Pollution of Earth’s Stratosphere:
Ozone Recovery and Chemistry/Climate Coupling

AOSC /CHEM 433 & AOSC 633
Ross Salawitch & Walt Tribett

Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2019

Motivating questions:
a) How might climate change (future variations in temperature and / or
circulation) driven by rising GHGs affect stratospheric ozone?
b) Might climate at the surface be affected by stratospheric ozone?
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Announcements

Problem Set #3 due Thursday, 11 April, 2 pm

From Ross J. Salawitch 9 Reply %9 Reply All v~ Forward | (& Archive @) Junk [ Delete  More~
Subject AOSC/ CHEM 433 & AOSC 633 : P Set #3 <- another important message 4/7/2019, 10:45 AM
To atmospheric-chemistry-and-climate-2019@googlegroups.com fk, 20sc433-0101-spr19@coursemail.umd.edu #, chem433-0101-spri9@coursemail.un 1 more

Hi Everyone,

Another important message for Problem Set #3.

I had inadvertently overlooked the need to add the data sheet for HOx reactions to the JPL Kinetic tables needed to complete Question 2, Part C.
Please use 2.4 x 10713 ¢m? sec’! as the value of the rate constant of HO2 + HO2 -> H202 + 02 at the temperature of interest, for this problem.

| apologize for this oversight.

I have updated the JPL link, to include the HOx reactions. When | review the problem set at the review session a week from Monday, I'll go over
how the value of 2.4 x 10713 cm3 sec! is obtained for this reaction. The expression is a bit more complicated than those for other reactions, so
just as well that | am emailing folks the numerical value to use for kyg2.+no2 that should be used for Question 2.

Cheers,
Ross

From Ross ). Salawitch dr 9 Reply %9 ReplyAll |~ - Forward | (5 Archive ) Junk  [i] Delete = More v
Subject AOSC/ CHEM 433 & AOSC 633 : P Set #3 <- can turn in Thursday without penalty 4/8/2019, 1:20 PM

To atmospheric-chemistry-and-climate-2019@googlegroups.com #, aosc433-0101-spr19@coursemail.umd.edu #, chem433-0101-spri8@coursemail.umc 1 more

Hi Everyone,

I've decided to extend the due date for Problem Set #3 to Thurs, April 11, at 2 pm. At the start of class tomorrow, I'11
review the content of the recent emails I had sent regarding this problem set and answer any general questions. I'1ll also
be available after class tomorrow, and most of Wed, to help anyone who'd like to meet.

No penalty if turned in by 2 pm on Thursday. After this time, the late penalty goes into effect. Also, we can only
guarantee return of graded Problem Sets on Mon, 15 April for those turned in by 2 pm on Thurs, April 11.

I'11 also by in my office today from 2 to 3 pm, the Mon office hour.
Cheers,

Ross

Copyright © 2019 University of Maryland.
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Announcements

Problem Set #3 due Thursday, 11 April, 2 pm

Review of Problem Set #3 will be held Mon, 15 April, 5 pm in Room 2428

Second exam will be held Tues, 16 April, during normal class time

On Wed, 10 April, this hour long documentary will appear on PBS

Will show movie on Fri, 12 April, 6:30 pm for class if there is enough interest

Ozone Hole: How We Saved the Planet

Courtesy of Windfall Films/NASA

Premieres Wednesday. April 10, 2019
10:00-11:00 p.m. ET on PBS

New Documentary Tells the Remarkable Story of How Scientists Discovered the Deadly Hole in the Ozone - and the Even More
Remarkable Story of How the World's Leaders Came Together to Fix It

Copyright © 2019 University of Maryland.
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NASA DC-8
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Figure 5. The NASA DC-8 showing the instruments used in TC4 and their placement on the aircraft.

Table 6. DC-8 Instruments

Instrument

Name

Primary Investigator

Products

DLH
2D-S, CPI
LARGE
PALMS
CAPS, PIP
CVvI1

CIMS
DACOM
FAST OZ
MACDON-NA
SAGA

NO
TD-LIF
WAS
Dropsondes
MMS
APR-2
LASE
DIAL

BB IR
CAFS
SSFR
DC-8 CAM

Open Path TDL
Cloud Probes
Acrosol Spectrometers

Particle Composition Mass Spectrometer

Cloud Probes

Counterflow Virtual Impactor
Chemical Ion Mass Spectrometer
TDL (DACOM)
Chemiluminescence Ozone Probe
IR gas analyzer

