## Overview of Global Warming, Ozone Depletion, and Air Quality

#### AOSC / CHEM 433 & AOSC / CHEM 633

#### Ross Salawitch

#### Class Web Sites:

http://www2.atmos.umd.edu/~rjs/class/spr2022 https://myelms.umd.edu/courses/137772



https://www.videoblocks.com/video/earth-sunset-spacewalk-view-from-space-station-r7dydlcsgjd23vml0

# Lecture 2 1 February 2022

## **Announcements**

1) AOSC Weekly Seminar Feb 3: 3:30 pm (Thursday)



#### DR. RYAN STAUFFER

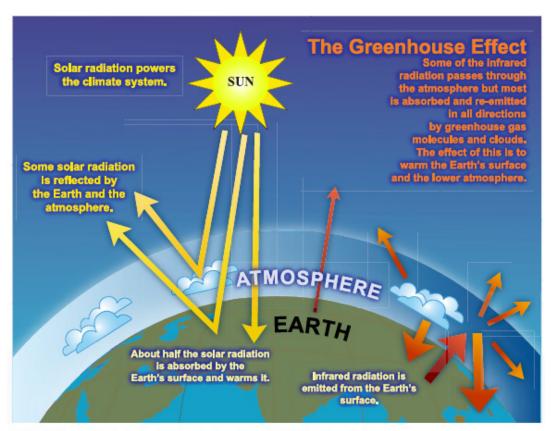
STAUFFER

INSTITUTION: NASA/GSFC CHEMISTRY AND ATMOSPHERIC DYNAMICS LABORATORY

TITLE: 'SOUTHERN HEMISPHERE ADDITIONAL OZONESONDES (SHADOZ): ACCOMPLISHMENTS FROM 25 YEARS OF TROPICAL AND SUBTROPICAL OZONE PROFILING'

Abstract: Ozone (O3) is a vital trace gas in Earth's atmosphere. It shields life from harmful UV radiation, but is a strong oxidant and harmful pollutant when found in high quantities near the surface. Ozone is also a greenhouse gas in the troposphere, so characterizing the vertical distribution of O3 is critical to determining its role in climate and effects on air quality. Satellite observations give us excellent spatial coverage of the total column O3 in the atmosphere, but are unable to resolve the O3 vertical profile with accuracy, especially below the stratosphere. Balloonborne ozonesondes bridge this gap by providing high vertical resolution measurements from the surface to over 30 km altitude. Before the late 1990s, ozonesonde measurements in the tropics were sparse, so the Southern Hemisphere Additional Ozonesondes (SHADOZ) strategic network organized over a dozen stations to frequently launch ozonesondes for pollution and climate studies. This talk features the history and accomplishments of SHADOZ from 1998-2021 including work on satellite and model validation, biomass burning, weather and climate links to O3, and O3 trends, as well as data reprocessing and quality assurance activities with global partners.




3:30 PM EST THURSDAY, FEBRUARY 3, 2022

PRESENTED IN HYBRID VIRTUAL/IN-PERSON FORMAT
SEMINAR LOCATION: ATLANTIC BUILDING, ROOM 2400
CONTACT: JACOB WENEGRAT (WENEGRAT@UMD.EDU) OR JOSEPH KNISELY
(JKNISELY@UMD.EDU)

https://aosc.umd.edu/seminars

2) Please have a calculator available for class on Thursday

#### Greenhouse Effect



FAQ 1.3, Figure 1. An idealised model of the natural greenhouse effect. See text for explanation.

