Pollution of Earth’s Stratosphere:
Ozone Recovery and Chemistry/Climate Coupling

AOSC 433/633 & CHEM 433

Ross Salawitch

Class Web Site: http://www.atmos.umd.edu/~ris/class/spr2017

Motivating questions:
a) Levels of CFCs have peaked and are slowly declining: are we seeing a
response in total ozone column?
b) How might climate change (future variations in temperature and / or
circulation) driven by rising GHGs affect stratospheric ozone?
c) Might climate at the surface be affected by stratospheric ozone?
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Recovery of the Ozone Layer
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Time series of chlorine content of organic
halocarbons that reach the stratosphere.
Past values based on direct atmospheric
observation. Future values based on
projections that include the lifetime for
removal of each halocarbon.
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Figure Q19-1. Recovery stages of global ozone. Significant ozone depletion from the release of ozone-depleting
gases in human activities first became recognized in the 1980s. The Montreal Protocol provisions are expected to further
reduce and eliminate these gases in the atmosphere in the coming decades, thereby leading to the return of ozone
amounts to near pre-1980 values. The timeline of the recovery process is schematically illustrated with three stages
identified. The large uncertainty range illustrates natural ozone variability in the past and potenfial uncertainties in global
model projections of future ozone amounts. When ozone reaches the full recovery stage, global ozone values may be
above or below pre-1980 values, depending on other changes in the atmosphere (see Q20).
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Polar Ozone Loss: Update

Total Ozone Qver Halley Bay, Antorctica (76°5)
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Complication #1
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Considerable year to year variability in temperature

Data from http://acdb-ext.gsfc.nasa.gov/Data services/met/ann data.html
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Complication #2

357

30|

25 |

’é "Sep 29, 1999
X [
LL]
A 20
D)
=
— 15
_l L
< [ October _
10 Average -
[ 1967 - 1971 |
51
0 5 10 15
OZONE ABUNDANCE

(PARTIAL PRESSURE, mPa)

Copyright © 2017 University of Maryland.

Ozone reaches “zero” over
considerable height range.

This “saturation effect” may be
the cause of the “leveling off”
of the column ozone time series

1 D. Hofmann,
{1 NOAA CMDL
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Total Ozone Over Antarctica, October

1979-1996 trend = -68.7 +/- 20.7 DU/decade October core ozone -
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Yang et al., JGR, 2008, updated
Figure 2-28, WMO/UNEP 2011
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Scatter plot, O;' (ozone residual) versus T' (temperature residual)
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Cold winters associated with larger vortices and less O,
due mainly to “chemical effects” related to abundance of PSCs

Slopes of this curve combined with yearly temperature residual (T') used to
remove influence of yearly variation of temperature on ozone

Yang et al., JGR, 2008
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Total Ozone Over Antarctica, October

- 1979-1996 trend = -68.7 +/- 20.7 DU/decade October core ozone -
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= Have dealt with Complication #1 (Year to year variability in T)

= Now, must deal with Complication #2 (Loss Saturation)

Yang et al., JGR, 2008, updated

Figure 2-28, WMO/UNEP 2011
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Total Ozone Over Antarctica, October

- 1979-1996 trend = -68.7 +/- 20.7 DU/decade October core ozone -
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= Have dealt with Complication #1 (Year to year variability in T)
= Now, must deal with Complication #2 (Loss Saturation)

= In our computer model, we allow ozone in the heart of the ozone
depletion region to “go negative”, to assess how much lower
column ozone “would have been” without loss saturation

Yang et al., JGR, 2008, updated

Figure 2-28, WMO/UNEP 2011
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Total Ozone Over Antarctica, October

1979-1996 trend = -68.7 +/- 20.7 DUsdecade October core ozone -
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Update to Yang et al., JGR, 2008

Figure 2-28, WMO/UNEP 2011
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Yang et al. (2008) concluded:
= Antarctic Ozone is in the first stage of recovery due to the leveling off
of ozone depleting substances
= In plain English: chemical loss is not getting any worse

(use of word “recovery” seems strange, but the community
has chosen this word to describe this situation!)

