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Ross Salawitch & Walter Tribett 

Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2019

Lecture 11
14 March 2019

Introduction to Chemical Kinetics
AOSC / CHEM 433 & AOSC 633

Goals for today:
• Overview of Chemical Kinetics in the context of Atmospheric Chemistry
• Physical meaning of rate expression numbers
• Description of different types of reactions 
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• Reading
– Chapter 3, “Chemical Kinetics”, from Photochemistry of Planetary

Atmospheres, Yung and DeMore.

• Additional material for interested students:

– Chapter 9, “Chemical Kinetics”, from Introduction to Atmospheric Chemistry, Jacob.    
Short, easy to read overview

– Chapter 2, “Chemical Concepts in the Atmosphere”, Aeronomy of the Middle 
Atmosphere, Brasseur and Solomon. Treatment of  partition functions and quantum 
effects relevant to atmospheric  chemistry

– Chapter 28, “Chemical Kinetics I: Rate Laws”, Physical Chemistry: A
Molecular Approach, McQuarrie and Simon.  Rigorous treatment of kinetics from a

“pchem” point of view
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Types of Reactions

Reading:

1. Unimolecular
A B + C

2. Bimolecular
A + B C + D

3.  Termolecular
A + B + M C + M

Of course, reactions must balance in a “stoichiometric” manner
photochemical reactions break and reform chemical bonds;

they do not rearrange protons
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Types of Reactions

Atmospheric Chemistry:

1. Unimolecular
1a.  Photolysis :  O3 + photon O + O2

1b.  Heterogeneous: N2O5 + H2O (aqueous) 2 HONO2

1c.  Thermal Decomposition:  ClOOCl + heat ClO + ClO

2. Bimolecular
2a. Gas Phase: OH + CH4 CH3 + H2O
2b.  Heterogenous: ClONO2 + HCl (adsorbed) Cl2 + HONO2

3.  Termolecular
3.  OH + NO2 + M HONO2 + M

HONO2 same as HNO3 (nitric acid)
We’ll use both notations interchangeably
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Importance of Radicals

• With a few exceptions, the only reactions between molecules that
proceed at appreciable rates are those involving at least one radical

• Radicals require significant energy to form: a bond must be broken

• Radical formation is tied to absorption of photons that “photodissociate”
a compound, leading to radical formation

Initiation
O2 + photon O + O

Termination
OH + HO2 H2O + O2

Propagation
O + O2 + M O3 + M

O3 + photon O(1D) +O2
O(1D) + H2O OH +OH

OH + O3 HO2 + O2

HO2 + O OH + O2
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Radicals

• Radicals: unpaired electron in outer valence shell

• Is a species a radical?
Count the electrons:

HNO3 : 1 + 7 + 3 8 = 32 electrons no
NO : 7 + 8 = 15 electrons yes
NO2 : 23 electrons yes
Other radicals: OH, HO2, Cl, Br, ClO, BrO

• Important exception:
Atomic oxygen : 

two unpaired electrons in its “triplet” ground state O(3P) (1s22s2 2px
2 2py

1 2pz
1)

therefore a biradical  : we’ll call O(3P) a radical

What is O(1D) ?
higher energy “singlet” state with all electrons paired but last orbital empty:

O(1D) (1s22s2 2px
2 2py

2 )

O(1D) is even more reactive than O(3P) : it is hungry for more electrons !
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Admission Ticket Lecture 11
Gibbs Free energy involves both enthalpy and entropy.  Briefly describe 
the relative roles of the change in enthalpy and entropy in affecting the 
equilibrium state of a chemical system.

Under what conditions will enthalpy dominate the equilibrium state?

Under what conditions will entropy dominate the equilibrium state?

Briefly: why is kinetic information needed, in addition to thermodynamic 
information, to quantity our understanding of atmospheric chemistry?

Kinetic information is needed because thermodynamic information “doesn’t
give a clue to the time constant needed for equilibrium to be reached”
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Bimolecular Gas Phase Reactions

OH    +    CH4 CH3 +   H2O

8.9 kcal/mole
–57.8 kcal/mole–17.8 kcal/mole

Enthalpy = –13.8 kcal/mole

35.1 kcal/mole

4
4

CHRate of Reaction = [OH][CH ]d k
dt

Exothermic !

Arrhenius  Expression for rate constant:

Yung and DeMore, Photochemistry of Planetary 
Atmospheres, Oxford, 1999.

R = 8.3143 ×107 erg / (K mole)
= 2.87 ×106 erg / ( K gm) for air

12 1775 / 3 12.45 10   cm  secTk e
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http://jpldataeval.jpl.nasa.gov (2015 Evaluation)
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4
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Copyright © 2019 University of Maryland. 
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 10

Bimolecular Gas Phase Reactions

OH    +    CH4 CH3 +   H2O

8.9 kcal/mole
–57.8 kcal/mole–17.8 kcal/mole

Enthalpy = –13.8 kcal/mole

35.1 kcal/mole

4
4

CHRate of Reaction = [OH][CH ]d k
dt

Exothermic !