Question 1.3, IPCC, 2007

### Radiative Forcing of Climate, 1750 to 2019

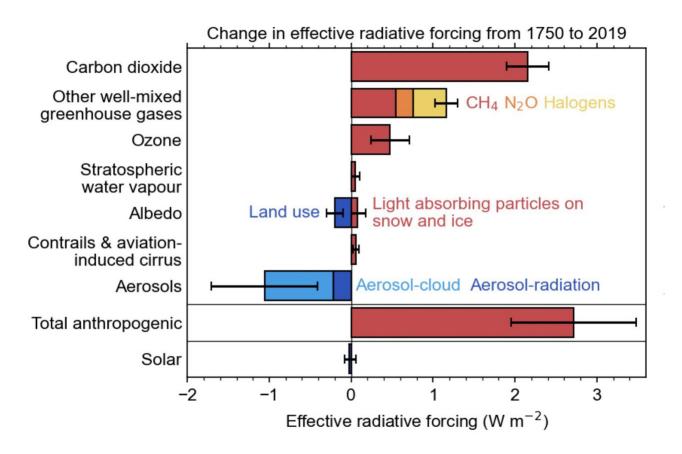
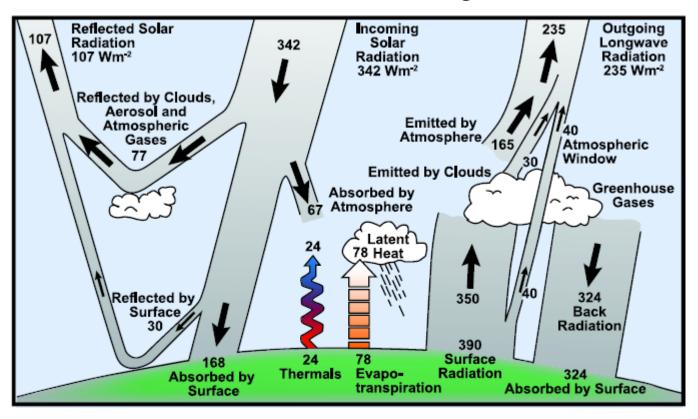
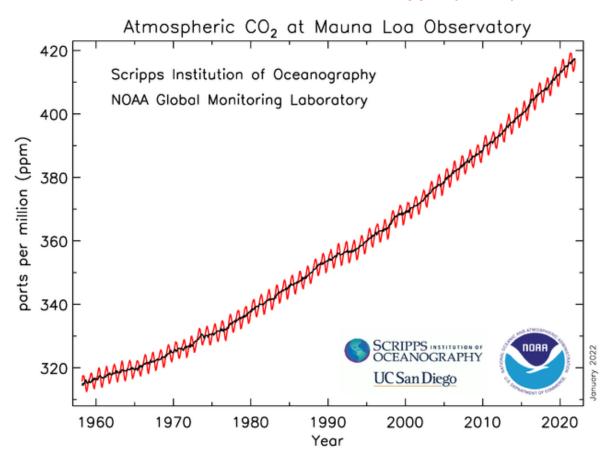




Figure 7.6, IPCC (2021) <a href="https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC">https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC</a> AR6 WGI TS.pdf

### Radiative Forcing

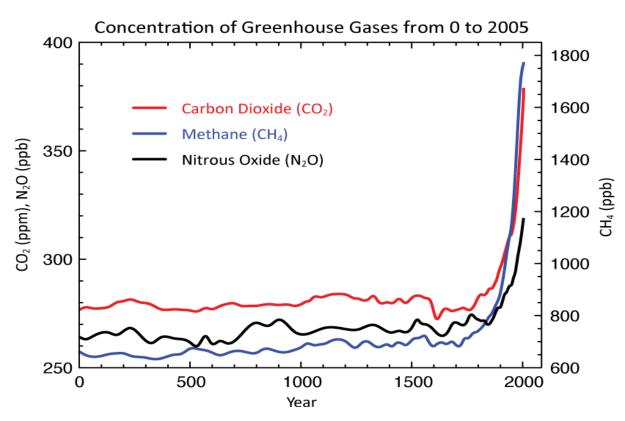


FAQ 1.1, Figure 1. Estimate of the Earth's annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and atmosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar radiation is absorbed by the Earth's surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by evapotranspiration and by longwave radiation that is absorbed by clouds and greenhouse gases. The atmosphere in turn radiates longwave energy back to Earth as well as out to space. Source: Kiehl and Trenberth (1997).


Question 1.1, IPCC, 2007

#### Radiative Forcing of Climate is Change in Energy

reaching the lower atmosphere (surface to tropopause) as GHGs rise. "Back Radiation" is most important term.

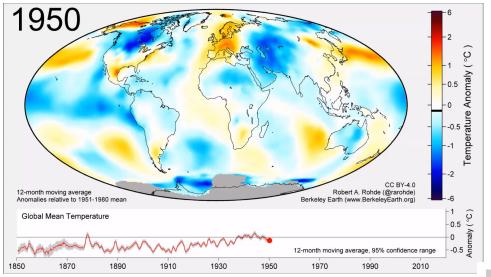

## Modern CO<sub>2</sub> Record

Global Mean on 30 Jan 2022: 419.41 parts per million (ppm) 30 Jan 2021: 416.19 parts per million (ppm) Annual Rise about 3.2 ppm (0.77%)



Legacy of Charles Keeling, Scripps Institution of Oceanography, La Jolla, CA <a href="https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2\_data\_mlo.png">https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2\_data\_mlo.png</a>
See also <a href="https://www.co2.earth/daily-co2">https://www.co2.earth/daily-co2</a>

#### GHG Record Over Last Several Millennia




**FAQ 2.1, Figure 1 (Errata).** Revised figure showing atmospheric concentrations of important long-lived greenhouse gases over the last 2,000 years. Using the combined and simplified data from Chapters 6 and 2, the original figure displayed the  $CH_4$  curve incorrectly. The revised figure shows the same data correctly plotted. For further details please refer to the original figure caption.

