Kyoto Protocol and the Paris Climate Agreement AOSC / CHEM 433 & AOSC 633

Ross Salawitch & Walt Tribett

Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2019

Topics for today:

- Kyoto Protocol
- Obama / Xi Accord
- Paris Climate Agreement

Lecture 18 23 April 2019

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Announcements

Interesting presentation on Wed, 24 April, 5:45 pm, ATL 2400 Preceded by a reception (\Rightarrow free food) staring at 5:00 pm

attendance is voluntary

Seminar will be ~an hour long

Ocean Acidification and Rising Ocean Temperature Impacts on Marine Ecosystems

Prof. Scott C. Doney University of Virginia

What is the relationship between ocean acidification and rising temperatures and how do those phenomena affect sealife? How does ocean pollution exacerbate these environmental stressors and increase the susceptibility of marine organisms to disease and habitat disruptions? What is the future of marine ecosystems based on model predictions? These are among the many questions raised by the changing climate.

Chlorophyll concentration in the western North Atlantic in late-April, 2018 from the NASA MODIS Agua satellite

https://www.atmos.umd.edu/seminar/semAbstract.php?event_id=272

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Announcements

Will show Ozone Hole documentary on Thurs, 25 April, 6:00 pm, ATL 3400: attendance is voluntary

Documentary is 55 minutes long

Ozone Hole: How We Saved the Planet

Premieres Wednesday, April 10, 2019 10:00-11:00 p.m. ET on PBS

New Documentary Tells the Remarkable Story of How Scientists Discovered the Deadly Hole in the Ozone – and the Even More Remarkable Story of How the World's Leaders Came Together to Fix It

https://www.pbs.org/video/ozone-hole-how-we-saved-the-planet-ttwe2l

4

AT 17

Combustion of 1 gram of CH_4 results of 50.1 kJ of energy Combustion of 1 gram of C results in 32.8 kJ of energy

Therefore, we might conclude natural gas is 50.1 / 32. 8 = 1.53 times more efficient, which I would right as 53% more efficient.

However, combustion of 1 gram of C results in 32/12 + 1 = 3.667 gram of CO₂ whereas combustion of 1 gram of CH₄ results in 12/16 (32/12+1) = 2.75 gram of CO₂

To place natural gas and coal (pure C) on equal footing, must first multiply energy yield from natural gas by (3.667/2.75) = 1.33, so that atmospheric CO₂ produced by both processes is identical.

We find natural gas is $1.33 \times 50.1 / 32.8 = 2.0$; i.e., about 100% more efficient than coal.

Fig 4.26. Energy differences (in kJ/g) for the combustion of methane (CH₄), n-octane (C₈H₁₈), coal (assumed to be pure carbon), ethanol (C₂H₅OH), and wood (assumed to be glucose).

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

5

AT 17

Combustion of 1 gram of CH₄ results of 50.1 kJ of energy Combustion of 1 gram of C results in 32.8 kJ of energy

Alas, coal is not pure carbon in the real world. Rather, notational formula for coal is C₁₃₅H₉₆O₉NS (page 162 of Chemistry in Context): i.e., coal has a carbon content of 85% by mass.

Therefore, we'd state:

natural gas is actually $1.33 \times 50.1 / (32.8/0.85) = 1.73$; i.e., 73% more efficient than coal.

Fig 4.26. Energy differences (in kJ/g) for the combustion of methane (CH_4), n-octane (C_8H_{18}), coal (assumed to be pure carbon), ethanol (C_2H_5OH), and wood (assumed to be glucose).

Future Use of Fossil Fuels

Table shown last lecture

Fossil Fuel	GHG Output (pounds CO ₂ per kWh)
Oil Sands	5.6
Coal	2.1
Oil	1.9
Gas	1.3

Natural gas produces (1/1.3) / (1/2.1) = 1.61; i.e., 61% more energy than coal, per CO₂ released Natural gas produces (1/1.3) / (1/5.6) = 4.3; i.e., more than 4× more energy than oil sands, per CO₂ released

http://www.eia.doe.gov/cneaf/electricity/page/co2_report/co2report.html https://iopscience.iop.org/article/10.1088/1748-9326/4/1/014005/meta

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

7

Global Warming Potentials of CH₄ & N₂O

GHG	IPCC (1995)	IPCC (2001)	IPCC (2007)	IPCC (2013)
100 Year Time Horizon				
CH ₄	21	23	25	28, 34*
N ₂ O	310	296	298	265, 298*
20 Year Time Horizon				
CH ₄	56	62	72	84, 86*
N ₂ O	280	275	289	264, 268*
*Allowing for carbon cycle feedback				

Table 1.1 Paris, Beacon of Hope

 CO_2 -equiv. emiss. = CO_2 (mass)+ $GWP_{CH4} \times CH_4$ (mass)+ $GWP_{N20} \times N_2O$ (mass) etc.

