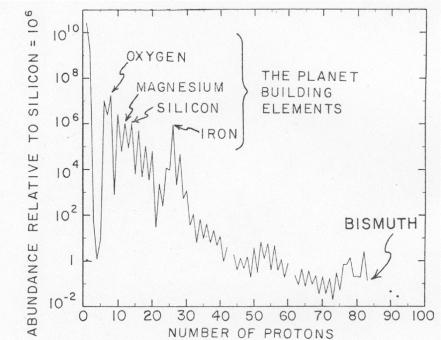
Geologic Evolution of Earth's Atmosphere AOSC / CHEM 433 & AOSC / CHEM 633

Ross Salawitch

Class Web Sites:

http://www2.atmos.umd.edu/~rjs/class/spr2022 https://myelms.umd.edu/courses/137772

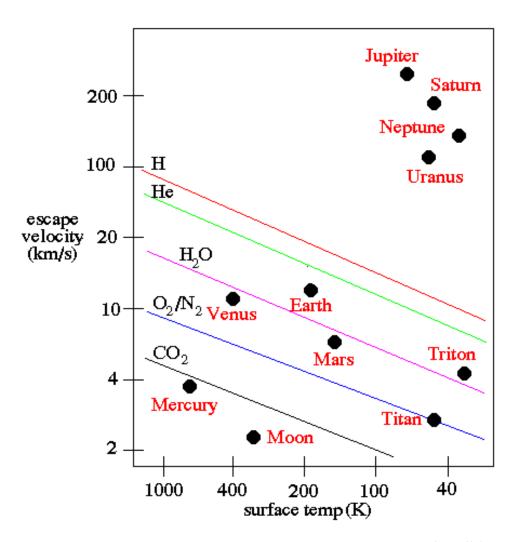


https://www.videoblocks.com/video/earth-sunset-spacewalk-view-from-space-station-r7dydlcsgjd23vml0

Lecture 1 27 January 2022

Geological Evolution of Earth's Atmosphere: "In the Beginning"

- Assemblage of 92 natural elements
- Elemental composition of Earth basically unchanged over 4.5 Gyr
 - Gravitational escape restricted to a few gases (H, He)
 - Extra-terrestrial inputs (comets, meteorites) relatively unimportant
- Biogeochemical cycling of elements between reservoirs of Earth "system" determines atmospheric composition



From "How to Build a Habitable Planet" By W.S. Broecker, ELDIGIO Press, pg 57

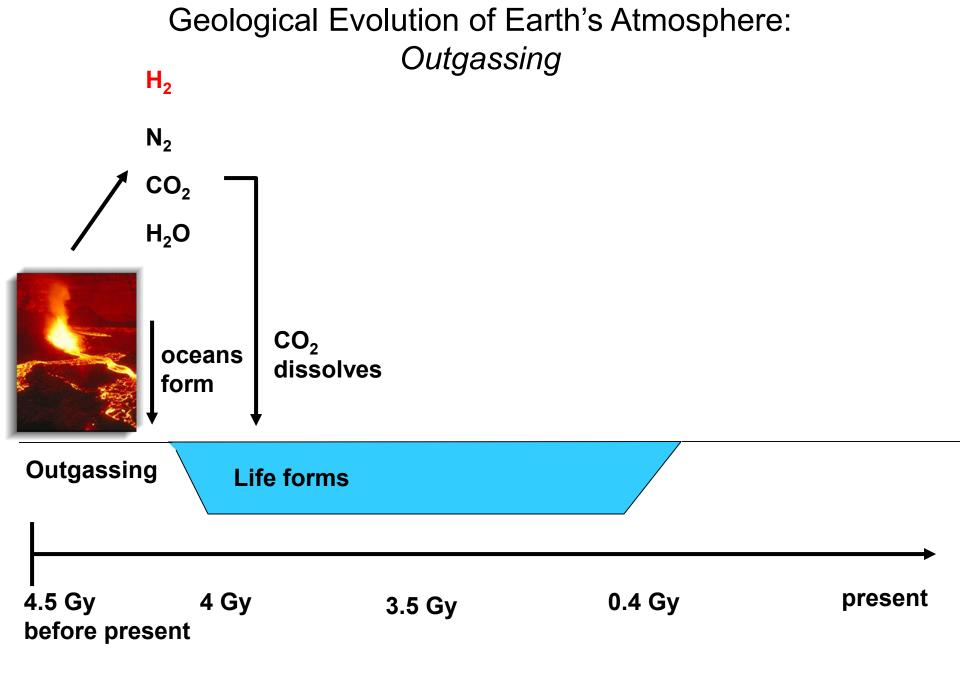
Geological Evolution of Earth's Atmosphere: Earth, Mars, and Venus