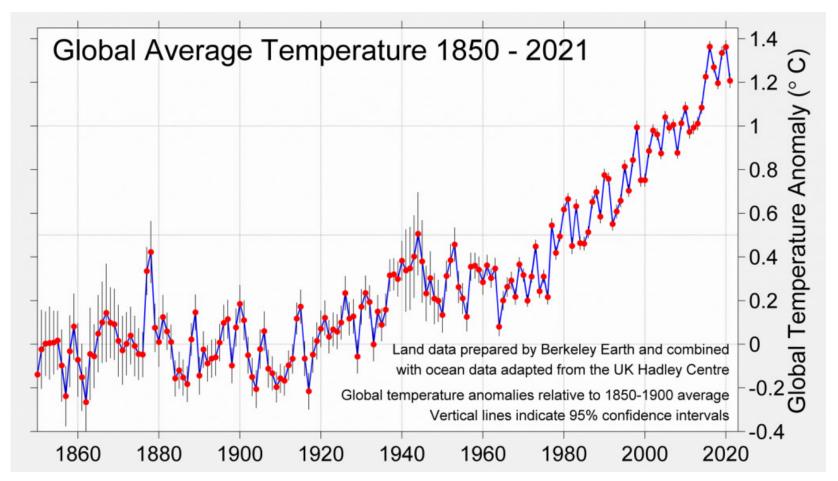
Question 2.1, IPCC, 2007 ... corrected https://www.ipcc.ch/site/assets/uploads/2018/05/ar4-wg1-errata.pdf

#### Correction issued upon realization the line for CH<sub>4</sub> had been plotted incorrectly

## Berkeley Earth Animation of Global Warming






#### 1°C (Celsius) warming is equivalent to 1.8°F (Fahrenheit) warming

Work of Robert Rohde and the Berkeley Earth Team

http://berkeleyearth.org

Animation at <a href="https://twitter.com/RARohde/status/1217496115429494786">https://twitter.com/RARohde/status/1217496115429494786</a>

## Berkeley Earth Animation of Global Warming



The global mean temperature in 2021 was about 1.2°C above the average temperature from 1850-1900, a period often used as a pre-industrial baseline for global temperature targets. Nominally, 2021 was the 6<sup>th</sup> warmest year to have been directly observed, though 2015, 2018, and 2021 all cluster closely together relative to their uncertainty estimates.

Hence, the 5<sup>th</sup>, 6<sup>th</sup>, and 7th warmest years are all essentially tied.

Work of Robert Rohde and the Berkeley Earth Team <a href="http://berkeleyearth.org">http://berkeleyearth.org</a>/
http://berkeleyearth.org/global-temperature-report-for-2021/

## **GWP – Global Warming Potential**

GWP (CH<sub>4</sub>) = 
$$\frac{\int_{\text{time initial}}^{\text{time final}} a_{\text{CH4}} \times [\text{CH}_4(t)] dt}{\int_{\text{time initial}}^{\text{time final}} a_{\text{CO2}} \times [\text{CO}_2(t) dt]$$

#### where:

 $a_{\rm CH4}$  = Radiative Efficiency (W m<sup>-2</sup> kg <sup>-1</sup>) due to an increase in CH<sub>4</sub>

 $a_{\text{CO2}}$  = Radiative Efficiency (W m<sup>-2</sup> kg<sup>-1</sup>) due to an increase in CO<sub>2</sub>

 $CH_4(t)$  = time-dependent response to an instantaneous release of a pulse of  $CH_4$ 

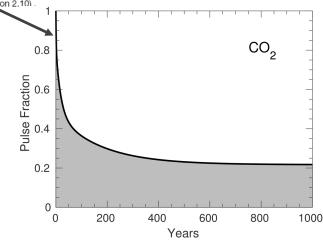
 $CO_2(t)$  = time-dependent response to an instantaneous release of a pulse of  $CO_2$ 

GWP (N<sub>2</sub>O) = 
$$\frac{\int_{\text{time initial}}^{\text{time final}} a_{\text{N2O}} \times [\text{N}_2\text{O}(t)] dt}{\int_{\text{time initial}}^{\text{time final}} a_{\text{CO2}} \times [\text{CO}_2(t) dt]$$