Kyoto Protocol

- Negotiated in Kyoto, Japan in November 1997
 - Annex I countries: Developed countries (Table 10.1 of Houghton) with varying emission targets, 2008-2012 relative to 1990, ranging from +10% (Iceland) to -8% (EU-15)

Table 10.1 Emissions targets (1990*-2008/2012) for greenhouse gases under the Kyoto Protocol		
Country	Target (%)	
EU-15**, Bulgaria, Czech Republic, Estonia, Latvia,	-8	
Lithuania, Romania, Slovakia, Slovenia, Switzerland		
USA***	-7	
Canada, Hungary, Japan, Poland	-6	
Croatia	-5	
New Zealand, Russian Federation, Ukraine	0	
Norway	+1	
Australia	+8	
Iceland	+10	
* Some economies in transition (EIT) countries have a baseline other than 1990. ** The fifteen countries of the European Union have agreed an average reduction; changes for individual countries vary from -28% for Luxembourg, -21% for Denmark and Germany to +25% for Greece and +27% for Portugal. *** The USA has stated that it will not ratify the Protocol.		

Houghton, Global Warming: The Complete Briefing, 3d Edition, 2004

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

9

Kyoto Protocol

- Negotiated in Kyoto, Japan in November 1997
 - Annex I countries: Developed countries (Table 10.1 of Houghton) with varying emission targets, 2008-2012 relative to 1990, ranging from +10% (Iceland) to -8% (EU-15)
 - -Annex II countries: sub-group of Annex I countries that agree to pay cost of

technology for emission reductions in developing countries Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Japan, Luxembourg, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, United States of America

- -Developing countries: all countries besides those in Table 10.1 of Houghton
- Went into effect in 16 February 2005 after signed by _____
- Annex I countries:
 - agree to reduce GHG emissions to target tied to 1990 emissions. If they cannot do so, they must buy emission credits or invest in conservation
- Developing countries:
 - no restrictions on GHG emissions
 - encouraged to use new technology, funded by Annex II countries, to reduce emissions
 - can not sell emission credits

Kyoto Protocol

KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE

UNITED NATIONS

1998

Article 3

- 1. The Parties included in Annex I shall, individually or jointly, ensure that their aggregate anthropogenic carbon dioxide equivalent emissions of the greenhouse gases listed in Annex A do not exceed their assigned amounts, calculated pursuant to their quantified emission limitation and reduction commitments inscribed in Annex B and in accordance with the provisions of this Article, with a view to reducing their overall emissions of such gases by at least 5 per cent below 1990 levels in the commitment period 2008 to 2012.
- 2. Each Party included in Annex I shall, by 2005, have made demonstrable progress in achieving its commitments under this Protocol.
- 3. The net changes in greenhouse gas emissions by sources and removals by sinks resulting from direct human-induced land-use change and forestry activities, limited to afforestation, reforestation and deforestation since 1990, measured as verifiable changes in carbon stocks in each commitment period, shall be used to meet the commitments under this Article of each Party included in Annex I. The greenhouse gas emissions by sources and removals by sinks associated with those activities shall be reported in a transparent and verifiable manner and reviewed in accordance with Articles 7 and 8.

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

11

Kyoto Protocol

Copyright © 2019 University of Maryland

The Collapse of the Kyoto Protocol and the Struggle to Slow Global Warming David G. Victor, Princeton University Press, 2001.

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

Kyoto target (2008 to 2012) for emissions of CO₂, relative to 1990 emissions selected locations

00100100100	0110
Australia	108%
EU15	92%
Iceland	110%
Japan	94%
New Zealand	100%
Norway	101%
Russia	100%
US	93%

The Collapse of the Kyoto Protocol and the Struggle to Slow Global Warming David G. Victor, Princeton University Press, 2001.