	Earth	Venus	Mars
Radius (km)	6400	6100	3400
Mass (10 ²⁴ kg)	6.0	4.9	0.6
Albedo	0.3	0.8	0.22
Distance from Sun (A.U.)	1	0.72	1.52
Surface Pressure (atm)	1	91	0.007
Surface Temperature (K)	~15 °C	~ 460 °C	−140 °C to 20 °C
N ₂ (mol/mol)	0.78	3.4×10 ⁻²	2.7 ×10 ⁻²
O ₂ (mol/mol)	0.21	6.9 ×10 ⁻⁵	1.3 ×10 ⁻³
CO ₂ (mol/mol)	3.7 ×10 ⁻⁴	0.96	0.95
H ₂ O (mol/mol)	1 ×10 ⁻²	3 ×10 ⁻³	3 ×10 ⁻⁴
SO ₂ (mol/mol)	1 ×10 ⁻⁹	1.5 ×10 ⁻⁴	Nil
Cloud Composition	H ₂ O	H_2SO_4	Mineral Dust

Geological Evolution of Earth's Atmosphere: Earth, Mars, and Venus

http://abyss.uoregon.edu/~js/ast121/lectures/lec14.html

Geological Evolution of Earth's Atmosphere: Earth is of course the water planet The source of Earth's water has been unclear


A new study finds that Earth's water may have come from materials that were present in the inner solar system at the time the planet formed – instead of far-reaching comets or asteroids delivering such water. The findings published 28 Aug 2020 in Science suggest that Earth may have always been wet.

"Our discovery shows that the Earth's building blocks might have significantly contributed to the Earth's water," said lead author Laurette Piani. "Hydrogen-bearing material was present in the inner solar system at the time of the rocky planet formation, even though the temperatures were too high for water to condense."

The findings from this study are surprising because the Earth's building blocks are often presumed to be dry. They come from inner zones of the solar system where temperatures would have been too high for water to condense and come together with other solids during planet formation.

Enstatite chondrites have similar oxygen, titanium and calcium isotopes as Earth, and this study showed that their hydrogen and nitrogen isotopes are similar to Earth's, too. In the study of extraterrestrial materials, the abundances of an element's isotopes are used as a distinctive signature to identify where that element originated.

Press release: https://source.wustl.edu/2020/08/meteorite-study-suggests-earth-may-have-always-been-wet
Paper: https://www.science.org/doi/10.1126/science.aba1948

Geological Evolution of Earth's Atmosphere: Early Atmosphere: Reducing Environment

Decreasing oxidation number (reduction reactions)

-3	0	+1	+2	+3	+4	+5
NH ₃ Ammonia	N ₂	N ₂ O Nitrous oxide	NO Nitric oxide	HONO Nitrous acid NO ₂ ⁻ Nitrite	NO ₂ Nitrogen dioxide	HNO ₃ Nitric acid NO ₃ Nitrate

Increasing oxidation number (oxidation reactions)

Oxidation state represents number of electrons: added to an element (– oxidation state) or removed from an element (+ oxidation state)

Oxidation state of a compound:
$$\Sigma = -2 \times \#$$
 O atoms + 1 $\times \#$ H atoms;
Oxidation of element = Electrical Charge – Σ

Note: there are some exceptions to this rule, such as oxygen in peroxides

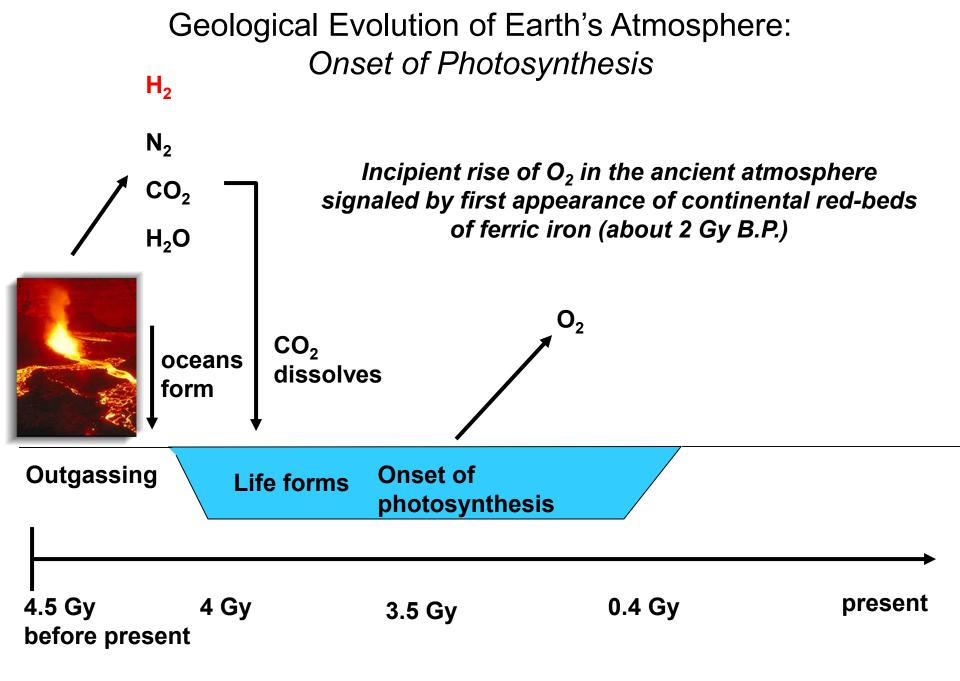
Geological Evolution of Earth's Atmosphere: Early Atmosphere: Reducing Environment

Decreasing oxidation number (reduction reactions)

-4	0	+2	+4
CH ₄	CH ₂ O	CO	CO ₂ Carbon dioxide
Methane	Formaldehyde	Carbon Monoxide	

Increasing oxidation number (oxidation reactions)

Oxidation state represents number of electrons: added to an element (– oxidation state) or removed from an element (+ oxidation state)


Oxidation state of a compound: $\Sigma = -2 \times \#$ O atoms + 1 $\times \#$ H atoms; Oxidation of element = Electrical Charge $-\Sigma$

Note: there are some exceptions to this rule, such as oxygen in peroxides

Geological Evolution of Earth's Atmosphere: Early Atmosphere: Reducing Environment

How do we know early atmosphere was reducing?