## **GWP – Global Warming Potential**

Table TS.2. Lifetimes, radiative efficiencies and direct (except for CH<sub>4</sub>) global warming potentials (GWP) relative to CO<sub>2</sub>. {Table 2.14}

| Industrial Designation    |                  | Lifetime<br>(years)    | Radiative<br>Efficiency<br>(W m <sup>-2</sup> ppb <sup>-1)</sup> | Global Warming Potential for<br>Given Time Horizon |       |        |        |
|---------------------------|------------------|------------------------|------------------------------------------------------------------|----------------------------------------------------|-------|--------|--------|
| or Common Name<br>(years) | Chemical Formula |                        |                                                                  | SAR‡<br>(100-yr)                                   | 20-yr | 100-yr | 500-yr |
| Carbon dioxide            | CO <sub>2</sub>  | See below <sup>a</sup> | b1.4x10 <sup>-5</sup>                                            | 1                                                  | 1     | 1      | 1      |
| Methanec                  | CH₄              | 12°                    | 3.7x10 <sup>-4</sup>                                             | 21                                                 | 72    | 25     | 7.6    |
| Nitrous oxide             | $N_2O$           | 114                    | 3.03x10 <sup>-3</sup>                                            | 310                                                | 289   | 298    | 153    |


#### Notes:

from IPCC 2007 "Physical Science Basis"

- ‡ SAR refers to the IPCC Second Assessment Report (1995) used for reporting under the UNFCCC.
- <sup>a</sup> The CO<sub>2</sub> response function used in this report is based on the revised version of the Bern Carbon cycle model used in Chapter 10 of this report (Bern2.5CC; Joos et al. 2001) using a background CO<sub>2</sub> concentration value of 378 ppm. The decay of a pulse of CO<sub>2</sub> with time t is given by

$$a_0 + \sum_{i=1}^{5} a_i \cdot e^{-t/\tau_i}$$
 where  $a_0 = 0.217$ ,  $a_1 = 0.259$ ,  $a_2 = 0.338$ ,  $a_3 = 0.186$ ,  $\tau_1 = 172.9$  years,  $\tau_2 = 18.51$  years, and  $\tau_3 = 1.186$  years, for  $t < 1,000$  years.

- b The radiative ensistency of CO<sub>2</sub> is calculated using the IPCC (1990) simplified expression as revised in the TAR, with an updated background concentration value of 378 ppm and a perturbation of +1 ppm (see Section 2.10.2).
- <sup>c</sup> The perturbation lifetime for Ch<sub>4</sub> is 12 years as in the TAR (see also Section 7.4). The GWP for CH<sub>4</sub> includes indirect effects from enhancements of ozone and stratospheric water vapour (see Section 2.10).



$$CO_2(t) = 0.217 + 0.186 \times CO_2(t=0) e^{-t/1.286} + 0.338 \times CO_2(t=0) e^{-t/18.59} + 0.249 \times CO_2(t=0) e^{-t/172.9}$$
  
where all times are given in units of year

### GWPs Now Come In <u>Two Flavors</u> (20 yr & 100 yr time horizons) And Are *Slight Moving Targets*

| Global Warming Potentials (dimensionless) |                      |                    |                    |                    |                                        |  |
|-------------------------------------------|----------------------|--------------------|--------------------|--------------------|----------------------------------------|--|
| GHG                                       | IPCC (1995)<br>SAR   | IPCC (2001)<br>AR3 | IPCC (2007)<br>AR4 | IPCC (2013)<br>AR5 | IPCC (2021)<br>AR6                     |  |
| 100 Year Time                             | : Horizon            |                    |                    |                    |                                        |  |
| CH <sub>4</sub>                           | 21                   | 23                 | 25                 | 28                 | 27.2ª or 29.8b                         |  |
| N <sub>2</sub> O                          | 310                  | 296                | 298                | 265                | 273                                    |  |
| 20 Year Time H                            | 20 Year Time Horizon |                    |                    |                    |                                        |  |
| CH <sub>4</sub>                           | 56                   | 62                 | 72                 | 84                 | 80.8 <sup>a</sup> or 82.5 <sup>b</sup> |  |
| N <sub>2</sub> O                          | 280                  | 275                | 289                | 264                | 273                                    |  |

In part because best estimate of atmospheric lifetimes has evolved:

<sup>a</sup>CH<sub>4</sub> from non-fossil fuel sources such as agriculture <sup>b</sup>CH<sub>4</sub> from fossil fuel sources

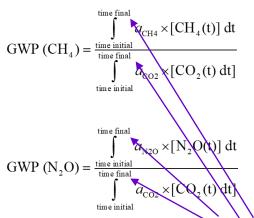
| Atmospheric Lifetime (year) |                    |                    |                    |                    |                    |
|-----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| GHG                         | IPCC (1995)<br>SAR | IPCC (2001)<br>AR3 | IPCC (2007)<br>AR4 | IPCC (2013)<br>AR5 | IPCC (2021)<br>AR6 |
| CH <sub>4</sub>             | 12                 | 12                 | 12                 | 12.4               | 11.8               |
| N <sub>2</sub> O            | 114                | 114                | 114                | 121                | 109                |