= Yearly variations in Antarctic ozone now driven by meteorology
= Cold winters = low ozone

Copyright © 2017 University of Maryland.
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Past Trends, Upper Stratospheric Ozone
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Future Trends, Upper Stratospheric Ozone

f) 35-60N, Partial Column Qzone 20-0.1 hPa
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Oman et al., JGR, 2010
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Climate and Chemistry Coupling

Scientists have long known that rising GHGs leads to cooling of the
stratosphere, due to direct radiative effects

The stratosphere has been cooling past several decades in a manner broadly
consistent with theory:

Annual Mean Trend
1980-2005, 70°N-70°S
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Future Trends, Upper Stratospheric Ozone

f) 35-60N, Partial Column Qzone 20-0.1 hPa
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Future Trends, Upper Stratospheric Ozone

f) 35-60N, Partial Column Qzone 20-0.1 hPa
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Future Trends, Upper Stratospheric Ozone
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More Chemistry and Climate Coupling
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Figure 5-17. Trends in exchange of air from troposphere-
to-stratosphere computed by 14 CCMs.
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Brewer-Dobson Circulation
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Figure 6.03 Schematic diagram of Brewer-Dobson circulation
with seasonally averaged ozone concentration

http://www.ccpo.odu.edu/~lizsmith/SEES/ozone/class/Chap 1/1 Js/1-06.jpg

Brewer-Dobson Circulation is a model of atmospheric circulation, proposed by Alan Brewer in
1949 and Gordon Dobson in 1956, that attempts to explain why tropical air has less column ozone
than polar air, even though the tropical stratosphere is where most atmospheric ozone is produced

Copyright © 2017 University of Maryland.
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Global Satellite Maps of Total Ozone in 2009

Early spring

2010 WMO/UNEP Ozone Assessment Report,
Question 4

Total ozone
(Dobson units)

100

Copyright © 2017 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

20


http://www.ccpo.odu.edu/%7Elizsmith/SEES/ozone/class/Chap_1/1_Js/1-06.jpg

More Chemistry and Climate Coupling
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Acceleration of the_ Brewer-Dobson Circulation causes modeled total ozone column in the tropics to
exhibit a sustained, long term decline and modeled total ozone column in the NH
to experience a “super recovery”

Oman et al., JGR, 2010
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Future Mid-Latitude Ozone: CH,
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loss cycles (blue regions, Fig 6b).

more ozone (red regions, Fig 6b):

the rate of all ozone loss cycles

chlorine from CIO into HCI

chemistry

Rising CH, leads to ozone loss in the upper & lower
stratos. by increasing the speed of HO, mediated

However, there are other processes that result in

* Rising CH, leads to more stratospheric H,O,
cooling this region of the atmosphere, which slows

* Rising CH, speeds up the rate of CI+CH,, shifting

* Rising CH, leads to more HO, in the lowermost
stratosphere, where there is sufficient CO to result
in production of O by photochemical smog

Copyright © 2017 University of Maryland.
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Fig. 6. {a) CHy4-8.5 ozone minus CHy-2.6 ozone n the 2090s
decade, calculated as a percentage of ozone in the CHy-2.6 simula-
tion. (h) 2090s-decade CH4-8.5 total column ozone minus CHy-2.6

total column ozone.

Revell et al., ACP, 2012
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Future Mid-Latitude Ozone: N,O

440 T T T T T T
4l —— —SRESA1B (a) N2O
——RCP 8.5
R T
A8 ——RCP 4.5
200l —RCP 28 — -
T awf e
B am-___,..-.‘-";ﬂ_
c
,_g 300 1 1 1 1 1 I 1 1 1
L]
-E 4000 T T T T T T T T T
g w0l (b}CH4 —
3 3000}
2500} T e o -
20| ____-_f.--‘-'-:':'i ——  T==== = = -
— ]
1500} _‘M_——%—___ﬁ__—

100D

cycles make the largest relative

photochemical smog chemistry.