Why was a reducing environment important?

Geological Evolution of Earth's Atmosphere: *Atmospheric O₂ on Geological Time Scales*

• Rise of atmospheric O₂ linked to evolution of life:

The rise of atmospheric O_2 that occurred ~2.4 billion years ago was the greatest environmental crisis the Earth has endured. $[O_2]$ rose from one part in a million to one part in five: from 0.00001 to 21%! Earth's original biosphere was like an alien planet. Photosynthetic bacteria, frantic for hydrogen, discovered water and its use led to the build up of atomic O_2 , a toxic waste product.

Many kinds of microbes were wiped out. O and light together were lethal. The resulting O-rich environment tested the ingenuity of microbes, especially those non-mobile microorganisms unable to escape the newly abundant reactive atmospheric gas. The microbes that survived invented various intracellular mechanisms to protect themselves from and eventually exploit this most dangerous pollutant.

Lynn Margulis and Dorion Sagan, Microcosmos: Four Billion Years of Microbial Evolution, 1986

The rise of atmospheric oxygen led to something else critical to "life as we know it" – what did rising $[O_2]$ lead to ?!?

Geological Evolution of Earth's Atmosphere: *Atmospheric O*₂ *on Geological Time Scales*

• Rise of atmospheric O₂ linked to evolution of life:

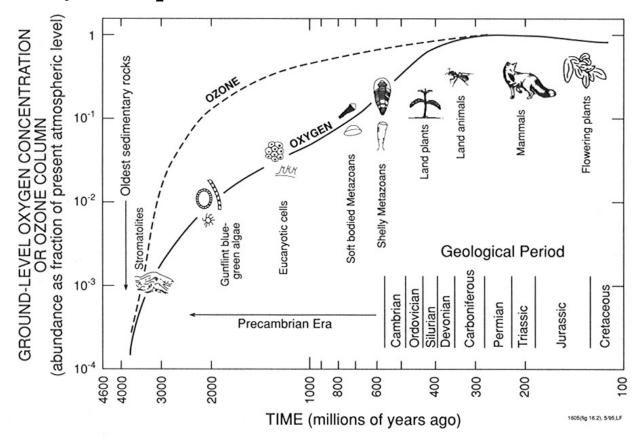
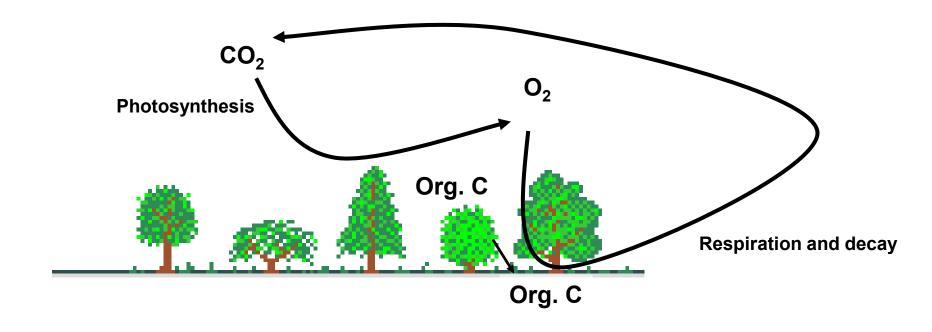
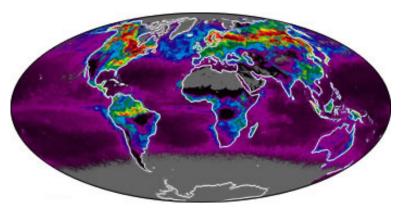


Figure 16.3. Probable evolution of the oxygen and ozone abundance in the atmosphere (fraction of present levels) during the different geological periods of the Earth's history (Wayne, 1991; reprinted by permission of Oxford University Press).

