HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

Production : OD + H,0 - OH + OH
O'D + CH; - OH +CH;

O,

OH < o | HO,

/

Loss: OH + HO,—» H,0 + O,
OH + HNO; — H,0 + NO,
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HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

Rapid inner cycle:

HO, formation:

OH + O; > HO, + O, (1)

HO, loss:
HO, + NO - OH + NO, (2)
or HO,+O0O —»>OH+O0, (3)

of HO,+0,—»>OH+0,+0, (4) O

OH <NO HO,

O,, O

Copyright © 2017 University of Maryland.
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HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

Rapid inner cycle:

HO, formation:
OH+0; - HO,+0,
HO, loss:
HO, + NO — OH + NO,,
or HO,+O —»>OH+O,
or HO,+0;—>O0OH+0,+0,

Copyright © 2017 University of Maryland.

1)

(2)
3)
(4)

HO, loss step (2):

Ok + 0, — HO,+0,
HQ, + NO — OK + NO,

Net: O,+NO — O,+NO,

This is followed quickly by: >
NO,+hv - NO+O

Yielding final “net”:
O, > 0+0, Y,

Null cycle
with respect to production &
loss of odd oxygen

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.



HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

Rapid inner cycle: HO, loss step (3):

HO, formation: HO,+ O —>OH+0,

OH +0O; - HO, + O, (1) ’
HO, loss: et Do e ’
HO, + NO — OH + NO, (2)
or HO,+0 —OH+O, (3) )
or HO,+0;,—>O0OH+0,+0, (4) HO, loss step (4):
OH+0; — HO,+0, >
HO,+ O, > OH+0,+ 0,
Net: O3+0; —0,+0,+0;

Catalytic Ozone (Odd Oxygen) Loss Cycles

Copyright © 2017 University of Maryland.
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Odd Oxygen Loss - HO,

OO __ 5, [HO,1[0,] -2k, [HO; J[O] Eq (7)

The reactions:

HO,+0O — OH+ 0, (3)
HO,+0O; > OH+0,+0, (4)

are rate limiting steps for O; loss by two catalytic cycles:

Cycle (1) Net:

0;,+0 520,
Cycle (2) Net:

O;,+0; »30,

As a convenient short hand, we consider HO, to be odd oxygen
Then:

clear now that reactions (3) and (4) each consume two odd oxygens
at rates determined by 2 k; [HO,] [O] and 2 k, [HO,][O4]

Copyright © 2017 University of Maryland.
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OH, HO,, H,0, and CH,

JPL 2002 Kinetics, 35°N, Sept
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Odd Oxygen Loss - HO,

At what altitudes will loss of ozone by these rate limiting steps be dominant ?
HO,+O —» OH+0, (3)
HO,+0O; > OH+0,+0, 4)

One dominates at low altitude, the other at high altitude = which is which ?1?

Fraction of O, Loss Due to Each Catalytic Family
JPL 2002 Kinetics

35°N, Sept
60
[ i
50 Fv —
HRN i
S i
'
L ~ .
()] L .
D
e - ([ -
5 oL\ :
T 30r—\¢ —
20 = ]
;l[ ]
0 0.2 0.4 0.6 0.8 1.0

FRACTION
Copyright © 2017 University of Maryland.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

17



NO, : NO and NO,

NO and NO, are central to stratospheric and tropospheric photochemistry

Stratospheric Production : OD + N,O - NO + NO

O,

v <N,
/w

Final sinks : N+ NO — N, + O (uppermost stratosphere)
HNO; solubility & rainout (lowermost stratosphere)

Copyright © 2017 University of Maryland.
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NO, : NO and NO,

NO and NO, are central to stratospheric and_tropospheric photochemistry

NO, loss step (2):
NO +0; — NO, +0,

Rapid inner cycle:

NO, formation: NO,+hv — NO+O
NO, l0ss: Net: O;+ hv -0+0,
NO,+hv— NO+0O (2)
or NO,+O0 - NO+O, (3)
NO, loss step (3):
NO+0O; — NO, +0,
NO,+O — NO+O,
Net: O;+ O —520,
Can show:
do, N do _ d (Odd Oxygen) __2k,[NO,][O]
dt dt dt

As a convenient short hand, we consider NO, to be odd oxygen

Copyright © 2017 University of Maryland.
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NO, versus N,O
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Figure 6-8, WMO (1999)

NO, = NO+NO,+NO;+2 xN,05+HONO+HONO,+HO,NO,+CINO;+BrNO,
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N,O and Stratospheric Ozone
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Stratospheric O, difference in the 2090s found for a computer simulation run
using N,O from RCP 8.5 minus that of a simulation using N,O from RCP 2.6

