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Admission Ticket Lecture 10

According to Section 2.6 of Chemistry in Context:
a) what is the upper limit for photodissociation of O,

b) what is the classification of this type of radiation?

¢) how damaging is this radiation and would it be a problem, for humans to be
exposed to this type of radiation?

According to Section 2.6 of Chemistry in Context:
a) what is the upper limit for photodissociation of O4

b) what is the classification of this type of radiation?

¢) how damaging is this radiation and would it be a problem, for humans to be
exposed to this type of radiation?

Figure 2.12 of the Warneck reading shows the photodissocation frequency of O, and O;
termed J,, and Jo; as a function of altitude. An altitude of 15 km corresponds to Earth's
upper troposphere. And, the lifetime for loss by dissociation is given by the reciprocal of
the photodissociation frequency.

Calculatethe lifetimes for loss of O, and for loss of O, by photodissociation, for the upper
troposphere, in units that you can easily conceptualize. Then, for each molecule, state
whether you think the gas will be lost by photodissociation in Earth's upper troposphere.
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Admission Ticket Lecture 10
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According to Section 2.6 of Chemistry in Context:
a) what is the upper limit for photodissociation of O,

b) what is the classification of this type of radiation?
¢) how damaging is this radiation and would it be a problem, for humans to be exposed to this

type of radiation?
0O, protects us even more so than O;
According to Section 2.6 of Chemistry in Context:
a) what is the upper limit for photodissociation of O,

b) what is the classification of this type of radiation?
¢) how damaging is this radiation and would it be a problem, for humans to be exposed to this

type of radiation?
When we examine skin cancer and ozone depletion, it is all about UV-B radiation.
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Admission Ticket Lecture 10

Figure 2.12 of the Warneck reading shows the photodissocation frequency of O, and O,
termed Jo, and Jo; as a function of altitude. An altitude of 15 km corresponds to Earth's
upper troposphere. And, the lifetime for loss by dissociation is given by the reciprocal of
the photodissociation frequency.

Calculatethe lifetimes for loss of O, and for loss of O3 by photodissociation, for the upper
troposphere, in units that you can easily conceptualize. Then, for each molecule, state
whether you think the gas will be lost by photodissociation in Earth's upper troposphere.
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Skin Cancer versus Time

According to calculations, a given percent decrease in stratospheric ozone is expected to
increase the biological damage done by UV radiation by twice that percentage. For example,
from a 6% decrease in stratospheric ozone we predict a 12% rise in skin cancer, especially the
more easily treated forms such as basal cell and squamous cell carcinomas (non-melanoma)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction o display. Page 83, ChemlStry in Contexi
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Skin Cancer versus Time, Update

Melanoma of the Skin, Both Sexes
Joinpoint Analyses for Whites and Blacks from 1975-2013
and for Asian/Pacific Islanders, American Indians/Alaska Natives and Hispanics from 1992-2013
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https://seer.cancer.qov/csr/1975 2013/results merged/topic_race ethnicity.pdf
SEER: Surveillance, Epidemiology, and End Results Program of the National Cancer Institute.
As far as we can tell, census data is used to determine ethnicity.
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Relationship Between UV and Column Ozone
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Fig. 2. Dependence of erythemal ultraviolet (UV) radiation at the Earth’s
surface on atmospheric ozone, measured on cloud-free days at various loca-
tions, at fixed solar zenith angles. Legend: South Pole [8]; Mauna Loa,
Hawaii [9]; Lauder, New Zealand [10]; Thessaloniki, Greece (updated
from Ref. [11]); Garmisch, Germany [12]; and Toronto, Canada (updated
from Ref. [13]).

Madronich et al., J. of Photochemistry and Photobiology B, Vol. 46, 5-19, 1998.
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Relationship Between Cancer and UV
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Scotto and Fraumeni, Cancer Epidemiology, W. B. Saunders and Co, Philadelphia, 1982.
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 Motivation for Today’s Lecture:
a) How does atmosphere go from this: to this ?
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GURE 3.3 Solar spectral actinic flux (photons cm™ s™' nm™") at various altitudes and at the
Earth’s surface (DeMore et al., 1994).
From DeMore et al., Chemical Kinetics and Photochemical From Seinfeld and Pandis, Atmospheric Chemistry and Physics, 1998.
Data for Use in Stratospheric Modeling, Evaluation No. 11,
1994.
b) Biological Effects of UV Radiation
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Energetics of Photolysis
O;+hv—> O('D) + O,
hv represents a photon with specific energy.

