Mid-Latitude Stratospheric Chemistry

AOSC/CHEM 433 & AOSC 633

Ross Salawitch & Walter Tribett

Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2019

Today:

- Importance of how a chemical cycle is completed wrt odd-oxygen loss
- · Role of halogens and aerosol loading on mid-latitude ozone
- Connection to recent research

Lecture 14 2 April 2019

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Announcements

• Problem Set #3 has been posted:

https://www.atmos.umd.edu/~rjs/class/spr2019/problem_sets/ACC_2019_ps03.pdf

and is due a week from today. Please get started early.

- No AT for Lecture 16, a week from today. Please try to complete the short reading.
- Students enrolled in 633 and those in 433 should turn in a few sentence description of their paper/project by next Tuesday:

https://myelms.umd.edu/courses/1256337/quizzes/1270627

	04/02	Pollution of Earth's Stratosphere: Mid-Latitude Ozone Depletion	Chemistry in Context, Sec 2.8, 2.9 (7 pages) WMO 2014 20 QAs (Q4, 6 to 9, 13 to 16) (29 pgs; note, Q8 & Q15 had also been assigned for Lec 02, so 22 pgs of new material)	<u>AT 14</u>	Lecture 14 Video	Quiz		Chapter 3.3. Stratospheric Ozone Depletion and Recovery (Sections 3.3.1, 3.3.2, 3.3.3, and 3.3.5)* <u>Click here for entire WMO</u> 2014 QAs
	04/04	Pollution of Earth's Stratosphere: Polar Ozone Depletion	Chemistry in Context, Sec 2.10, 2.11, 2.12 & 2.13 (Conc) (9pages) <u>WMO 2014 20 QAs</u> (Q10, 11, &12) (12 pages)	<u>AT 15</u>	Lecture 15 Video	Quiz		Chapter 3.3, Stratospheric Ozone Depletion and Recovery (Section 3.3.4)* Rex et al., 2006 Manney et al., 2011
	04/09	Pollution of Earth's Stratosphere: Ozone Recovery and Chemistry/Climate Interactions	WMO 2014 20 QAs (Q 20) (6 pages)	No AT Paper Description	Lecture 16 Video	Quiz	Problem Set 3 due today	Chapter 3.3. Stratospheric Ozone Depletion and Recovery (Section 3.3.6)* Oman et al., 2010 Revell et al., 2012

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Montreal Protocol and Various Amendments Have Banned Industrial Production of CFCs and Halons

Global Production of CFCs, Fig Q0-1, Update for 2019 QAs

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Montreal Protocol and Various Amendments Have Banned Industrial Production of CFCs and Halons

Figure Q15-1, WMO 2014 QAs

Montreal Protocol Has Banned Industrial Production of CFCs & Other ODS

Copyright © 2019 University of Maryland.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Montreal Protocol Had Banned Most Industrial Production of CFCs & Other ODS

The New York Times

In a High-Stakes Environmental Whodunit, Many Clues Point to China

Interviews, documents and advertisements collected by The New York Times and independent investigators indicate that a major source possibly the overwhelming one — is factories in China that have ignored a global ban and kept making or using the chemical, CFC-11, mostly to produce foam insulation for refrigerators and buildings.

"You had a choice: Choose the cheaper foam agent that's not so good for the environment, or the expensive one that's better for the environment," said Zhang Wenbo, owner of a refrigerator factory here in Xingfu, in Shandong Province, where he and many other small-scale manufacturers said that until recently, they had used CFC-11 widely to make foam insulation.

Billboards in Xingfu, China, promoting locally made refrigerators. The city has around 1,700 businesses involved in the production cooking and refrigeration equipment. Giles Sabeie for The New York Times

https://www.nytimes.com/2018/06/24/world/asia/china-ozone-cfc.html

Copyright © 2019 University of Maryland.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

7

Organic Halogens Versus Time

Chlorine Source Gases

Update for 2019 QAs

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

9

Ozone Depletion Potential and Halocarbons

Table Q7-1. Atmospheric Lifetimes and Ozone Depletion Potentials of some halogen source & HFC substitute gases.