Copyright © 2019 University of Maryland

Kyoto Mechanisms

- Joint Implementation
 - Allows developed countries to implement projects that reduce emissions or increase natural GHG sinks in other *developed countries*; such projects can be counted towards the emission reductions of the investing country
- Clean Development Mechanism
 - Allows developed countries to implement projects that reduce emissions or increase natural GHG sinks in *developing countries*; such projects can be counted towards the emission reductions of the investing country
 - Australian Carbon Data Accounting Model <u>http://www.climatechange.gov.au/en/government/initiatives/ncat.aspx</u> being discussed as pilot for international metric for quantifying effects of reforestation on the carbon fluxes
- Emissions Trading
 - Annex I countries can purchase emission units from other Annex I countries that find it easier to reduce their own emissions

Copyright © 2019 University of Maryland This material material material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

15

Kyoto Emission Penalties

What happens if a country fails to reach its Kyoto emissions target?

The Kyoto Protocol contains measures to assess performance and progress. It also contains some penalties. Countries that fail to meet their emissions targets by the end of the first commitment period (2012) must make up the difference plus a penalty of 30 per cent in the second commitment period

Their ability to sell credits under emissions trading will also be suspended

http://www.cbc.ca/news/background/kyoto/

Kyoto Gases

GHG	GWP, 100-yr	Industrial Use	Lifetime
CO ₂	1	Fossil fuel combustion; Land use changes	Multiple, ~172 yrs
CH ₄	25	Fossil fuel combustion; Rice paddies; Animal waste; Sewage treatment and landfills; Biomass burning	~10 yrs
N ₂ O	298	Agriculture & river chemistry associated with pollution Biomass burning & fossil fuel combustion	~115 yrs
HFCs	124 to 15000	Refrigerant (HFC–143a: C ₂ H ₃ F ₃), foam blowing agent, and by product of HCFC manufacture	Range from 1.5 to 270 yrs
PFCs	7400 to 12200	Aluminum smelting (CF ₄) Semiconductor manufacturing (CF ₄)	1000 to 50,000 yrs
SF ₆	22800	Insulator in high voltage electrical equipment Magnesium casting Shoes and tennis balls (minor source)	3200 yrs

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Atmospheric Absorption Absorption (%) C CO, N₂O 8 Halocarbon Absorption Spectrum Cross-Sections (cm²/molecule x 10⁻¹⁸) HFC-134a CFC-12 HCFC-22 Wavelength (µm)

Absorption vs. Wavelength

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Absorption vs. Wavelength

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

19

GWP - Global Warming Potential

$$GWP (HFC-143a) = \frac{\int_{\text{time initial}}^{\text{time final}} a_{HFC-143a} \times [HFC-143a(t)] dt}{\int_{\text{time final}}^{\text{time final}} a_{CO2} \times [CO_2(t) dt]}$$

where:

 $a_{\rm HFC-143a}$ = Radiative Efficiency (W m⁻² ppb⁻¹) due to HFC-143a

 $a_{\rm CO2}$ = Radiative Efficiency (W m⁻² ppb⁻¹) due to CO₂

HFC-143a (t) = time-dependent response to an instantaneous release of a pulse of HFC-143a

 $CO_2(t)$ = time-dependent response to an instantaneous release of a pulse of CO_2

Note: HFC-143a is C₂H₃F₃ HCFC-22 is CH₃CClF₂

		GWP Time Horizon		ODP
	τ (yr)	20-yr	100-yr	n.a.
HFC-143a	51	7050	5080	0
HCFC-22	12	5310	1780	0.034
CFC-11	52	7090	5160	1.0

Table 8.A.1, IPCC (2013)

Not all HFCs are equal wrt Global Warming

Evaluation of Selected Ozone-Depleting Substances and Substitute Gases

Relative importance of equal mass emissions for ozone depletion and climate change

WMO/UNEO 2014 "Twenty Questions" http://esrl.noaa.gov/csd/assessments/ozone/2014/twentyquestions

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

21

CNN Climate Quiz

Materials and waste management

https://www.cnn.com/interactive/2019/04/specials/climate-change-solutions-quiz/index.html

Kigali Amendment to the Montreal Protocol

Kigali, Rwanda, October 2016 Placed HFCs, which have an ODP of 0.0, under the Montreal Protocol

https://www.unenvironment.org/news-and-stories/news/kigali-amendment-montreal-protocol-another-global-commitment-stop-climate

Konstantina Birbili

Executive Secretary of the U.N. Vienna Convention for the Protection of the Ozone Layer PhD in Environmental Management and Economics from Imperial College of Science, Technology and Medicine, London https://en.wikipedia.org/wiki/Tina_Birbili