Let’s examine enthalpy of this reaction:

33.9 kcal/mole 104.7 kcal/mole 22.5 kcal/mole

O; + hv —» O('D) + O,('A;) AEnthalpy =
Photon Energy:

he 3 hc
8 = max — —————————
A = AEnthalpy
For O, photo-dissociating to O('D):
P hc  2.85x10*kcal/mole nm _ ~
"™ AEnthalpy AEnthalpy

Copyright © 2019 University of Maryland.
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Energetics of Photodissociation
O; +hv — O('D) + Oy('A,)  AEnthalpy = kcal/mole A . = nm
O; +hv — O(P) + O,(’Z,)  AEnthalpy = 25.7 kcal/mole %, = nm

Atomic oxygen: (Note: you will not be “responsible” for the material below on any exam ©)

Ground state — two unpaired electrons in the 2p orbitals: (1s)?(2s)?(2p,)?(2p,)'(2p;)"
Called °P:
“3” represents 2S+1, where S is spin of all of the unpaired electrons.
There are 2 unpaired electrons, each with spin of 12
Hence, S = 1 and 25+1 = 3 < spin angular momentum
P represents orbital angular momentum, found from an electron diagram of filled orbitals:
(1s)2 (28 (2p)*

around state: A=+1+1+0-1=1 A0 1L
+1 0 -1

Excited state — one electron moves from 2p, to 2p, : (15)%(2s)?(2p4)?(2p,)?
Called 'D:
“1” represents 2S+1, where S is spin of all of the unpaired electrons.
There are no unpaired electrons!
Hence, S = 0 and 25+1 = 1 <= spin angular momentum
D represents orbital angular momentum, found from an electron diagram of filled orbitals:

Lo | (5]

(1sp (25  (2p)* Ao 1 |2 3
excited state [ ] A=+1+1+0+0=2 T — P D F
+1 0 -1
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Atmospheric Radiation

* Solar irradiance (downwelling) at top of atmosphere occurs at wavelengths
between ~200 and 2000 nm (~5750 K “black body” temperature)

(a)
18,
Panel (a) : Curves of black-body energy versus wavelength
T 57150 K 245K for 5750 K (Sun’s approximate temperature) and
for 245 K (Earth’s mean temperature).
The curves are drawn with equal area since, integrated over
1/ the entire Earth at the top of the atmosphere,
(b) 01 1 10 - /Hm the solar (downwelling) and terrestrial (upwelling) fluxes
[ e o i T _— ..1—!—20 must be equal.
& 10 40— . . .
= B e Panel (b): absorption by atmospheric gases for a clear vertical
B o ] column of the atmosphere (1.0 represents complete absorption).
0, 0O, 0, H,0 CO 0, CO, H,0 .
’ s ZHZO i g 0 From Houghton, Physics of Atmospheres, 1991

* Absorption and photodissociation in the UV occurs due to changes in the electronic
state (orbital configuration) of molecules

Copyright © 2019 University of Maryland.
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Absorption Cross Section of O,
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From Brasseur & Solomon, Aeronomy of the Middle Atmosphere, 1986

* O, can not dissociate longward of ~250 nm
+ All absorption shown above is dissociative (e.g., leads to production of two O atoms)

* Structure in the O, cross section is related to whether the initial transition involves

an unbound electronic state (smooth) or involves a specific vibrational level of an
electronic state (banded, due to requirement of specific quanta of energy)

Copyright © 2019 University of Maryland.
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Beer-Lambert Law

F(z,\) = Froa (A) €774 (TOA : Top of Atmosphere)

where:

T(z, \)= m J-G L [Cldz"  (t: optical depth)

F :solar irradiance (photons/cm?/sec)

o, : absorption cross section (cm?/molecule)

C : concentration of absorbing gas (molecules/cm?)

m : ratio of slant path to vertical path, equal to 1/cos(8) for 8 < ~75°
0 : solar zenith angle

Governs basics of radiative transfer in the UV and near IR regions

Copyright © 2019 University of Maryland.
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Photolysis Frequency

For a specific spectral interval, the photolysis frequency (partial J value) of a gas
is given by the product of its absorption cross section and the solar irradiance:

Jaas(z,A) = Quantum_Yield(X) 6, (A, T) F(z,1)

Units: s ! nm™!

gas

The total photolysis frequency (J value) is found by integrating J,,((z,1) over
all wavelengths for which the gas photodissociates:
2

J (@)= j J e (z,0) dA

; Units: s

‘min

: dO :
Rate of Reaction = dt3 = —J [0,]; Unitsof J are s

More precisely, calculations of photolysis frequencies consider the “spectral actinic flux”,
which represents the amount of available photons integrated over all angles, rather than
“solar irradiance”. These two quantities differ because of scattering of solar radiation by
gases and aerosols, and reflection of radiation by clouds and the surface.

Copyright © 2019 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.



Optical Depth of O, Absorption
Recall the Beer-Lambert Law:

F(z,A) = Fros (A) €77 (TOA : Top of Atmosphere)

where:

©(z, )= m jg L [C1dZ’ (t: optical depth)
Also: ’

0

J. [0,]dz' ~ 4x10%* molecules/cm’
0

O, Optical Depth for 6 = 0°, z=0 km

Oy (€M?) T (0km) e (0km)

Schumann-Runge Continuum
Schumann-Runge Bands

Herzberg Continuum

Copyright © 2019 University of Maryland.
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Photolysis Frequency of O,
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Figure 4.31, Brasseur and Solomon
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Where Does Optical Depth = 1.0 for O, ?

