
VI. STRATOSPHERIC OZONE IN THE FUTURE

Q19: How will recovery of the ozone layer be identified?

Scientists expect to identify the recovery of the ozone layer with detailed ozone measurements in the atmosphere and with global models of ozone amounts. Increases in global ozone and reductions in the extent and severity of the Antarctic "ozone hole" will be important factors in gauging ozone recovery. Natural variations in ozone amounts will limit how soon recovery can be detected with future ozone measurements.

Recovery process. Identifying the recovery of the ozone layer from depletion associated with halogen gases will rely on comparisons of the latest ozone values with values measured in the past. Because of its importance, ozone will likely be measured continuously in the future using a variety of techniques and measurement platforms (see Q5). Atmospheric computer models will be used to predict future abundances of ozone and attribute observed changes to ozone-depleting gases and other factors.

The recovery process is schematically shown for *global* ozone in Figure Q19-1. Ozone has declined from pre-1980 amounts due to past increases in halogen gases in the stratosphere (see Q16). In the future, as the overall decline in these gases continues in response to Montreal Protocol provisions, global ozone is expected to recover, approaching or exceeding pre-1980 values (see Q20). Ozone recovery attributable to decreases in ozone-depleting gases can be described, in general, as a process

Figure Q19-1. Recovery stages of global ozone. Significant ozone depletion from the release of ozone-depleting gases in human activities first became recognized in the 1980s. The Montreal Protocol provisions are expected to further reduce and eliminate these gases in the atmosphere in the coming decades, thereby leading to the return of ozone amounts to near pre-1980 values. The timeline of the recovery process is schematically illustrated with three stages identified. The large uncertainty range illustrates natural ozone variability in the past and potential uncertainties in global model projections of future ozone amounts. When ozone reaches the full recovery stage, global ozone values may be above or below pre-1980 values, depending on other changes in the atmosphere (see Q20).

TWENTY QUESTIONS: 2006 UPDATE

involving three stages:

- (1) The **initial slowing of ozone decline,** identified as the occurrence of a statistically significant reduction in the rate of decline in ozone.
- (2) The **onset of ozone increases (turnaround),** identified as the occurrence of statistically significant increases in ozone above previous minimum values
- (3) The full recovery of ozone from ozone-depleting gases, identified as when ozone is no longer significantly affected by ozone-depleting gases from human activities.

Each recovery stage is noted in Figure Q19-1. The red line and shaded region in the figure indicate the expected average value and the uncertainty range, respectively, in global ozone amounts. The large uncertainty range illustrates natural ozone variability in the past and potential uncertainties in global model projections of future ozone amounts.

In the full recovery of global ozone, the milestone of the return of ozone to pre-1980 levels is considered important because prior to 1980 ozone was not significantly affected by human activities. As a consequence, this milestone is useful, for example, to gauge when the adverse impacts of enhanced surface ultraviolet (UV) radiation on human health and ecosystems caused by ozone-depleting substances are likely to become negligible. The uncertainty range in model results indicates that ozone amounts may be below or above pre-1980 values when ozone has fully recovered from the effects of ozone-depleting gases from human activities (see Q20). The wide range of uncertainty for global ozone in the final stage of recovery represents, in part, the difficulty in accurately forecasting the effects of future changes in climate and atmospheric composition on the abundance of ozone (see Q20).

Natural factors. Stratospheric ozone is influenced by two important natural factors, namely, changes in the output of the Sun and volcanic eruptions (see Q14). Evaluations of ozone recovery include the effects of these natural factors. The solar effect on ozone is expected to be predictable based on the well-established 11-year cycle of solar output. The uncertainty range in Figure Q19-1 includes solar changes. Volcanic eruptions are particularly important because they enhance ozone depletion caused by reactive halogen gases, but cannot be predicted. The occurrence of a large volcanic eruption in the next decades when effective stratospheric chlorine levels are still high (see Figure Q16-1) may obscure progress in overall ozone recovery by temporarily increasing ozone depletion. The natural variation of ozone amounts also limits how easily small improvements in ozone abundances can be detected.

Q20: When is the ozone layer expected to recover?

Substantial recovery of the ozone layer is expected near the middle of the 21st century, assuming global compliance with the Montreal Protocol. Recovery will occur as chlorine- and bromine-containing gases that cause ozone depletion decrease in the coming decades under the provisions of the Protocol. However, the influence of changes in climate and other atmospheric parameters could accelerate or delay ozone recovery, and volcanic eruptions in the next decades could temporarily reduce ozone amounts for several years.

Halogen source gas reductions. Ozone depletion caused by human-produced chlorine and bromine gases is expected to gradually disappear by about the middle of the 21st century as the abundances of these gases decline in the stratosphere. The decline in *effective stratospheric* chlorine will follow the reductions in emissions that are expected to continue under the provisions of the Montreal Protocol and its Adjustments and Amendments (see Figure Q16-1). The emission reductions are based on the assumption of full compliance by the developed and developing nations of the world. The slowing of increases in atmospheric abundances and the initial decline of several halogen gases have already been observed (see Figure O16-1). One gas, methyl chloroform, has already decreased by about 90% from its peak value. Natural chemical and transport processes limit the rate at which halogen gases are removed from the stratosphere. The

atmospheric lifetimes of the halogen source gases range up to 100 years (see Table Q7-1). Chlorofluorocarbon-12 (CFC-12), with its 100-year lifetime, will require about 200 to 300 years before it is removed (less than 5% remaining) from the atmosphere (see Figure Q16-1). At midlatitudes, effective stratospheric chlorine is not expected to reach pre-1980 values until about 2050.