Rising N,O leads to:
a) ozone loss in the middle & upper stratosphere by increasing the speed of NO and NO, (NO,) mediated loss cycles.

b) speeds up the rate of OH+NO,+M—HNO;+M & CIO+NO,+M— CINO4;+M in the lowermost stratosphere,
leading to slower ozone loss by these cycles & therefore more O; where these cycles dominate total loss of O,

Computer models project stratospheric column O5 will decline as N,O rises

Copyright © 2017 University of Maryland.
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Future ODP of N,O depends on CH, & CO,
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ODP of N,O in year 2100 found by a Swiss three dimensional,
chemistry climate model called SOCOL (Solar Climate Ozone Links)

Revell et al., GRL, 2015

Copyright © 2017 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

22



ClO, : ClIO and CI

CIO is central to stratospheric photochemistry, at mid-latitudes and polar regions

Production : CFCs +hv— Inorganic chlorine

O,

cl < cCIO
CH,

Final sinks : HCI solubility & rainout (lowermost stratosphere)

Copyright © 2017 University of Maryland.
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ClO, : ClIO and CI

CIO is central to stratospheric photochemistry, at mid-latitudes and polar regions:

Rapid inner cycle:

CIO formation:

Cl+ O; — CIO+ O, (1)
CIO loss:
CIO + NO — Cl + NO, (2)
or ClO+0 —Cl+0, (3)
Can show:

do, N dO d(Odd Oxygen)

dt dt dt

CIO loss step (2):

Cl+0, — CIO +0,
ClO + NO - CI+NO,

Net: O;+ NO— NO,+ O,
Followed by: NO,+hv—>NO+0O

Final net: O;+hv —» O0+0,

CIO loss step (3):

Cl+0, — CIO +0,
ClO+0 — CI+0,

Nett O,+ O —20,

2k, [ClO][O]

As a convenient short hand, we consider CIO to be odd oxygen

Copyright © 2017 University of Maryland.
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Proof Halocarbons Reach The Stratosphere
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Trends in Ozone, ~40 km
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B iauto Provencs a8 Trends in ozone at 40 km are “well understood”
' (44"!3,{"& ozone generally anti-correlates with time history

of stratospheric chlorine loading
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Figure 2-5, WMO/UNEP 2010
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Trends In Ozone vs Altitude

Units: % per decade

on
-

()
=
——T——
o
[}
ha

Altitude [km]

¥, U

% 0
<€

ALTITUDE (km)
[+3]
o
[

20 -

Trends in ozone as a function of latitude and

Latitude

altitude, for the time period 1979 to 2005,

from the NASA SAGE | & SAGE Il instruments.
Shaded region indicates significance at the 2o level.

Copyright © 2017 University of Maryland.

Figure 2-4, WMO/UNEP 2010
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Two complications to understanding
ozone trends in the lower stratosphere:
aerosol surface area and bromine
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"« fumigant; released by biomass burning

* production halted by Montreal Protocol
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VSL Gases (e.g., CHBr;, CH,Br,):
L« emitted mainly by ocean biology

* not considered in most ozone calcs
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[7p]

[<b]

=

=

7
| 3 /

=

3 Very short-lived gases
0

1998 2012
Bromine source gases

Copyright © 2017 University of Maryland.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

28



Total Column Ozone Time Series, NH
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Chemical reaction on surface of volcanic aerosol couples NO, and HNO,

» As sulfate aerosol rises, NO, (NO and NO,) falls
* As NO, drops, CINOZ falls and CIO rises

HCI

O, OH, hv CINO,
CH, 0, W
Cl < no | CIO

O

Copyright © 2017 University of Maryland.
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Ozone responds to:
a) rise and fall of chlorine

b) volcanic perturbations to aerosol loading
c) amount of bromine in lowermost stratosphere
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Salawitch et al., GRL, 2005
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EXCESS SKIN CANCER CASES

IN THE UNITED STATES,
PER YEAR, DUE TO OZONE DEPLETION
FOR VARIOUS CFC SCENARIOS
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Longstreth et al., J. of Photochemistry and Photobiology B, 46, 20—-39, 1998.

See also Slaper et al., Estimates of ozone depletion and skin cancer incidence to examine the
Vienna Convention achievements, Nature, 384, 256—-258, 1996, who state:

The no-restrictions and Montreal Protocol scenarios produce a runaway increase in
skin cancer incidence, up to a quadrupling and doubling, respectively, by year 2100.
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