Mist Chamber
Chemiluminescence Nitric Oxide
Tunable Diode Laser

Whole Air Sampler

Atmospheric Probe

Pressure and Temperature Probe
Precipitation Radar

IR Lidar

UV Lidar

Broadband Radiometer

UV-Vis Actinic Flux

Solar Spectral Flux Radiometer
Video

Glen Diskin, NASA LaRC
Paul Lawson, SPEC Inc.
Bruce Anderson, NASA LaRC
Dan Murphy, NOAA

Andy Heymsfield, NCAR
Cynthia Twohy, Oregon State
John Crounse, Caltech

Glen Diskin, NASA LaRC
Melody Avery, NASA LaRC
Stephanic Vay, NASA LaRC
Jack Dibb, U. New Hampshire
Ron Cohen, U. C., Berkley
Ron Cohen, U. C., Berkley
Don Blake, U. C., Irvine
Errol Korn, NCAR

Paul Bui. NASA ARC

Eric Smith, NASA MSFC

Ed Browell, NASA LaRC

Ed Browell, NASA LaRC
Anthony Bucholtz NRL

Rick Shetter, NCAR

Peter Pilewskie. U. Colorado
Rick Shetter, U. N. Dakota

H,0

Cloud particle size distribution and type (habit)
Particle size distribution, optical properties, CCN
Particle composition

Cloud particle size, images

Cloud water content

Acids and organic peroxides, SO,

CO, CHy, N;O

Ozone mixing ratio

CO,

NO3, SOy, aerosol composition

NO

NO», Alkylnitrates, PAN

Many trace gases

Temperature, pressure, winds, relative humidity
Pressure, temperature, winds

Reflectivity, precipitation

Water vapor, aerosol and cloud heights, aerosol type
Ozone, aerosol and cloud heights, acrosol type
IR radiative fluxes and layer heating rate
Ozone zenith column

Solar spectral fluxes and heating rate

Nadir and forward video
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NASA DC-8: Roll The Tape

https://www.youtube.com/watch?v=YnPfPkVhftQ

Copyright © 2019 University of Maryland.
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Recovery of the Ozone Layer

Time series of chlorine content of organic
halocarbons that reach the stratosphere.
Past values based on direct atmospheric
observation. Future values based on
projections that include the lifetime for
removal of each halocarbon.

Table 6-4, WMO/UNEP 2018
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Past Trends, Upper Stratospheric Ozone

Grey: range of model calculations,
5 | pakicer. nWeve, SAGE, HALOL GOMOS all where models are forced by

Hohenpeissenberg/Bern rising levels of stratospheric
- halogens

Trends in ozone at 40 km are “well understood”
and generally follow track time history of
stratospheric chlorine loading.
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Lecture 14, Slide 32 Figure 2-5, WMO/UNEP 2011
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Future Trends, Upper Stratospheric Ozone

14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100
62 will exceed upper stratospheric ozone in 1960
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Climate and Chemistry Coupling

Scientists have long known that rising GHGs leads to cooling of the

stratosphere, due to direct radiative effects

The stratosphere has been cooling past several decades in a manner broadly

consistent with theory:
Annual Mean Trend

1980-2005, 70°N-70°S
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Future Trends, Upper Stratospheric Ozone
14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100
62 will exceed upper stratospheric ozone in 1960
O, column / .
Vo
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® MSU-SSU Figure 4—-11, WMO/UNEP (2011)
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Oman et al., JGR, 2010
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Future Trends, Upper Stratospheric Ozone

14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100

62 will exceed upper stratospheric ozone in 1960
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62

Future Trends, Upper Stratospheric Ozone

14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100
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/ will exceed upper stratospheric ozone in 1960
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Brewer-Dobson Circulation

Nimbus-7 SBUV 1980-89 ozone (DU/km)
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Figure 6.03 Schematic diagram of Brewer-Dobson circulation
with seasonally averaged ozone concentration
http://www.ccpo.odu.edu/~lizsmith/SEES/ozone/class/Chap 1/1_Js/1-06.]

Brewer-Dobson Circulation is a model of atmospheric circulation, proposed by Alan Brewer in
1949 and Gordon Dobson in 1956, that attempts to explain why tropical air has less column ozone
than polar air, even though the tropical stratosphere is where most atmospheric ozone is produced

Copyright © 2019 University of Maryland.
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Global Satellite Maps of Total Ozone in 2009
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More Chemistry and Climate Coupling

Annual

(a)

17.8 GISS
17.4 GISSchem

14.7 CMAM

11.7 MRI
11.0 kt s~'year™’

Flux of air through tropopause region

2.1 FUB-CMAM

1.6 IGCM
L= 0.1 IGCMal)

8.2 MAECHAM4chem

Figure 5-17. Trends in exchange of air from troposphere-
to-stratosphere computed by 14 CCMs.