Wz, M) = m Taﬁ [0,]dZ’

24 _-z/H
~o, m4x10 e”

Setting T = 1 and re-arranging gives:

z=H In (o, -m -4 x10%)

Altitude where T =1 (for 6 = 0°)

Schumann-Runge Continuum
Schumann-Runge Bands

Herzberg Continuum

1 07] 7
1020

3x 1023

10—23

Onax (M%) Z ((km)
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Absorption Cross Section of Oy
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Table 4.6 Theoretical limits corresponding
to different photolysis products (nm).

oz(azg) Oz(lAg) 02(lzg+ ) 0,(°8,+)
1180 590 460 230
410 310 260 167
234 196 179 129

0,%8))
170
150
108

From Brasseur & Solomon, Aeronomy of the Middle Atmosphere, 1986
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Optical Depth of O5Absorption

A typical mid-latitude column abundance for O, is 300 Dobson units (DU):

1 DU =2.687 x 10'° molecules/cm?; 300 DU = 8 x 10!® molecules/cm?

Aside:
side ColumnO, 8x10"

o A o 10E 0.4 parts per million = Ozoneis a trace species !
olumn Air  2x

O, Optical Depth for 6 = 0°, z=0 km

(cm?) Tt (0km) et (0km O; Column, t=1.0

Gmax

Hartley
(~220 to 280 nm)

Huggins
(~310 to 330 nm)
Chappuis
(~500 to 700 nm)

Copyright © 2019 University of Maryland. 21
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Solar Spectral Actinic Flux

130 ATMOSPHERIC PHOTOCHEMISTRY AND CHEMICAL KINETICS

O, Huggins & Chappuis
10]5 15 Huggins: from ~310 to ~330 nm, © = 1 @ Ground
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FIGURE 6. Solar spectral actinic flux (photons cm= s~! nm™') at Earths surface (DeMo]  Oy: o, peak @ 250 nm, 7= 1 @ ~40 km
the top of Earth’s atmosphere. " N
From DeMore et al., Chemical Kinetics and Photochemical From Seinfeld and Pandis, Atmospheric Chemistry and Physics, 1998.
Data for Use in Stratospheric Modeling, Evaluation No. 11,
1994.
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Photodissociation Frequencies
Next goal is to understand:
10yrs 1year Imonth 1day  1hour 1min 1s
100 T 1 T 1 T | T 1 T | 1 1
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80}~ M0 b
NO, 10?
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30 G i
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FIGURE 4.58 Photodissociation frequencies for numerous important atmospheric species.
From Brasseur & Solomon, Aeronomy of the Middle Atmosphere, 1986
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NO, Photolysis

The majority of NO, photolysis occurs longward of 300 nm, where the atmosphere
is optically thin with respect to absorption by O; and O,:

ABSORPTION CROSS SECTION(10™%&m?)

leading to a value for J, that is nearly independent of height and SZA:
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NO, Photolysis
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The production of O('D) from photolysis of O; occurs shortward of 320 nm, where the
atmosphere is basically optically thick with respect to absorption by O;:
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O; - O('D) Photolysis
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O; — O(®P) Photolysis
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The production of O(*P) from photolysis of O; occurs mainly longward of 500 nm, where the
atmosphere is optically thin with respect to absorption by O;:
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leading to a value for J;_,o3p) that is essentially independent of height and SZA:
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O; — O(®P) Photolysis
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Biological Effects of UV Radiation

Figure 2.11, Chemistry in Context
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Table 2.4 Types of UV Radiation

Type Wavelength Relative Energy Comments
UV-A 320-400 nm Lowest energy Least damaging and
reaches the Earth'’s surface
in greatest amount
UV-B 280-320 nm Higher energy More damaging than UV-A
than UV-A but but less damaging than
less energetic UV-C. Most UV-B is
than UV-C absorbed by O; in the
stratosphere
UV-C 200-280 nm Highest energy Most damaging but not a

problem because it is
totally absorbed by O, and
Os in the stratosphere
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Biological Effects of UV Radiation

Humans are:
* strongly affected by exposure to UV-C radiation
(100 to 280 nm)

i » moderately affected by exposure to UV-B radiation
(280 to 315 nm)

F(A)<B(L)

Relative units
o
o
T

348 DU

» weakly affected by exposure to UV-A radiation
(315 to 400 nm)

http://www.who.int/uv/uv_and_health/en

0.0 bt i
280 290 300 310 320 330 340 350

Wavelength [nm]

Fig. 1. Biologically active UV radiation. The overlap between the spectral

irradiance £(A) and the erythemal action spectrum B(A) given by McKinlay From Mandronich et al.. J. Phomchemistyy and Photobiolggy

and Diffey [6] shows the spectrum of biologically active radiation, ’ ’
vol. 46, pg. 5, 1998

F(A)B(A). The area under the product function F(A)B(A) is the biologi-
cally active dose rate. For a total ozone column of 348 DU.

The “biologically active dose rate” maximizes in the UV-B region

at ~305 nm, where 6,;=3 x 10® cm? = 1 (0 km)=2.4
(for O; column= 300 DU)
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