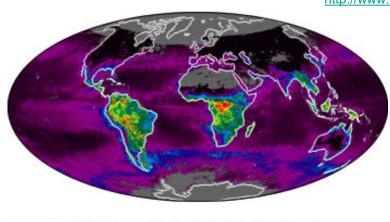

Geological Evolution of Earth's Atmosphere: Early Atmosphere: Photosynthesis

Photosynthesis: Source of O₂

$$6CO_2 + 6H_2O + energy \rightarrow C_6H_{12}O_6 + 6O_2$$


Respiration and Decay: Sink of O₂

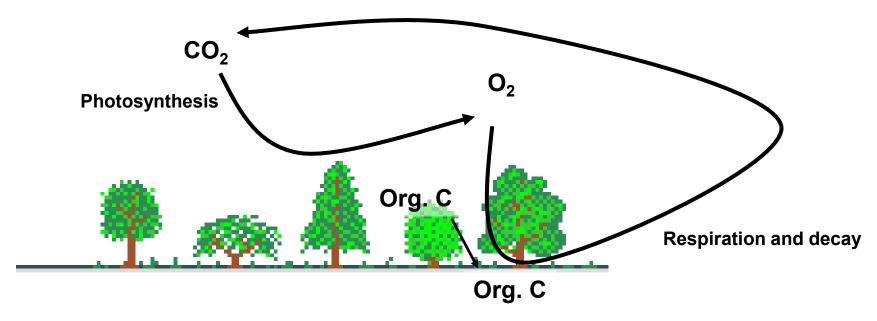
$$C_6H_{12}O_6 + 6 O_2 \rightarrow 6CO_2 + 6H_2O + energy$$


Geological Evolution of Earth's Atmosphere: Early Atmosphere: Photosynthesis

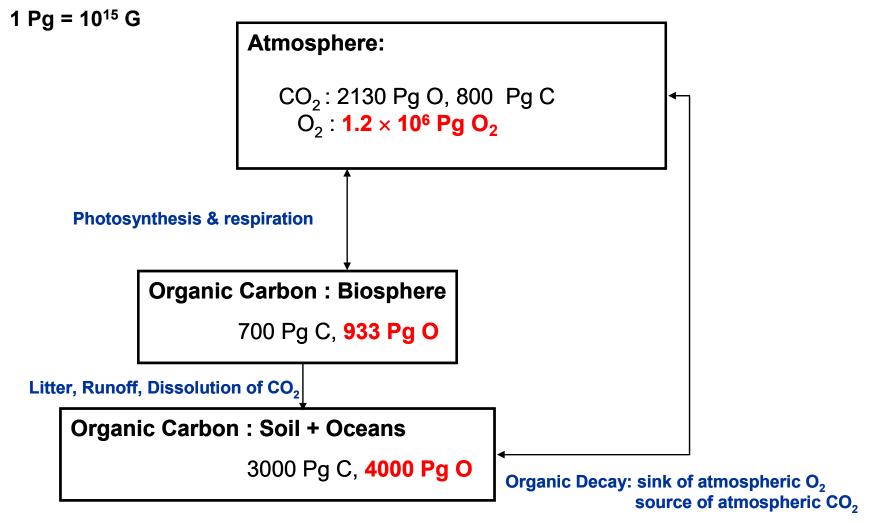
• Net primary productivity of organic matter: $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + \text{hv} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2 \text{ is } \sim 57 \times 10^{15} \text{ g C yr}^{-1}$

Imhoff et al., Nature, 2004

http://www.globalcarbonproject.org/science/figures/FIGURE9.htm



Net Primary Productivity (kgC/m²/year)


1 2 3

Geological Evolution of Earth's Atmosphere: Early Atmosphere: Photosynthesis

- Net primary productivity of organic matter:
 - 6 CO₂ + 6 H₂O + hv \rightarrow C₆H₁₂O₆ + 6 O₂ is \sim 57 \times 10¹⁵ g C yr⁻¹ Production of atmospheric O₂ is therefore \sim 152 \times 10¹⁵ g O₂ yr⁻¹ Flux
- Mass O₂ in atmosphere = $0.21 \times (5.2 \times 10^{21} \text{ g}) \times (32 / 28.8) \approx 1.2 \times 10^{21} \text{ g}$ Amount
- Lifetime of atmospheric O₂ due to biology = Amount / Flux

Geological Evolution of Earth's Atmosphere: Oxygen and Carbon Reservoirs

Atmospheric O_2 reservoir much larger than O_2 content of biosphere, soils, and ocean; therefore, some *other process* must control atmospheric O_2

Geological Evolution of Earth's Atmosphere: Oxygen Reservoirs & Pathways

$$1 \text{ Pg} = 10^{15} \text{ G}$$

Atmosphere:

$$O_2: 1.2 \times 10^6 \text{ Pg O}_2$$

Burial of organic matter is source of atmospheric O_2 :

$$6CO_2 + 6H_2O + Energy \rightarrow$$

 $C_6H_{12}O_6$ (buried) + $6O_2$ (atmosphere)

Sediments: Buried Organic Carbon

 O_2 : ~32 × 10⁶ Pg O

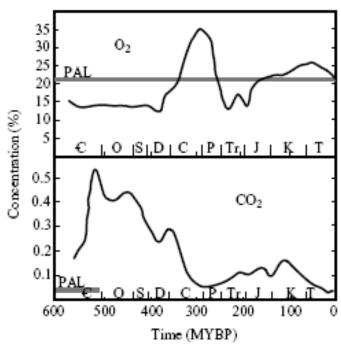
O₂ Lifetime ≈ 4 million years

Weathering of mantle is sink of atmospheric O_2 : For example:

$$FeS_2 + 7/2 O_2 + H_2O \rightarrow Fe^{3+} + 2 SO_4^{2-} + 2 H^+$$

Crust and Mantle: Oxides of Fe, Si, S, Mg, etc: FeO, Fe₂O₃, FeSiO₃, SiO₄, MgO, etc

This is where the bulk of the oxygen resides!