Trends (units of Gg s~' year ') are represented by the
slope of each line.

Dashed line is the multi-model mean.
After Butchart et al., Clim. Dyn., 2006.

! 1

Present Day 2 x Present Fig 5.17, WMO/UNEP (2006)
Cco, Day CO,
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More Chemistry and Climate Coupling
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Acceleration of the Brewer-Dobson Circulation causes modeled total ozone column in the tropics to

exhibit a sustained, long term decline and modeled total ozone column at mid-latitudes

Copyright © 2019 University of Maryland.

to experience a “super recovery”
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More Chemistry and Climate Coupling
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Acceleration of the Brewer-Dobson Circulation causes modeled total ozone column in the tropics to

exhibit a sustained, long term decline and modeled total ozone column at mid-latitudes

Copyright © 2019 University of Maryland.

to experience a “super recovery”
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Future Mid-Latitude Ozone: CH,
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However, there are other processes that result in
more ozone (red regions, Fig 6b):

* Rising CH, leads to more stratospheric H,0O,
cooling this region of the atmosphere, which slows
the rate of all ozone loss cycles

* Rising CH, speeds up the rate of CI+CH,, shifting
chlorine from CIO into HCI

* Rising CH, leads to more HO, in the lowermost
stratosphere, where there is sufficient CO to result
in production of O; by photochemical smog
chemistry

Copyright © 2019 University of Maryland.
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o
Latitude (%)

Fig. 6. (a) CH4-8.5 ozone minus CHy-2.6 ozone in the 2090s
decade, calculated as a percentage of ozone in the CHy-2.6 simula-
tion. (b) 2090s-decade CHy-8.5 total column ozone minus CHy4-2.6
total column ozone.

Revell et al., ACP, 2012
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Future Mid-Latitude Ozone: N,O
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Revell et al., ACP, 2012
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Future Trends, Stratospheric Ozone
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Lecture 15, Slide 51

Copyright © 2019 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 20



Declining Arctic Sea Ice: Canary of Climate Change?

Sea Ice Extent, Sep 2018
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near-real-time data

Total extent = 4.7 million sq km

Arctic sea ice extent for September 2018 was 4.71 million square kilometers, which is 1.70 million square
kilometers below the 1981 to 2010 average.

http://nsidc.org/arcticseaicenews/files/2018/10/Figure1.png
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Declining Arctic Sea Ice: Canary of Climate Change?

Average Monthly Arctic Sea Ice Extent
September 1979 - 2018
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Arctic sea ice is declining at a rate of about12.8 percent per decade, relative to the 1981 to 2010 average.

http://nsidc.org/arcticseaicenews/files/2018/10/Figure3.png
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Declining Arctic Sea Ice: Canary of Climate Change?

Arctic Sea Ice Extent
(Area of ocean with at least 15% sea ice)
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Don’t need to use any heavy duty statistics to see the trend!

http://nsidc.org/arcticseaicenews/files/1999/10/Figure2 10072018.png
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The Antarctic

Antarctic Sea lce Extent
(Area of ocean with at least 15% sea ice)
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http://nsidc.org/arcticseaicenews/files/1999/10/Figure6_10072018.png
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Extent (Millions of square kilsmetars)
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Arctic/Antarctic Standardized Anomaly
(# of st. dev. from 1981-2010 average)
o
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Arctic and Antarctic Standardized Anomaly and Trend
Nov. 1978 - Dec. 2017
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Changes in the extent of Arctic (blue) and Antarctic sea ice (red) from November 1978 to December 2017, relative to a 1981-2010
baseline. Thick lines show changes to the yearly average and thin lines show changes to the monthly anomalies. Source: National
Snow and lce Data Center, University of Colorado, Boulder

https://www.carbonbrief.org/natural-ocean-fluctuations-help-explain-antarctic-sea-ice-changes
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The Ozone Hole may have shielded the Antarctic surface from warming!

Observations

(M) @anjesadwa] aseping ul abueyn

Simulated and observed changes in surface temperature (K) and wind speed,1969 to 2000,
averaged over December to May. The longest wind vector corresponds to 4 m/s.