Vincent Biruta

Minister of the Environment, Rwanda Physician; Masters in Planning and Management from University of Brussels, Belgium https://en.wikipedia.org/wiki/Vincent Biruta

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

23

Effect of the Kigali Amendment to the Montreal Protocol

Projected emissions of hydrofluorocarbons (HFCs)

Will appear in the next WMO/UNEP "Twenty Questions"

Effect of the Kigali Amendment to the Montreal Protocol

Will appear in the next WMO/UNEP "Twenty Questions"

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

25

Radiative Forcing due to PFCs

PFC: Perfluorocarbons

- · Contain only C & F
- Strong bonds: chemically stable $\tau_{CF4} = 50,000 \text{ yr }!$
- · Applications: medical, electrical, cosmetics

https://www.sciencedirect.com/science/article/pii/S0950423001000675

Fig 2.9

IPCC "SROC": Special Report on Safeguarding the Ozone Layer & Global Climate System, 2005

http://www.ipcc.ch/pdf/special-reports/sroc/sroc_full.pdf

Radiative Forcing due to SF₆

Figure 4 Radiative forcing of C_2F_6 , CF_4 , and SF_6 from 2010 to 2100.

Zhang et al., Sci China Earth Sci, 2011

SF₆: Sulfur hexafluoride

- $\tau_{SF6} = 3,200 \text{ yr}$
- · Applications: gaseous dielectric in electrical transformers;

insulator for windows; retina surgery

 Also had been used in sneakers but Nike has phased out this use: <u>http://americancarbonregistry.org/carbon-registry/projects/nike-sf6-substitution-project</u>

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Two Super Heroes

US / China Announcement \Rightarrow Paris Climate Agreement

Nov 2014: Presidents Obama & Xi announced

U.S. would reduce GHG emissions to <u>27%</u> below 2005 <u>by 2025</u> <u>China</u> would <u>peak</u> GHG emissions <u>by 2030</u> with best effort to peak early

Paris Climate Agreement:

Article 2, Section 1, Part a):

Objective to hold "increase in GMST to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels"

INDC: Intended Nationally Determined Contributions to reduce GHG emissions

- Submitted prior to Dec 2015 meeting in Paris
- Consist of either unconditional (promise) or conditional (contingent) pledges
- Generally extend from present to year 2030

Paris Climate Agreement, Dec 2015:

- a) Negotiated as an "agreement" (unilateral pledges to reduce GHG emissions by by member nations) rather than a treaty to avoid the need for Senate approval <u>https://www.senate.gov/artandhistory/history/common/briefing/Treaties.htm</u>
- b) Based on language of ratification, U.S. committed to agreement until 4 November 2020

https://qz.com/996882/paris-climate-agreement-trumps-renegotiation-is-not-realistic-in-any-way

https://www.theatlantic.com/science/archive/2017/08/trump-and-the-paris-agreement-what-just-happened/536040

Summer 2017:

President Trump states US intends to withdraw from Paris Climate Agreement

• "withdrawal" symbolic in that US is committed to the agreement until 4 Nov 2020

August 2018:

- Obama's plan for achieving the U.S. NDC had relied on implementation of the Clean Power Plan by the EPA
- Main gist of Clean Power Plan was transitioning power plants from coal to either natural gas or renewables
- Combustion of natural gas produces about 70% more energy per $\rm CO_2$ released to the atmosphere than coal
- Clean power plan being abandoned by the US EPA <u>https://psmag.com/environment/the-epa-publishes-its-proposed-replacement-for-the-clean-power-plan</u> but the main reason natural gas has replaced coal for US power generation is economic, rather than regulatory

What will occur on 3 Nov 2020 ?!?