**IPCC: Intergovernmental Panel on Climate Change** 

SAR : Second Assessment Report; AR3: Third Assessment Report; AR4: Fourth Assessment Report

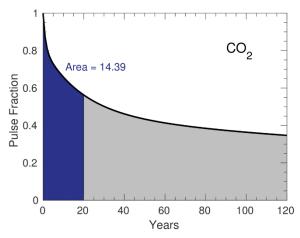
AR5: Fifth Assessment Report; AR6: Sixth Assessment Report

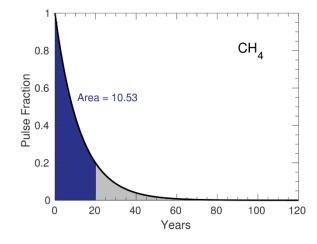
# 100 yr time time-horizon GWPs from latest IPCC report supposed to be used for International Book-Keeping

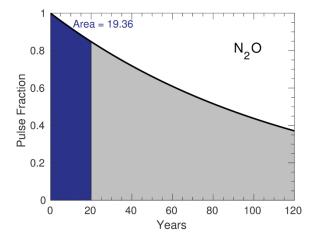

**IPCC Sixth Assessment Report Global Warming Potentials** 

|                                   | 100 Year Time Period |             |             | 20 Year Time Period |             |             |
|-----------------------------------|----------------------|-------------|-------------|---------------------|-------------|-------------|
| Greenhouse Gas                    | AR4<br>2007          | AR5<br>2014 | AR6<br>2021 | AR4<br>2007         | AR5<br>2014 | AR6<br>2021 |
| CO <sub>2</sub>                   | 1                    | 1           | 1           | 1                   | 1           | 1           |
| CH <sub>4</sub> fossil origin     | 25                   | 28          | 29.8        | 72                  | 84          | 82.5        |
| CH <sub>4</sub> non fossil origin | 25                   | 20          | 27.2        | 12                  | 04          | 80.8        |
| N <sub>2</sub> O                  | 298                  | 265         | 273         | 289                 | 264         | 273         |

Does the new report mean your company has to update your calculations, and should you be adopting the 100-year or 20-year GWPs? The answer is not as simple as you might think and depends on regulation in your region and the purpose of your report. However, in the absence of any bespoke requirements, the best practice is to adopt the new AR6 100-year GWPs.


The Paris Rulebook states: 'Each Party shall use the 100-year time-horizon global warming potential (GWP) values from the IPCC Fifth Assessment Report, or 100-year time-horizon GWP values from a subsequent IPCC assessment report as agreed upon by the 'Conference of the Parties serving as the meeting of the Parties to the Paris Agreement' (CMA), to report aggregate emissions and removals of GHGs, expressed in CO2-eq. Each Party may in addition also use other metrics (e.g., global temperature potential) to report supplemental information on aggregate emissions and removals of GHGs, expressed in CO2-eq".


## **GWP – Global Warming Potential**



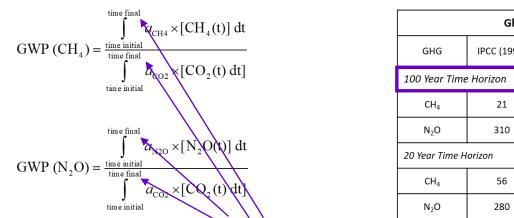

| Global Warming Potentials |                       |             |             |             |  |
|---------------------------|-----------------------|-------------|-------------|-------------|--|
| GHG                       | IPCC (1995)           | IPCC (2001) | IPCC (2007) | IPCC (2013) |  |
| 100 Year Time             | 100 Year Time Horizon |             |             |             |  |
| CH <sub>4</sub>           | 21                    | 23          | 25          | 28          |  |
| N <sub>2</sub> O          | 310                   | 296         | 298         | 265         |  |
| 20 Year Time H            | lorizon               |             |             |             |  |
| CH <sub>4</sub>           | 56                    | 62          | 72          | 84          |  |
| N <sub>2</sub> O          | 280                   | 275         | 289         | 264         |  |