Gas	Atmospheric Lifetime (years)	Ozone Depletion Potential (ODP) °		
Halogen source gases				
Chlorine gases ^e				
CFC-11	52	1		
CFC-12	102	0.73		
CFC-113	93	0.81		
Carbon tetrachloride (CCl ₄)	26	0.72		
HCFCs	1-18	0.01-0.10		
Methyl chloroform (CH ₃ CCl ₃)	5	0.14		
Methyl chloride (CH ₃ Cl)	0.9	0.015		
Very short-lived Cl-containing gases	less than 0.5	^{b, d} very low		
Bromine gases				
Halon-1301	72	15.2		
Halon-1211	16	6.9		
Methyl bromide (CH ₃ Br)	0.8	0.57		
Hydrofluorocarbons (HFCs)				
HFC-134a	14	0		
HFC-23	228	0		
HFC-143a	51	0		
HFC-125	31	0		
HFC-152a	1.6	0		
HFC-32	5.4	0		

continuous

global loss of O_3 due to unit mass emission of "*i*"

global loss of O₃ due to unit mass emission of CFC-11

$$\approx \frac{(\alpha \ n_{\rm Br} + n_{\rm Cl})}{3} \frac{\tau_i}{\tau_{\rm CFC-11}} \frac{MW_{\rm CFC-11}}{MW_i}$$
 continuous

where :

ODP (species "i") =

- τ is the global atmospheric lifetime
- MW is the molecular weight
- *n* is the number of chlorine or bromine atoms
- α is the effectiveness of ozone loss by bromine relative to ozone loss by chlorine

Ozone Depletion

According to Section 2.8 of Chemistry in Context, how much depletion of stratospheric ozone at mid-latitudes (60S to 60N) has occurred?

According to the Question 13 of the WMO/UNEP QAs, how much depletion of the Global Total Ozone layer has occurred?

Also, state whether your are either "good" or "concerned" with the different estimates for depletion of the ozone layer given in Question 13 of the WMO/UNEP QAs, compared to Section 28 of Chemistry in Context (i.e, your answer to the prior question).

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

 $[O_3]$ falls off with increasing altitude (high in stratosphere), at a rate determined by $[M]^{3/2}$, because:

 $[O_3]$ falls off with decreasing altitude (low in stratosphere) due to a rapid drop in J₁, reflecting:

Observed $[O_3] < Chapman [O_3]: why ?!?$

Lecture 9, Slide 5

Stratospheric Photochemistry: Odd Oxygen Loss By Families

After Osterman *et al.*, *GRL*, 24, 1107, 1997; Sen *et al.*, *JGR*, 103, 3571. 1998; Sen *et al.*, *JGR*, 104, 26653, 1999.

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

15

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Fairbanks, Alaska : Summer 1998

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

HO_{x} : OH and HO_{2}

OH and HO₂ are central to stratospheric and tropospheric photochemistry

HO_x : OH and HO_2

OH and HO₂ are central to stratospheric and tropospheric photochemistry

Rapid inner cycle:

HO₂ formation:

$$OH + O_3 \rightarrow HO_2 + O_2$$
 (1)
HO₂ loss:
 $HO_2 + NO \rightarrow OH + NO_2$ (2)
or $HO_2 + O \rightarrow OH + O_2$ (3)
or $HO_2 + O_3 \rightarrow OH + O_2 + O_2$ (4)
OH NO HO₂
 O_3, O

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

 HO_x : OH and HO_2

OH and HO₂ are central to stratospheric and tropospheric photochemistry

Rapid inner cycle:

HO₂ formation:

$$OH + O_3 \rightarrow HO_2 + O_2$$
 (1)
HO_loss:

 HO_2 loss:

$$HO_2 + NO \rightarrow OH + NO_2$$
 (2)

or
$$HO_2 + O \rightarrow OH + O_2$$
 (3)
or $HO_2 + O \rightarrow OH + O_2 + O$ (4)

or
$$HO_2 + O_3 \rightarrow OH + O_2 + O_2$$
 (4)

HO₂ loss step (2):

$$\begin{array}{c}
OM + O_3 \rightarrow HO_2 + O_2 \\
HO_2 + NO \rightarrow OM + NO_2
\end{array}$$
Net: O₃ + NO $\rightarrow O_2 + NO_2$
This is followed quickly by:
NO₂ + hv $\rightarrow NO + O$
Yielding final "net":
O₃ $\rightarrow O + O_2$