Arrhenius  Expression for rate constant:

http://jpldataeval.jpl.nasa.gov (2015 Evaluation)

12 1775 / 3 12.45 10   cm  secTk e



Copyright © 2019 University of Maryland. 
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 11

Bimolecular Gas Phase Reactions
OH + CH4 CH3 + H2O

http://jpldataeval.jpl.nasa.gov (2015 Evaluation)

12 1775 / 3 12.45 10   cm  secTk e
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Bimolecular Gas Phase Reactions

IUPAC recommendation:
20 2.82 987 /

3 1

10    
         cm  sec

Tk T e

http://www.iupac-kinetic.ch.cam.ac.uk/datasheets/pdf/HOx_VOC1_HO_CH4.pdf
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Photolytic Production of OH

H2O + h H + OH MAX = 242 nm

Figure 4.11, Seinfeld and Pandis, 2006
(from DeMore et al., 1994)
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Bimolecular Production of OH

a. H2O + O(1D) OH + OH    Enthalpy = –28.1 kcal/mole

b. H2O + O(3P) OH + OH    Enthalpy =   17 kcal/mole     

c. H2 + O(1D) OH + H         Enthalpy = –43.7 kcal/mole 

d. H2 + O(3P) OH + H         Enthalpy =     1.4 kcal/mole 

ka = 1.63 10–10 e (60/T) cm3 s-1

kb = 0.0

kc = 1.1 10–10 cm3 s–1

kd = 1.6 10–11 e (–4570/T) cm3 s-1
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Bimolecular Production of OH

O(3P)

O(1D)

At surface, [O1 [O(3P)]
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13.3 kcal/mole 2 –32 kcal/mole–57.8 kcal/mole
Enthalpy = –19.5 kcal/mole

• Reaction is exothermic

• Gas phase rate is exceedingly slow

• Proceeds on surfaces (e.g., sulfate aerosols) because the ionic
state of H2O provides access to a reaction mechanism that is not
accessible in the gas phase

Heterogeneous Reactions “Pseudo Uni-Molecular”

HONO2 same as HNO3 (nitric acid)
We’ll use both notations interchangeably

N2O5 +  H2O (aqueous)  2 HONO2
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Heterogeneous Reactions “Pseudo Uni-Molecular”

N2O5 + H2O (aqueous) 2 HONO2

N2O5
1 Velocity erosol Surface Area per Unit Volume)
4

k

= sticking coefficient or reaction probability (dimensionless)

Velocity N2O5 = (8 k T / m) 1/2 = 1.45 104 ( T / 108 ) 1/2 cm/sec

Aerosol Surface Area per Unit Volume = 4 ra
2  Na

where 108 = Molecular Weight of N2O5
ra = radius of aerosol
Na = number density of aerosol

For this type of reaction:
will depend on temperature and aerosol type

does not depend on gas phase abundance of H2O
because, reacting surface is primarily composed of H2O

1
2 5Rate of Reaction = [N O ] ; Units of are sk k
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Heterogeneous Reactions “Pseudo Bi-molecular”

ClONO2 + HCl (adsorbed) Cl2 + HONO2

ClONO2
1 Velocity erosol Surface Area per Unit Volume)
4

k

= sticking coefficient or reaction probability (dimensionless)

Velocity ClONO2 = 1.45 104 ( T / 97.5 ) 1/2 cm/sec

For this type of reaction:
will depend on temperature and aerosol type

depends on partial pressure (e.g., gas phase abundance) of HCl
because, reacting surface is not primarily composed of HCl

Gas phase H2O >> gas phase N2O5
N2O5+H2O(aqueous) can  never deplete gas phase H2O           
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Heterogeneous Reactions
In all cases,  must be measured in the laboratory

Reaction probabilities given for various surface types, with formulations of various
degrees of complexity, in Section 5 of the JPL Data Evaluation.

Atmospheric Chemistry and Physics by Seinfeld and Pandis provides extensive treatment
of aqueous phase chemistry, properties of atmospheric aerosol, organic aerosols, etc.
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Thermal Decomposition

ClOOCl  + M ClO + ClO + M

REACTANTS PRODUCTS( ) / RT EQUILIBRIUMTHERMAL

FORMATION

G Gk e
k

G – Gibbs Free Energy  = H – T S

where H = enthalpy
T = temperature
S = entropy

See section 3.2, Chapter 3, Yung and DeMore, for an excellent “intuitive” discussion
of enthalpy, entropy, and Gibbs free energy

30.5 kcal/mole 2 24.3  kcal/mole
H = 18.1 kcal/mole

1
THERMAL THERMALRate of Reaction = ClOOCl] ; Units of are sk k
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Thermal Decomposition

ClOOCl  + M ClO + ClO + M

REACTANTS PRODUCTS( ) / RT EQUILIBRIUMTHERMAL

FORMATION

G Gk e
k

JPL Data Evaluation gives values of KEQUILBRIUM and kFORMATION

KEQ = 1.27 10-27 e(8744/T) cm-3

In equilibrium:

kTHERMAL [ClOOCl] = kFORMATION [ClO] [ClO]
where  kTHERMAL = kFORMATION KEQ

Equilibrium constants given in Section 3
of the JPL Data Evaluation.

30.5 kcal/mole 2 24.3  kcal/mole
H = 18.1 kcal/mole

• Energetically, system favors ClOOCl
• Entropically, system favors ClO & ClO

at low T, ClOOCl stable: energy wins !
at high T, ClOOCl unstable: entropy rules !