20 Year Time Horizon means time final = 20 years in these integrals



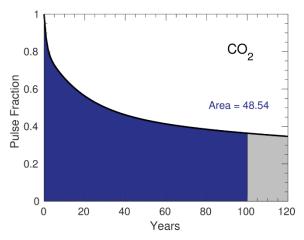


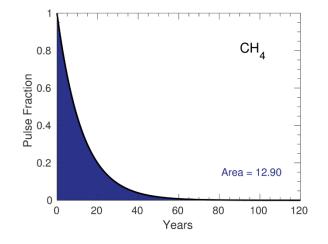


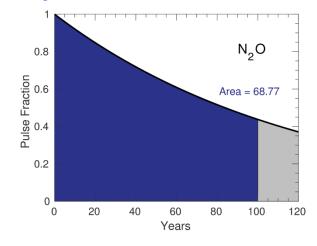

$$CO_2(t) = 0.217 + 0.186 \times CO_2(t=0) e^{-t/1.286} + 0.338 \times CO_2(t=0) e^{-t/18.59} + 0.249 \times CO_2(t=0) e^{-t/172.9}$$

$$CH_4(t) = CH_4(t=0) e^{-t/12.4}$$

$$N_2O(t) = N_2O(t=0) e^{-t/121.0}$$


where all times are given in units of year


## **GWP – Global Warming Potential**



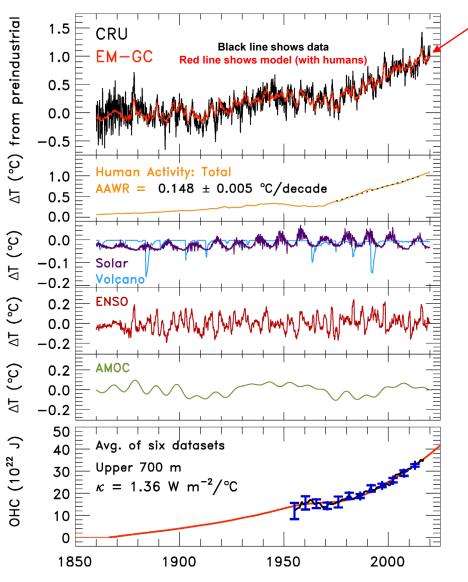

| Global Warming Potentials |             |             |             |             |  |
|---------------------------|-------------|-------------|-------------|-------------|--|
| GHG                       | IPCC (1995) | IPCC (2001) | IPCC (2007) | IPCC (2013) |  |
| 100 Year Time Horizon     |             |             |             |             |  |
| CH <sub>4</sub>           | 21          | 23          | 25          | 28          |  |
| N <sub>2</sub> O          | 310         | 296         | 298         | 265         |  |
| 20 Year Time Horizon      |             |             |             |             |  |
| CH <sub>4</sub>           | 56          | 62          | 72          | 84          |  |
| N <sub>2</sub> O          | 280         | 275         | 289         | 264         |  |

100 Year Time Horizon means time final = 100 years in these integrals








$$CO_2(t) = 0.217 + 0.186 \times CO_2(t=0) e^{-t/1.286} + 0.338 \times CO_2(t=0) e^{-t/18.59} + 0.249 \times CO_2(t=0) e^{-t/172.9}$$

$$CH_4(t) = CH_4(t=0) e^{-t/12.4}$$

$$N_2O(t) = N_2O(t=0) e^{-t/121.0}$$

where all times are given in units of year

Are humans responsible?



$$\Delta T_{MDL i} = (1 + \gamma) \left( \frac{GHG RF_i + LUC RF_i + Aerosol RF_i}{\lambda_p} \right) + C_0 + C_1 \times SOD_{i-6} + C_2 \times TSI_{i-1} + C_3 \times ENSO_{i-2} + C_4 \times AMOC_i - \left( \frac{Q_{OCEAN_i}}{\lambda_p} \right)$$

where:

*i* denotes month
$$\lambda_{p} = 3.2 \text{ W m}^{-2} \,^{\circ}\text{C}^{-1}$$

$$1 + \gamma = \{1 - \lambda_{\Sigma}/\lambda_{p}\}^{-1}$$
CHC DE = DE due to a

 $GHG\ RF = RF\ due\ to\ all\ anthropogenic\ GHGs$ 

LUC RF = RF due to Land Use Change

Aerosol RF = RF due to Tropospheric Aerosols

SOD = Stratospheric Optical Depth

TSI = Total Solar Irradiance

ENSO = El Niño Southern Oscillation

AMOC = Atlantic Meridional Overturning Circulation

 $\begin{aligned} Q_{OCEAN} &= Ocean \; heat \; export = \\ &\kappa (1 + \gamma) \{ \Delta T_{MDL \, i} - \Delta T_{OCEAN \, SURFACE \, i} \} \end{aligned}$ 

CRU: Climate Research Unit of East Anglia, United Kingdom EM-GC: Empirical Model of Global Climate, Univ of Maryland

Global warming is caused by CO<sub>2</sub>, the greatest waste product of modern society, as well as CH<sub>4</sub>, N<sub>2</sub>O, and other GHGs.