Geological Evolution of Earth's Atmosphere: Atmospheric O_2 on Geological Time Scales

- Rise of atmospheric O₂ linked to evolution of life:
 - 400 My B.P. O₂ high enough to form an ozone layer
 - 400 to 300 My B.P.: first air breathing lung fish & primitive amphibians
- On geological timescales, level of O₂ represents balance between burial of organic C & weathering of sedimentary material:

(see Chapter 12, "Evolution of the Atmosphere" in Chemistry of the Natural Atmosphere by P. Warneck (2nd ed) for an excellent discussion)

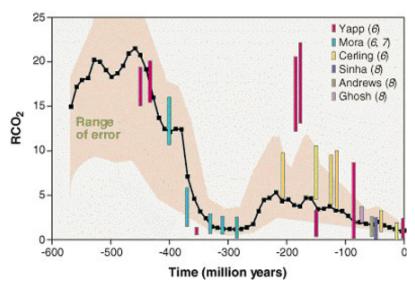
Present atmosphere is oxidizing:

 $CH_4 \Rightarrow CO_2$ with time scale of ~9 years

From R. Dudley, Atmospheric O₂, Giant Paleozoic Insects, and the Evolution of Aerial Locomotor Performance, *J. Exper. Biol.*, 201, 1043, 1998.

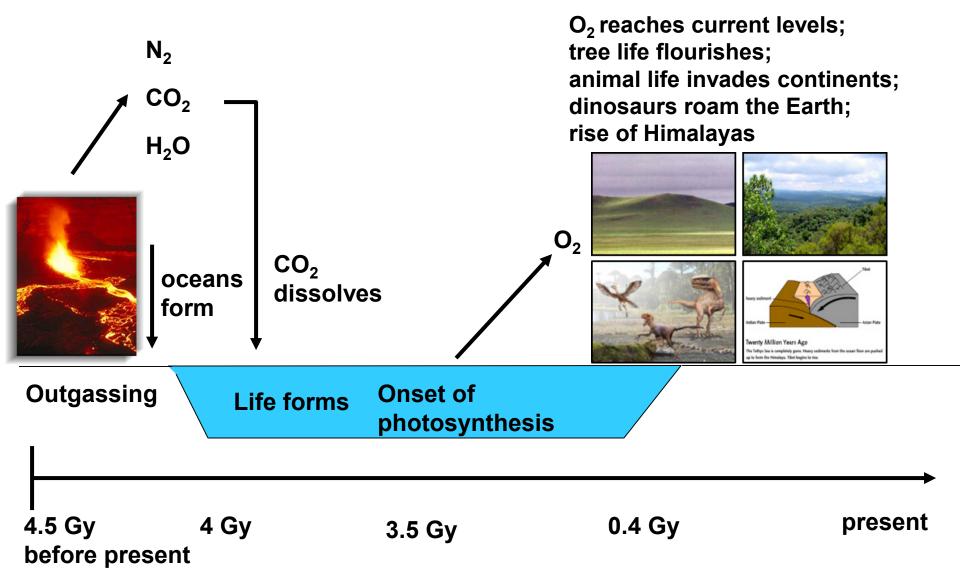
Geological Evolution of Earth's Atmosphere: *Atmospheric CO*₂ *on Geological Time Scales*

~500 to 300 My B.P.


- Development of vascular land plants
- Plants became bigger and bigger and less reliant on water
- Once buried, lignin in woody material resists decay
- Burial rate of terrestrial plant matter increases dramatically: (evidence : δ¹³C analysis)
- Past burial rate of vascular plant material may have been much higher than present, due to the lack (way back when) of abundant bacteria, fungi, and small soil animals that now recycle plant matter

Non-vascular: Bryophytes Vascular: Pteridophytes

Geological Evolution of Earth's Atmosphere: *Atmospheric CO*₂ *on Geological Time Scales*


~500 to 300 My B.P.

- Development of vascular land plants
- Plants became bigger and bigger and less reliant on water
- Once buried, lignin in woody material resists decay
- Burial rate of terrestrial plant matter increases dramatically: (evidence : δ^{13} C analysis)
- Past burial rate of vascular plant material may have been much higher than present, due to the lack (way back when) of abundant bacteria, fungi, and small soil animals that now recycle plant matter

From R. Berner, Science, 276, 544, 1997.

Geological Evolution of Earth's Atmosphere: *Precursors of Modern Day World*

Geological Evolution of Earth's Atmosphere: CO₂ and Temperature

What message were we trying to convey?