Gillett and Thompson, Science, 2003
As ozone depletion occurs:
The positive phase of the southern annular mode (SAM) increases,

causing Antarctic surface westerlies to intensify, resulting in cooling
of Antarctic continent

Copyright © 2019 University of Maryland.
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The Ozone Hole may have shielded the Antarctic surface from warming!

Model Observations

jesodwa] aoepng ul abueyn

SAM: difference in zonal mean sea-level pressure between 40°S and 65°S.
The pattern associated with SAM is a nearly annular pattern with a large
low pressure anomaly centered on the South Pole and a ring of high
pressure anomalies at mid-latitudes. The SAM effects storm tracks,
precipitation patterns, etc.

http://www.climate.be/textbook/chapter5 node6.html

As ozone depletion occurs:
The positive phase of the southern annular mode (SAM) increases,

causing Antarctic surface westerlies to intensify, resulting in cooling
of Antarctic continent

Copyright © 2019 University of Maryland.
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The Ozone Hole may have lead to increased ventilation
of CO, from southern ocean

Air-sea COz flux (PgClyr)

1980 1985 1950 1995 2000
Time (year)

(b) Integrated air to sea CO5 flux (south of 40°S) showing stratospheric ozone depletion (Ozhole) significantly reduces CO2
uptake (relative to Osclim), and is strongly correlated with changes in ApCO,.

Lenton et al.,GRL, 2009
As ozone depletion occurs:

The positive phase of the southern annular mode (SAM) increases,
causing Antarctic surface westerlies to intensify, resulting in
increased ventilation of CO, from southern ocean

Copyright © 2019 University of Maryland.
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Uptake of Atmospheric CO, by Oceans
— Solubility Pump:

a) More CO, can dissolve in cold polar waters than in warm equatorial
waters. As major ocean currents (e.g. the Gulf Stream) move waters
from tropics to the poles, they are cooled and take up atmospheric CO,

b) Deep water forms at high latitude. As deep water sinks, ocean carbon (XCO,)
accumulated at the surface is moved to the deep ocean interior.

— Biological Pump:

a) Ocean biology limited by availability of nutrients such as NO;~, PO,",
and Fe?" & Fe3* . Ocean biology is never carbon limited.

b) Detrital material “rains” from surface to deep waters, contributing to
higher CO, in intermediate and deep waters \

which leads to more ocean turbulence ...
all due to the Antarctic ozone hole !

http://science.nasa.gov/headlines/y2004/05mar_arctic.htm
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Chemistry Climate Coupling

CCMs (chemistry climate models): developed to quantify impacts of
climate change on stratospheric ozone and
impacts of ozone depletion/recovery on climate:
As GHGs rise:
1. Brewer-Dobson circulation predicted to accelerate leading to:

a) less ozone in tropical lower stratosphere (“permanent depletion”)
b) more ozone in mid-latitude lower stratosphere (“super recovery”)

2. Upper stratosphere cools, slowing down rate limiting steps for ozone
loss and therefore leading to “super recovery”
3. Eventually, CH, and N,O will drive future levels of ozone

Data analysis suggests “coldest Arctic winters getting colder”:
1. Possibly due to rising GHGs
2. Not represented well by CCMs

As Antarctic ozone depletion had occurred:
The positive phase of the southern annular mode (SAM) increases,
causing Antarctic surface westerlies to intensify, resulting in:
1. Cooling of Antarctic continent (good for sea-level)
2. Increased ventilation of CO, from southern ocean (bad for climate)
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Chemistry Climate Coupling

CCMs (chemistry climate models): developed to quantify impacts of
climate change on stratospheric ozone and
impacts of ozone depletion/recovery on climate:
As GHGs rise:
1. Brewer-Dobson circulation predicted to accelerate leading to:

a) less ozone in tropical lower stratosphere (“permanent depletion”)
b) more ozone in mid-latitude lower stratosphere (“super recovery”)

2. Upper stratosphere cools, slowing down rate limiting steps for ozone
loss and therefore leading to “super recovery”
3. Eventually, CH, and N,O will drive future levels of ozone

Data analysis suggests “coldest Arctic winters getting colder”:
1. Possibly due to rising GHGs
2. Not represented well by CCMs

As Antarctic ozone recovery will occur:
The positive phase of the southern annular mode (SAM) may decline,
causing Antarctic surface westerlies to weaken, resulting in:
1. Warming of Antarctic continent (bad for sea-level)
2. Decreased ventilation of CO, from southern ocean (good for climate)
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