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 29

Three Futures

Fig 2.1, update Paris Climate Agreement: Beacon of Hope

RCP: Representative Concentration Pathway Number represents W m⁻² RF of climate at end of century

Probabilistic Forecast of <u>Human-Induced Rise in GMST</u> for model trained on data acquired until end of 2017 and future GHG levels from RCP 8.5

Fig 2.20 (updated) Paris Climate Agreement: Beacon of Hope

If GHGs follow RCP 8.5, 0% chance rise GMST stays below 1.5°C and 0.1% chance stays below 2.0°C

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Probabilistic Forecast of <u>Human-Induced Rise in GMST</u> for model trained on data acquired until end of 2017 and future GHG levels from RCP 4.5

Fig 2.19 (modified) Paris Climate Agreement: Beacon of Hope

If GHGs follow RCP 4.5, 9% chance rise GMST stays below 1.5°C and 51% chance stays below 2.0°C

 EM-GC: University of Maryland Empirical Model of Global Climate

 ΔT: rise in GMST (Global Mean Surface Temperature) relative to pre-industrial

 CRU: Climate Research Unit, Easy Anglia, UK: Premier source of data for ΔT

 IPCC Likely Range of ΔT : From Fig 11.25b of the 2013 Intergovernmental Panel on Climate Change Report

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Probabilistic Forecast of <u>Human-Induced Rise in GMST</u> for model trained on data acquired until end of 2017 and future GHG levels from RCP 2.6

Fig 2.19 (modified) Paris Climate Agreement: Beacon of Hope

If GHGs follow RCP 2.6, 68% chance rise GMST stays below 1.5°C and 96% chance stays below 2.0°C

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

If GHGs follow RCP 8.5 EM-GC: 0% chance rise GMST stays below 1.5°C and 0.1% chance stays below 2.0°C

34

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

35

If GHGs follow RCP 2.6 EM-GC: 68% chance rise GMST stays below 1.5°C and 96% chance stays below 2.0°C

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

World Energy Consumption and CO_2 Emissions, Modified to Meet RCP 4.5 in 2030

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

World Energy Consumption and CO₂ Emissions, Modified to Meet RCP 2.6 in 2030

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Limiting global warming to 2°C will require a massive transition to renewables and/or implementation of carbon capture and sequestration in the developed world and initial electrification of developing world by renewables (i.e., must bypass fossil fuels)

Limiting global warming to 2°C will require a massive transition to renewables and/or implementation of carbon capture and sequestration in the developed world and initial electrification of developing world by renewables (i.e., must bypass fossil fuels)

41

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Can watch free stream at https://archive.org/details/youtube-90CkXVF-Q8M

GHG Emission Projection

Fig. 3.8 & 3.13

CO2-eq: Considers emissions of CO2, CH4, & N2O

RCP 4.5 & 8.5: GHG scenarios with 2.6., 4.5, and 8.5 W m⁻² RF of climate in 2100 Uncertainty in "Our Projections" due to various population forecasts Emissions for big 3 (U.S., China, & India) use Full Kaya Identity, whereas Simplified Kaya Identity used for other nations <u>https://en.wikipedia.org/wiki/Kaya_identity</u> Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

43

GHG Emission Projection

Fig. 3.9 & 3.13

CO2-eq: Considers emissions of CO2, CH4, & N2O

INDC: Intended Nationally Determined Contribution (to reduce emissions of GHGs) **Unconditional:** We promise, no matter what, to follow our INDC

GHG Emission Projection

CO2-eq: Considers emissions of CO2, CH4, & N2O

INDC: Intended Nationally Determined Contribution (to reduce emission of GHGs) Unconditional: We promise, no matter what, to follow our INDC and keep improving the carbon efficiency of our economy

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

45

GHG Emission Projection

Fig. 3.11 & 3.13

CO2-eq: Considers emissions of CO2, CH4, & N2O

INDC: Intended Nationally Determined Contribution (to reduce emission of GHGs) Unconditional: We promise, no matter what, to follow our INDC and keep improving the carbon efficiency of our economy Conditional: GHG reductions contingent on financial and/or technology transfer

CO₂-eq: Considers emissions of CO₂, CH₄, & N₂O

Attain & Improve, all Unconditional & Conditional INDCs

INDC: Intended Nationally Determined Contribution (to reduce emission of GHGs) Unconditional: We promise, no matter what, to follow our INDC and keep *improving the carbon efficiency of our economy* Conditional: GHG reductions contingent on financial and/or technology transfer

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

47

New Work

 CO_2 -eq: Considers emissions of CO_2 , CH_4 , & N_2O

INDC: Intended Nationally Determined Contribution (to reduce emission of GHGs)
 Unconditional: We promise, no matter what, to follow our INDC and keep *improving the carbon efficiency of our economy* Conditional: GHG reductions contingent on financial and/or technology transfer

CO₂-eq: Considers emissions of CO₂, CH₄, & N₂O

INDC: Intended Nationally Determined Contribution (to reduce emission of GHGs)