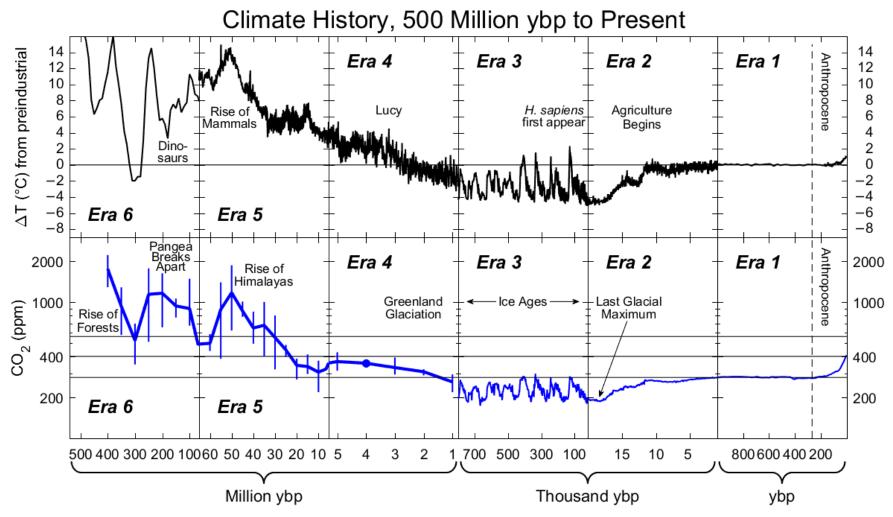
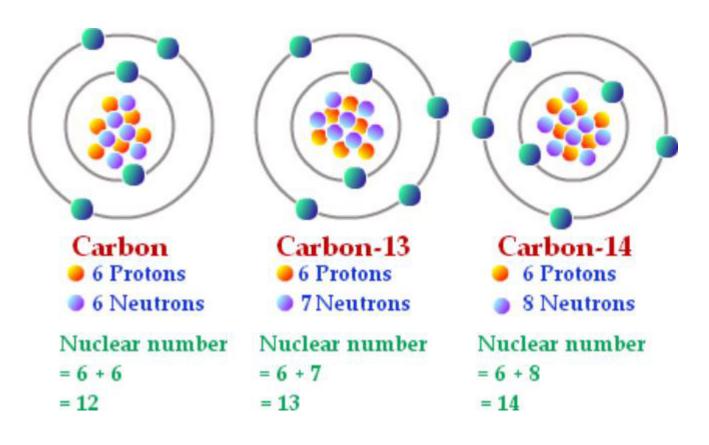



Fig 1.1, Paris Beacon of Hope

Geological Evolution of Earth's Atmosphere: One Day, *Everything Changed*

Biology prefers light forms of carbon:

https://experiment.com/u/iA41fA

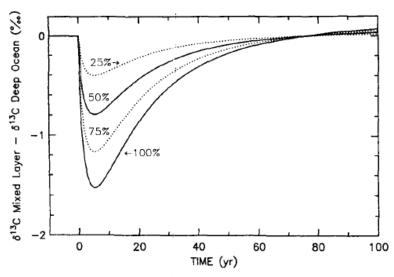
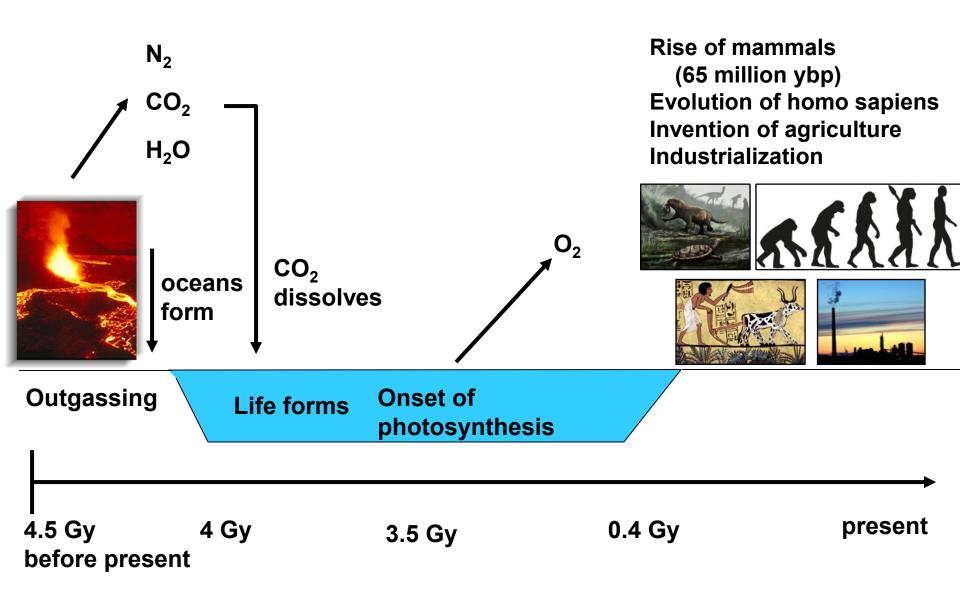
Geological Evolution of Earth's Atmosphere: One Day, *Everything Changed*

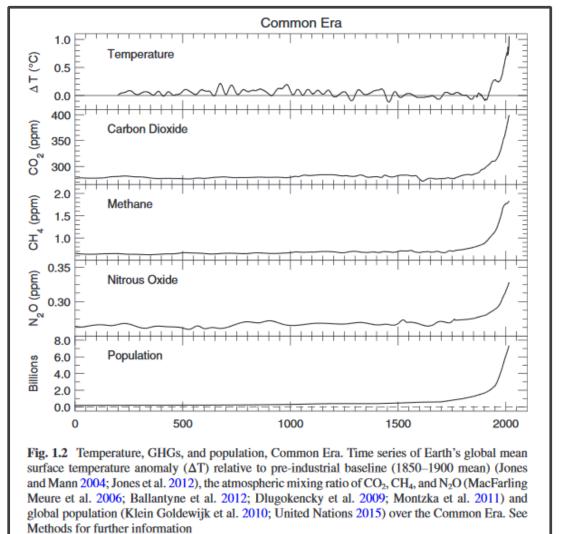
By understanding how the carbon isotopic ratio of the world's surface waters changed at the K-T boundary, as recorded by the shells of preserved oceanic organisms, we could compute the fraction of the world's biosphere that must have burned on this really bad day (or soon thereafter):