Ozone depleting NO, cycles speed up with increasing
N,O throughout the middle stratosphere, where these

contribution to odd oxygen loss (blue region, Fig 5a).

» As NO, increases due to rising N,O, the abundance
of CIO declines, particularly in the lower stratosphere,
leading to reduced rates in the total speed of all
ozone depleting cycles (red region, Fig 5a); small
contrib. to the red region due to production of O; by

Copyright © 2017 University of Maryland.
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Fig. 5. (a) N20O-8.5 ozone minus N>O-2.6 ozone in the 2000s
decade, calculated as a percentage of ozone in the N2 O-2.6 simula-
tion. (b) 2090s-decade N, O-8.5 total column ozone minus N, O-2.6

total column ozone.

Revell et al., ACP, 2012
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Arctic Ozone Loss - Climate and Chemistry Coupling
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Shindell et al. (1998) postulated that rising GHGs would lead to more stable polar vortex circulations, resulting in
maximum loss of Arctic ozone in the decade 2010 to 2019.

Driving factor is a decrease in the poleward propagation of planetary waves i.e., dynamics
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Arctic Ozone Loss - Climate and Chemistry Coupling
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Arctic column ozone has not reached the very deep minima predicted by Shindell et al., even in 2011
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Arctic Ozone Loss - Climate and Chemistry Coupling
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Figure 9.11, CCMVal-2

http://www.atmosp.physics.utoronto.ca/SPARC/ccmval final/index.php

Latest generation of chemistry climate models do not reproduce the results of Shindell et al. (1998)

No consensus on how Arctic ozone will be affected by climate change.

Data for individual years suggest latest generation of models in need of major improvement

Copyright © 2017 University of Maryland.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

26


http://www.atmosp.physics.utoronto.ca/SPARC/ccmval_final/index.php

Arctic Ozone Loss and Climate Change
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Figure 2-16, WMO/UNEP (2011)

Updated for Arctic winter 2011
and normalized for vortex area

» Factor of three increase in the maximum of Vg- over the past four decades
» Coldest Arctic winters may be getting colder !!!

« Cause uncertain: might be due to increased radiative efficiency of vortex
during dynamically quiet years
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The Ozone Hole may have shielded the Antarctic surface from warming!

Observations

() ainresadwsa] aoeyins ul abuey)d

Simulated and observed changes in surface temperature (K) and wind speed,1969 to 2000,
averaged over December to May. The longest wind vector corresponds to 4 m/s.

Gillett and Thompson, Science, 2003
As ozone depletion occurs:

The positive phase of the southern annular mode (SAM) increases,

causing Antarctic surface westerlies to intensify, resulting in cooling
of Antarctic continent

Copyright © 2017 University of Maryland.
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The Ozone Hole may be responsible for tropical widening
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http://www.globalwarming-sowhat.com/sea-level-floods-weather-.html

Meteorological tropics have expanded by about 1 to 3 deg latitude
(or 70 to 200 miles) since the early 1970s

Copyright © 2017 University of Maryland.
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The Ozone Hole may be responsible for tropical widening
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FIG. 2. Ensemble-mean trends in DJIF HC edge for GEOSCCM
ALL-forcing (black) and SST/GHG-only (red) integrations. Solid
lines show trends for 1980-99 and dashed lines show trends for

1980-2009.

Model run with all forcings including ozone hole (black line),
agrees better with data (no shown) than model forced only by

Copyright © 2017 University of Maryland.

SST and GHGs (red line)

Waugh et al., J Climate, 2015
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Air-sea CO; flux (PgCiyr)

The Ozone Hole may have lead to increased ventilation
of CO, from southern ocean
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(b) Integrated air to sea COx flux (south of 40°S) showing stratospheric ozone depletion (Oshole) significantly reduces CO»
uptake (relative to Osclim), and is strongly correlated with changes in ApCO..