Null cycle

with respect to production & loss of odd oxygen

HO_x: OH and HO₂

OH and HO₂ are central to stratospheric and tropospheric photochemistry

Rapid inner cycle:

HO₂ formation:

$$OH + O_3 \rightarrow HO_2 + O_2$$
 (1)

HO₂ loss: HO₂ + NO \rightarrow OH + NO₂ (2) or HO₂ + O \rightarrow OH + O₂ (3)

or
$$HO_2 + O \rightarrow OH + O_2$$
 (3)
or $HO_2 + O_3 \rightarrow OH + O_2 + O_2$ (4)

HO₂ loss step (3): $OH + O_3 \rightarrow HO_2 + O_2$ HO₂ + O $\rightarrow OH + O_2$ Net: $O_3 + O \rightarrow O_2 + O_2$

HO₂ loss step (4):

$$\begin{array}{c} OH + O_3 \rightarrow HO_2 + O_2 \\ HO_2 + O_3 \rightarrow OH + O_2 + O_2 \\ \hline O_3 + O_3 \rightarrow O_2 + O_2 + O_2 \end{array}$$

Catalytic Ozone (Odd Oxygen) Loss Cycles

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

21

1

Odd Oxygen Loss - HO_x

$$\frac{d (\text{Odd Oxygen})}{dt} = -2 k_4 [\text{HO}_2][\text{O}_3] - 2 k_3 [\text{HO}_2][\text{O}] \qquad \text{Eq (7)}$$

The reactions:

$$\begin{array}{l} \mathrm{HO}_2 + \mathrm{O} & \rightarrow \mathrm{OH} + \mathrm{O}_2 & (3) \\ \mathrm{HO}_2 + \mathrm{O}_3 & \rightarrow \mathrm{OH} + \mathrm{O}_2 + \mathrm{O}_2 & (4) \end{array}$$

are <u>rate limiting steps</u> for O₃ loss by two catalytic cycles:

Cycle (1) Net : $O_3 + O \rightarrow 2 O_2$ Cycle (2) Net : $O_3 + O_3 \rightarrow 3 O_2$

As a convenient short hand, we consider HO₂ to be odd oxygen

Then:

clear now that reactions (3) and (4) each consume two odd oxygens at rates determined by $2 k_3 [HO_2] [O]$ and $2 k_4 [HO_2] [O_3]$

Odd Oxygen Loss - HO_x

At what altitudes will loss of ozone by these rate limiting steps be dominant?

$$\begin{array}{l} \mathrm{HO}_2 + \mathrm{O} \rightarrow \mathrm{OH} + \mathrm{O}_2 & (3) \\ \mathrm{HO}_2 + \mathrm{O}_3 \rightarrow \mathrm{OH} + \mathrm{O}_2 + \mathrm{O}_2 & (4) \end{array}$$

One dominates at low altitude, the other at high altitude \Rightarrow which is which ?!?

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

NO and NO₂ are central to stratospheric and tropospheric photochemistry

<u>Stratospheric</u> Production : $O^1D + N_2O \rightarrow NO + NO$

NO_x: NO and NO₂

NO and NO2 are central to stratospheric and tropospheric photochemistry

Rapid inner cycle:

NO₂ formation:
NO + O₃
$$\rightarrow$$
 NO₂ + O₂ (1)

NO₂ loss:

or $NO_2 + hv \rightarrow NO + O$ (2) $NO_2 + O \rightarrow NO + O_2$ (3) NO_2 loss step (2):

NO + O₃
$$\rightarrow$$
 NO₂ + O₂
NO₂ + hv \rightarrow NO + O
Net: O₃ + hv \rightarrow O + O₂

 NO_2 loss step (3):

NO + O₃
$$\rightarrow$$
 NO₂ + O₂
NO₂ + O \rightarrow NO + O₂
Net: O₃ + O \rightarrow 2 O₂

Can show:

$$\frac{dO_3}{dt} + \frac{dO}{dt} = \frac{d(Odd Oxygen)}{dt} = -2 k_3 [NO_2][O]$$