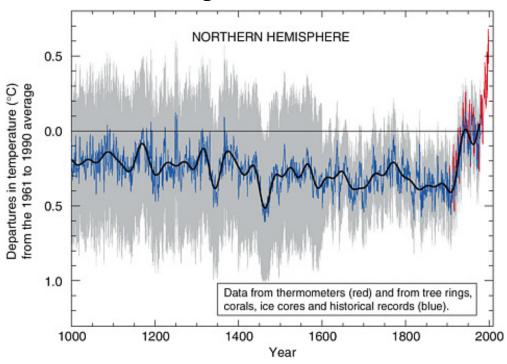
Temperature will continue to rise until human emission of GHGs is curtailed

Canty *et al.*, 2013 <a href="https://www.atmos-chem-phys.net/13/3997/2013/acp-13-3997-2013.html">https://www.atmos-chem-phys.net/13/3997/2013/acp-13-3997-2013.html</a> McBride *et al.*, 2021 <a href="https://esd.copernicus.org/articles/12/545/2021">https://esd.copernicus.org/articles/12/545/2021</a> Nicholls *et al.*, 2021 <a href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020EF001900">https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020EF001900</a> Figure provided by Laura McBride.

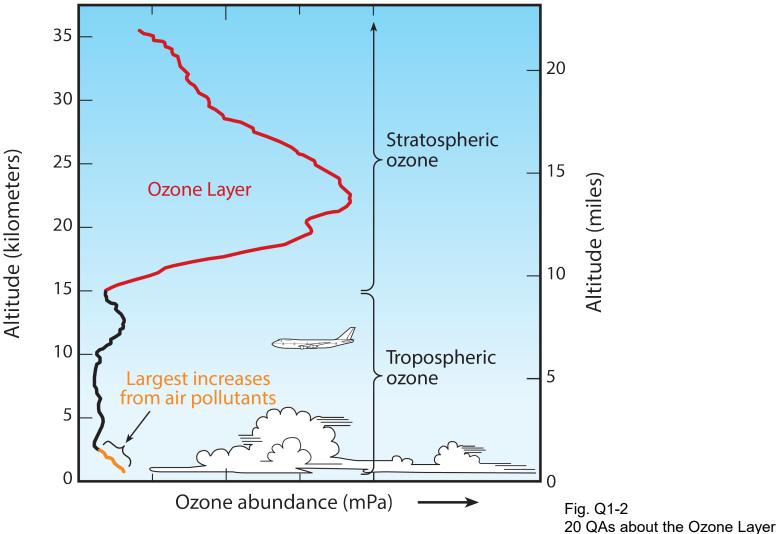
Copyright © 2022 University of Maryland.

#### Are humans responsible?

Orbital variations: drive the ice ages but too small to drive modern warming


Volcanoes: no sustained forcing

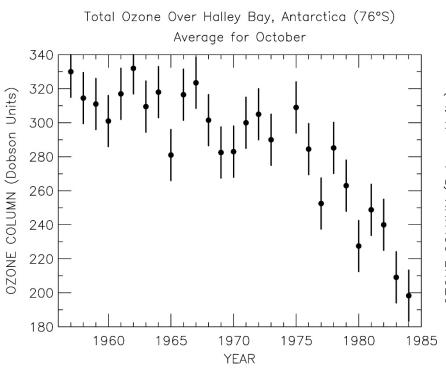
**Solar variability:** 


Perhaps dominant forcing of Medieval Warming and Little Ice Age Small effect since ~1860

Internal variability (eg, El Niño / La Niña) :

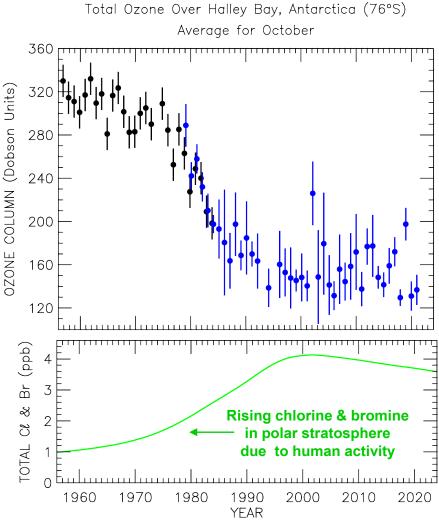
Climate record from 1000 to 1850 shows nothing like sustained, present rate of warming



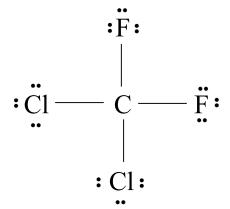

## Ozone in the Atmosphere



It is incredible that human activity both destroys stratospheric ozone (so-called good ozone) and produces tropospheric ozone (so-called bad ozone)


## Earth's Atmosphere – Effect of Humans

#### Stratospheric Ozone – shields surface from solar UV radiation




After Farman *et al.*, Large losses of total ozone in Antarctica reveal Seasonal ClOx/NOx interaction, Nature, 315, 207, 1985.