Lenton et al.,GRL, 2009

As ozone depletion occurs:

The positive phase of the southern annular mode (SAM) increases,

causing Antarctic surface westerlies to intensify, resulting in
increased ventilation of CO, from southern ocean

Copyright © 2017 University of Maryland.
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Uptake of Atmospheric CO, by Oceans
— Solubility Pump:
a) More CO, can dissolve in cold polar waters than in warm equatorial
waters. As major ocean currents (e.g. the Gulf Stream) move waters
from tropics to the poles, they are cooled and take up atmospheric CO,
b) Deep water forms at high latitude. As deep water sinks, ocean carbon (2CO,)
accumulated at the surface is moved to the deep ocean interior.

— Biological Pump:
a) Ocean biology limited by availability of nutrients such as NO;~, PO,,
and Fe?* & Fe3* . Ocean biology is never carbon limited.

b) Detrital material “rains” from surface to deep waters, contributing to
higher CO, in intermediate and deep waters

. GreatOcean|Conveyor Belt \

In Lenton et al. al. model, elevated oceanic CO,
l is returned to the atmosphere due to stronger winds,
which leads to more ocean turbulence ...

all due to the Antarctic ozone hole!

Lecture 5

http://science.nasa.gov/headlines/y2004/05mar arctic.htm
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Declining Arctic Sea Ice: Canary of Climate Change?

Average Monthly Arctic Sea Ice Extent
September 1979 - 2016
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http://nsidc.org/arcticseaicenews/files/2016/10/monthly ice 09 NH.png
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Declining Arctic Sea Ice: Canary of Climate Change?

September 2016 Arctic sea ice minimum extent was 911,000 square miles (or 2.4 million sq km)
below the 1981-2010 average, shown as the gold line.

https://svs.qgsfc.nasa.qov/12277
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Antarctic Sea Ice: Little To No Change

Antarctic Sea Ice Extent
(Area of ocean with at least 15% sea ice)
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Antarctic Sea Ice: Little To No Change: Until Very Recently

Deviation in Sea lce Extent (x 1 million km?)

" 1981 1985 1989 1993 1997 2001 2005 2009 2013 2017

1981 1985 1989 1993 1997 2001 2005 2009 2013 2017

1981 1985 1989 1993 1997 2001 2005 2009 2013 2017

Info above only a few weeks old:
https://www.nasa.gov/feature/goddard/2017/sea-ice-extent-sinks-to-record-lows-at-both-poles
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Antarctic Land Ice, Mass Balance: Rising, Rising

WA1 -97
WA2 472

1992-2001 »7En+136 || 2003-2008
225 135 225 135
e
-4.80 -3.20 -1.60 0 1.60 3.20 480 -4.80 -3.20 -1.60 0 1.60 3.20 4.80
dM/dt (Gta' (100 km)2) dM/dt (Gt a' (100 km)2)

Great summary of current issues wrt to Antarctic Ice Mass at:
https://www.carbonbrief.org/ga-is-antarctica-gaining-or-losing-ice
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Chemistry Climate Coupling

CCMs (chemistry climate models): developed to quantify impacts of
climate change on stratospheric ozone and
impacts of ozone depletion/recovery on climate:
As GHGs rise:
1. Brewer-Dobson circulation predicted to accelerate leading to:

a) less ozone in tropical lower stratosphere (“permanent depletion™)
b) more ozone in mid-latitude lower stratosphere (“super recovery”)

2. Upper stratosphere cools, slowing down rate limiting steps for ozone
loss and therefore leading to “super recovery”
3. Eventually, CH, and N,O will drive future levels of ozone

Data analysis suggests “coldest Arctic winters getting colder”:
1. Possibly due to rising GHGs
2. Not represented by CCMs

As Antarctic ozone depletion occurred:

The positive phase of the southern annular mode (SAM) increases,
causing Antarctic surface westerlies to intensify, resulting in:

1. Cooling of Antarctic continent

2. Increased ventilation of CO, from southern ocean (bad for climate)
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