Carbon isotopic evidence for biomass burning at the K-T boundary

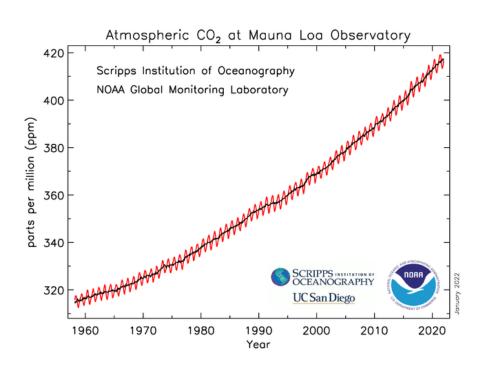
A new interpretation of existing carbon isotopic data combined with results from a biogeochemical model suggests that burning of terrestrial biomass occurred on a global scale at the Cretaceous-Tertiary (K-T) boundary. Carbon isotopic ratios from planktonic and benthic microfossils across the K-T boundary reveal not only a breakdown in the normal surface-water to deep-water gradient of ¹³C/¹²C, but also a reversal at the boundary. This reversal cannot be explained by the cessation of primary production alone. We propose that combustion of terrestrial biomass with subsequent transfer of isotopically light carbon to surface waters is the most likely cause of this anomaly. A biogeochemical model is used to quantify the extent of burning at the boundary: combustion of roughly 25% of the above-ground biomass at the end of the Cretaceous is necessary to account for the observed isotopic signal.

Ivany and Salawitch, *Geology*, 1993 Link to this paper appears in auxiliary reading for today's class


Figure 2. Variation of surface-water to deep-water gradient of δ^{13} C vs. time for simulations of biomass combustion, assumed to occur instantaneously at time zero. Results are shown for burning 25%, 50%, 75%, and 100% of above-ground biomass (10^{18} g C; δ^{13} C = -25.7%) at end of Cretaceous assuming combustion efficiency of 50% (i.e., model result for 100% combustion corresponds to injection of half of above-ground biomass carbon into atmosphere as CO₂ at time zero).

Geological Evolution of Earth's Atmosphere: Human Influence



Geological Evolution of Earth's Atmosphere: Human Influence

What message were we trying to convey?

CO₂: ~415 parts per million (ppm) and rising!

Charles Keeling, Scripps Institution of Oceanography, La Jolla, CA https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2 data mlo.png

Human drivers of global warming over the last millennium

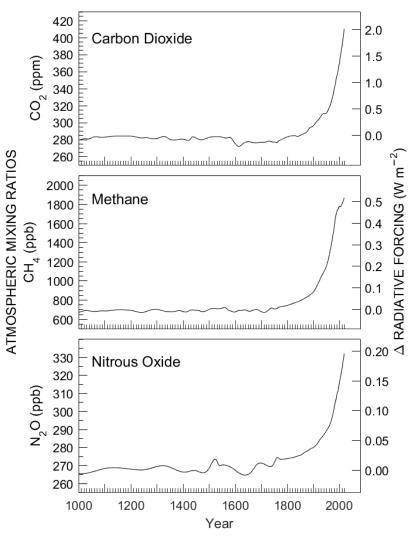
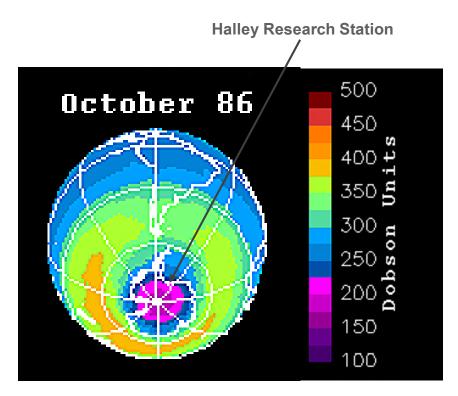
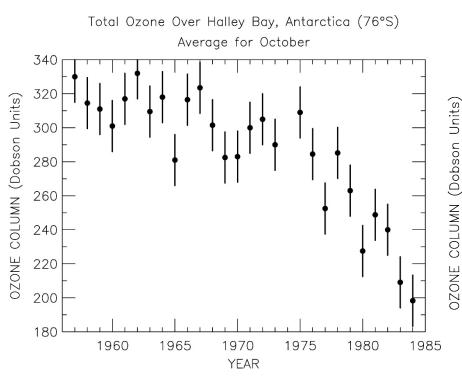
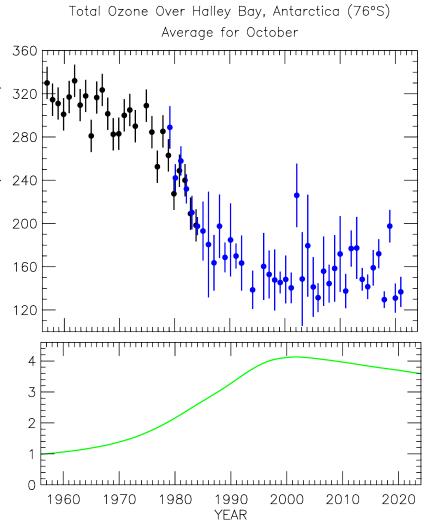