Ozone projections. Computer models of the atmosphere are used to assess past changes in the global ozone distribution and to project future changes. Two important measures of ozone considered by scientists are global total ozone averaged between 60°N and 60°S latitudes, and minimum ozone values in the Antarctic "ozone hole." Both measures show ongoing ozone depletion that began in the 1980s (see Figure Q20-1). The model projections indicate that for 60°N-60°S total ozone, the first two stages of recovery (slowing of the decline and turnaround

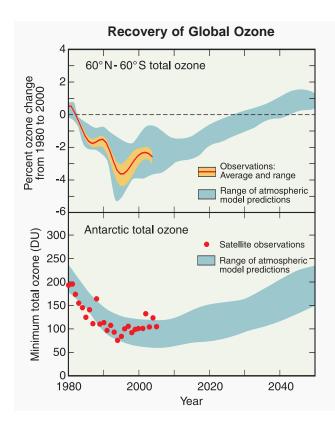


Figure Q20-1. Global ozone recovery predictions. Observed values of midlatitude total ozone (top panel) and September-October minimum total ozone values, over Antarctica (bottom panel) have decreased beginning in the early 1980s. As halogen source gas emissions decrease in the 21st century, ozone values are expected to recover by increasing toward pre-1980 values. Atmospheric computer models that account for changes in halogen gases and other atmospheric parameters are used to predict how ozone amounts will increase. These model results show that full recovery is expected in midlatitudes by 2050, or perhaps earlier. Recovery in the Antarctic will occur somewhat later. The range of model projections comes from the use of several different models of the future atmosphere.

TWENTY QUESTIONS: 2006 UPDATE

(see Q19)) will be reached before 2020. Full recovery, with ozone reaching or exceeding pre-1980 values, is expected to occur by the middle of the 21st century. The range of projections comes from several computer models of the atmosphere. Some of these models indicate that recovery of 60°N-60°S total ozone may come well before midcentury.

Models predict that Antarctic ozone depletion will also reach the first two stages of recovery by 2020, but somewhat more slowly than 60°N-60°S total ozone. Full recovery could occur by mid-century but some models show later recovery, between 2060 and 2070. Declines in effective stratospheric chlorine amounts will occur later over the Antarctic than at lower latitudes because air in the Antarctic stratosphere is older than air found at lower latitudes. As a result, reductions in halogen loading to pre-1980 values will occur 10-15 years later in the Antarctic stratosphere than in the midlatitude stratosphere.

A different atmosphere in 2050. By the middle of the 21st century, halogen amounts in the stratosphere are expected to be similar to those present in 1980 before the onset of significant ozone depletion (see Figure Q16-1). However, climate and other atmospheric factors will not be the same in 2050 as in 1980, and this could cause ozone abundances in 2050 to be somewhat different from those observed in 1980. Stratospheric ozone abundances are affected by a number of natural and human-caused factors in addition to the atmospheric abundance of halogen gases. Important examples are stratospheric temperatures and air motions, volcanic eruptions, solar activity, and changes in atmospheric composition. Separating the effects of these factors is challenging because of the complexity of atmospheric processes affecting ozone.

The ozone recovery projections in Figures Q19-1 and Q20-1 attempt to take these various factors into account.

For example, since 1980 human activities have increased the atmospheric abundance of important greenhouse gases, including carbon dioxide, methane, and nitrous oxide. Other international assessments have shown that the accumulation of these gases is linked to the warmer surface temperatures and lower stratospheric temperatures observed within recent decades. Warmer surface temperatures could change the emission rates of naturally occurring halogen source gases. Lower temperatures in the upper stratosphere (at about 40 kilometers (25 miles) altitude) accelerate ozone recovery because ozone destruction reactions proceed at a slower rate. In contrast, reduced temperatures in the polar lower stratosphere during winter might increase the occurrence of polar stratospheric clouds (PSCs) and, therefore, enhance chemical ozone destruction (see Q10). Further increases of stratospheric water vapor, such as those that have occurred over the last two decades, could also increase PSC occurrences and associated ozone destruction. Therefore, a cooler, wetter polar stratosphere could delay polar ozone recovery beyond what would be predicted for the 1980 atmosphere. Increased abundances of methane and nitrous oxide due to human activities also cause some change in the overall balance of the chemical production and destruction of global stratospheric ozone. Finally, one outcome that cannot be included precisely in models is the occurrence of one or more large volcanic eruptions in the coming decades. Large eruptions would increase stratospheric sulfate particles for several years, temporarily reducing global ozone amounts (see Q14).

As a consequence of these potential changes, the return of effective stratospheric chlorine and ozone to pre-1980 levels may not occur at the same time. In some regions of the stratosphere, ozone may remain below pre-1980 values after effective chlorine has declined to pre-1980 levels.