Unconditional: We promise, no matter what, to follow our INDC and keep *improving the carbon efficiency of our economy* **Conditional:** GHG reductions contingent on financial and/or technology transfer

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

49

Pacala and Socolow: CO₂ Stabilization Wedges

Fig. 1. (A) The top curve is a representative BAU emissions path for global carbon emissions as CO₂ from fossil fuel combustion and cement manufacture: 1.5% per year growth starting from 7.0 GtC/year in 2004. The bottom curve is a CO₂ emissions path consistent with atmospheric CO₂ stabilization at 500 ppm by 2125 akin to the Wigley, Richels, and Edmonds (WRE) family of stabilization curves described in (11), modified as described in Section 1 of the SOM text. The bottom curve assumes an ocean uptake calculated with the High-Latitude Exchange Interior Diffusion Advection (HILDA) ocean model (12) and a constant net land uptake of 0.5 GtC/year (Section 1 of the SOM text). The area between the two curves represents the avoided carbon emissions required for stabilization. (B) Idealization of (A): A stabilization triangle of avoided emissions (green) and allowed emissions (blue). The allowed emissions are fixed at 7 GtC/year beginning in 2004. The stabilization triangle is divided into seven wedges, each of which reaches 1 GtC/year in 2054. With linear growth, the total avoided emissions per wedge is 25 GtC, and the total area of the stabilization triangle is 175 GtC. The arrow at the bottom right of the stabilization triangle points downward to emphasize that fossil fuel emissions must decline substantially below 7 GtC/year after 2054 to achieve stabilization at 500 ppm.

Pacala and Socolow, Science, 2004

http://www.princeton.edu/mae/people/faculty/socolow/Science-2004-SW-1100103-PAPER-AND-SOM.pdf

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Pacala and Socolow: CO₂ Stabilization Wedges

Action	Details
	Energy efficiency and conservation
Economy-wide carbon-intensity	Increase reduction by additional 0.15% per year
reduction (emissions/\$GDP)	(e.g., increase U.S. goal of 1.96% reduction per year to 2.11% per year)
1. Efficient vehicles	Increase fuel economy for 2 billion cars from 30 to 60 mpg
2. Reduced use of vehicles	Decrease car travel for 2 billion 30-mpg cars from 10,000 to 5000 miles per year
3. Efficient buildings	Cut carbon emissions by one-fourth in buildings and appliances projected for 2054
4. Efficient baseload coal plants	Produce twice today's coal power output at 60% instead of 40% efficiency (compared with 32% today)
	Fuel shift
5. Gas baseload power for coal baseload power	Replace 1400 GW 50%-efficient coal plants with gas plants (four times the current production of gas-based power)
	CO_2 Capture and Storage (CCS)
 Capture CO₂ at baseload power plant 	Introduce CCS at 800 GW coal or 1600 GW natural gas (compared with 1060 GW coal in 1999)
7. Capture CO_2 at H_2 plant	Introduce CCS at plants producing 250 MtH ₂ /year from coal or 500 MtH ₂ /year from natural gas (compared with 40 MtH ₂ /year today from all sources)
8. Capture CO ₂ at coal-to-synfuels plant	Introduce CCS at synfuels plants producing 30 million barrels a day from coal (200 times Sasol), if half of feedstock carbon is available for capture
Geological storage	Create 3500 Sleipners

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Pacala and Socolow: CO₂ Stabilization Wedges

Action	Details
	Nuclear fission
Nuclear power for coal power	Add 700 GW (twice the current capacity)
	Renewable electricity and fuels
10. Wind power for coal power	Add 2 million 1-MW-peak windmills (50 times the current capacity) "occupying" 30 $ imes$ 10 ⁶ ha, on land or offshore
11. PV power for coal power	Add 2000 GW-peak PV (700 times the current capacity) on 2 $ imes$ 10 6 ha
12. Wind H ₂ in fuel-cell car for gasoline in hybrid car	Add 4 million 1-MW-peak windmills (100 times the current capacity)
13. Biomass fuel for fossil fuel	Add 100 times the current Brazil or U.S. ethanol production, with the use of 250×10^6 ha (one-sixth of world cropland)
	Forests and agricultural soils
14. Reduced deforestation, plus reforestation, afforestation, and new plantations.	Decrease tropical deforestation to zero instead of 0.5 GtC/year, and establish 300 Mha of new tree plantations (twice the current rate)
15. Conservation tillage	Apply to all cropland (10 times the current usage)