Figure courtesy Brian Bennett, Univ of Md

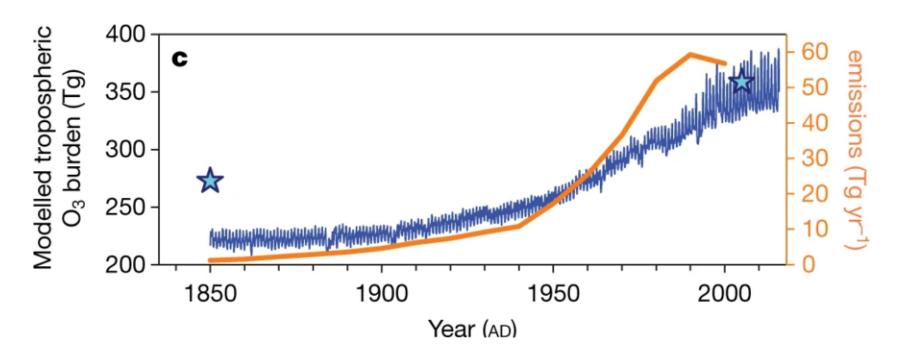
Stratospheric Ozone – shields surface from solar UV radiation



After Farman *et al.*, Large losses of total ozone in Antarctica reveal Seasonal ClOx/NOx interaction, Nature, 315, 207, 1985.


Stolarski et al., Nature, 1986.

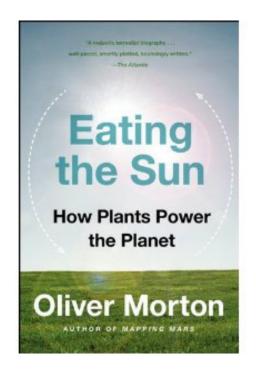
Stratospheric Ozone – shields surface from solar UV radiation

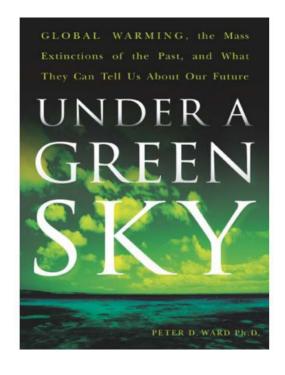


After Farman *et al.*, Large losses of total ozone in Antarctica reveal Seasonal ClOx/NOx interaction, Nature, 315, 207, 1985.

Update

Tropospheric Ozone – oxidant, lung irritant, harmful to crops

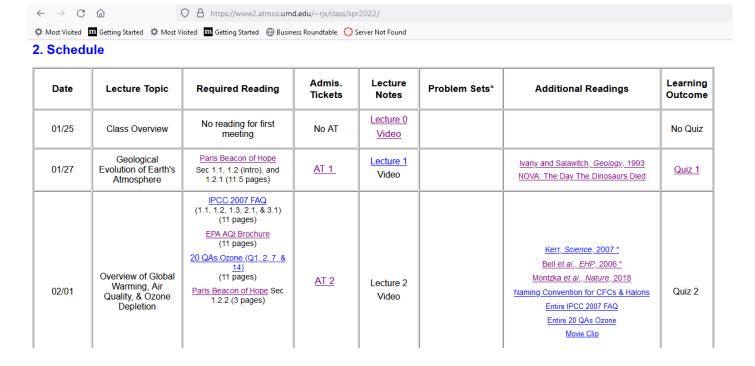

Modelled increase in tropospheric O_3 burden from the GEOS-Chem/MERRA2 model (cyan stars) and GISS-E2.1 model (blue line), as well as estimates of historical emissions of NO_x (orange line).


Yueng et al., Nature, 2019

https://www.nature.com/articles/s41586-019-1277-1

Source Material

These books are a great resource for how photosynthesis works as well as the history of atmospheric composition



http://www.amazon.com/Eating-Sun-Plants-Power-Planet/dp/0007163657/ref=sr 1 1?s=books&ie=UTF8&gid=1359325940&sr=1-1&keywords=eating+the+sun

 $\underline{\text{http://www.amazon.com/Under-Green-Sky-Warming-Extinctions/dp/0061137928/ref=sr_1_1?s=books\&ie=UTF8\&qid=1359326345\&sr=1-1\&keywords=under+a+green+sky-blockswise=books&ie=$

and provided some of the source material for much of this lecture

Next Lecture: Course Overview

Readings: IPCC 2007 FAQ 1.1, 1.2, 1.3, 2.1, & 3.1 (11 pages)

EPA Air Quality Guide (11 pages)

20 QAs Ozone Layer Q1, 2, 7, and 14 (11 pages)

Paris Beacon of Hope, Sect 1.2.2 (3 pages)

Note: 36 pages, about our norm

Admission Ticket for Lecture 2 is posted on ELMS