As a convenient short hand, we consider NO₂ to be odd oxygen

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

25

N₂O and NO_y

Loss of N_2O occurs mainly in the stratosphere due to: photolysis – main sink reaction with electronically excited $O(^1D)$ – minor sink

Minschwaner, Salawitch, and McElroy, JGR, 1993

The minor sink for N_2O loss has a path that results in "fixed nitrogen":

Lecture 6, Slide 37

 $N_2O + O(^1D) \rightarrow NO + NO$

Fixed nitrogen (NO_v) is crucial to stratospheric chemistry

Oxides of nitrogen catalyze loss of stratospheric O₃ & participate in a series of chemical reactions that affect partitioning of hydrogen and chlorine radicals, etc.

The minor sink for N₂O loss has a path that results in "fixed nitrogen":

 $N_2O + O(^1D) \rightarrow NO + NO$

Fixed nitrogen (NO_v) is crucial to stratospheric chemistry

Oxides of nitrogen catalyze loss of stratospheric O₃ & participate in a series of chemical reactions that affect partitioning of hydrogen and chlorine radicals, etc.

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Stratospheric O_3 difference in the 2090s found for a computer simulation run using N_2O from RCP 8.5 minus that of a simulation using N_2O from RCP 2.6

a) ozone loss in the middle & upper stratosphere by increasing the speed of NO and NO₂ (NO_x) mediated loss cycles.

b) speeds up the rate of OH+NO₂+M→HNO₃+M & CIO+NO₂+M→ CINO₃+M in the lowermost stratosphere, leading to slower ozone loss by these cycles & therefore more O₃ where these cycles dominate total loss of O₃

Computer models project stratospheric column O_3 will decline as N_2O rises

Lecture 6, Slide 38

CIO_x : CIO and CI

ClO is central to stratospheric photochemistry, at mid-latitudes and polar regions

Final sinks : HCI solubility & rainout (lowermost stratosphere)

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

29

CIO_{x} : CIO and CI

CIO is central to stratospheric photochemistry, at mid-latitudes and polar regions:

Rapid inner cycle:

ClO formation:	
$Cl + O_3 \rightarrow ClO + O_2$	(1)
ClO loss:	

	$ClO + NO \rightarrow Cl + NO_2$	(2)
or	$ClO + O \rightarrow Cl + O_2$	(3)

ClO loss step (2):				
	$Cl + O_3 \rightarrow ClO + O_2$			
($ClO + NO \rightarrow Cl + NO_2$			
Net:	$O_3 + NO \rightarrow NO_2 + O_2$			
Followed by:	$NO_2 + h\nu \rightarrow NO + O$			
Final net:	$O_3 + h\nu \rightarrow O + O_2$			

ClO loss step (3):

$$\begin{array}{ccc} Cl + O_3 & \rightarrow & ClO + O_2 \\ ClO + O & \rightarrow & Cl + O_2 \end{array}$$
Net: $O_2 + O & \rightarrow 2 O_2 \end{array}$

Can show:

$$\frac{dO_3}{dt} + \frac{dO}{dt} = \frac{d (Odd Oxygen)}{dt} = -2 k_3 [ClO][O]$$

As a convenient short hand, we consider CIO to be odd oxygen

Proof Halocarbons Reach The Stratosphere

Fig Q8-2, WMO 2014 QAs

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

31

Trends in Ozone, ~40 km

Figure 2-5, WMO/UNEP 2010

Trends in Ozone, ~40 km

Figure 2-5, WMO/UNEP 2010

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

33

Trends in Ozone vs Altitude

Bromine Source Gases

Update for 2019 QAs

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

• As NO₂ drops, CINO2 falls and CIO rises

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

37

After Salawitch et al., GRL, 2004.

Ozone responds to:

- a) rise and fall of chlorine
- b) volcanic perturbations to aerosol loading
- c) amount of bromine in lowermost stratosphere

Salawitch et al., GRL, 2005

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

39

Longstreth et al., J. of Photochemistry and Photobiology B, 46, 20-39, 1998.

See also Slaper *et al.*, Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements, *Nature*, *384*, 256–258, 1996, who state:

The no-restrictions and Montreal Protocol scenarios produce a runaway increase in skin cancer incidence, up to a quadrupling and doubling, respectively, by year 2100.