## **Update**



#### CFC-12



How is it eventually removed from the atmosphere?

What does it produce upon its removal?

See pages 71 to 75, Ch 2, Chemistry in Context, for description of Lewis Dot Structures of atmospherically important species

Note: you will not be tested on Lewis Dot Structures.

However, we want non-chemists to at least have been exposed to this concept for tracking the position of electrons, central for understanding atmospheric chemical reactions.

#### Measurements of Reactive Chlorine From Space

#### Measurements of Chlorine Gases from Space



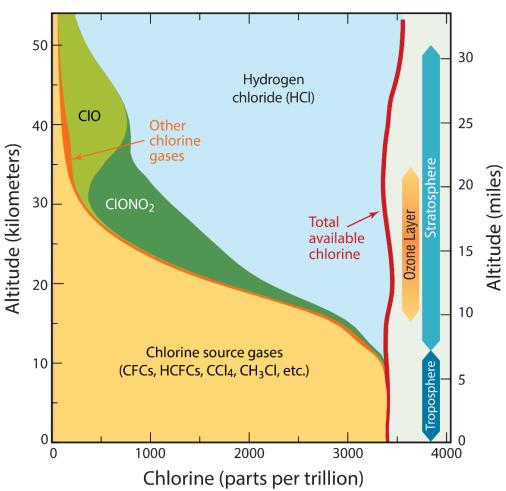



Fig. Q7-2, 20 QAs about the Ozone Layer

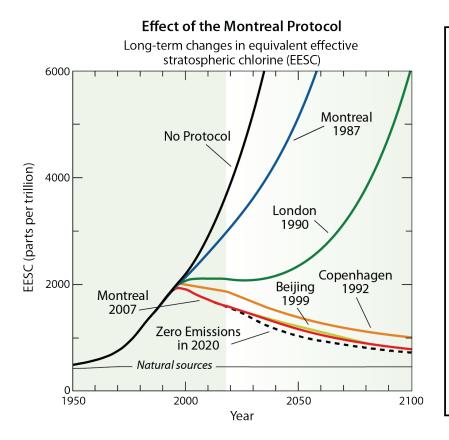
## CIO (Chlorine Monoxide) is a Radical

#### Radicals

- Odd number of electrons unpaired electron in outer valence shell
- Go to great lengths to pair off lone electron
- Exceptionally reactive

See pages 71 to 75, Ch 2, Chemistry in Context, for description of Lewis Dot Structures of atmospherically important species

Note: you will not be tested on Lewis Dot Structures.


However, we want non-chemists to at least have been exposed to this concept for tracking the position of electrons, central for understanding atmospheric chemical reactions.

#### Chlorine Radicals Lead to Ozone Loss

ClO + ClO + M 
$$\rightarrow$$
 ClOOCl + M  
Cl + O<sub>3</sub>  $\rightarrow$  ClO + O<sub>2</sub>  
Cl + O<sub>3</sub>  $\rightarrow$  ClO + O<sub>2</sub>  
ClOOCl + hv  $\rightarrow$  ClOO + Cl  
ClOO + heat  $\rightarrow$  Cl + O<sub>2</sub>  
Net: O<sub>3</sub> + O<sub>3</sub>  $\rightarrow$  3 O<sub>2</sub>

Catalytic loss of ozone: this chemistry causes the Antarctic ozone hole

#### And Atmospheric Levels of these Pollutants are Declining



#### CFCs: Chlorofluorocarbons

Contain some combination of chlorine, fluorine, and at least one carbon. Freons are a trade name for CFCs.

#### **Bromocarbons:**

Contain bromine, perhaps chlorine, and at least one carbon. Halons are a trade name for bromocarbons.

HCFCs: Hydro-chlorofluorocarbons

Same as CFCs, except one or more hydrogen has replaced a chlorine.

HFCs: Hydrofluorocarbons

Contain some combination of hydrogen, fluorine, and carbon. These gases do not contain any bromine or chlorine, and hence pose no damage to the ozone layer. Some HFCs are potent GHGs.

EESC: Equivalent, effective stratospheric chlorine. Reflects combined influence of chlorine and bromine on ozone, via a simple formula: [Chlorine] +  $60 \times$  [Bromine]

Figure Q14-1, 20 QAs about the Ozone Layer

### CFC Usage Prior to the Montreal Protocol

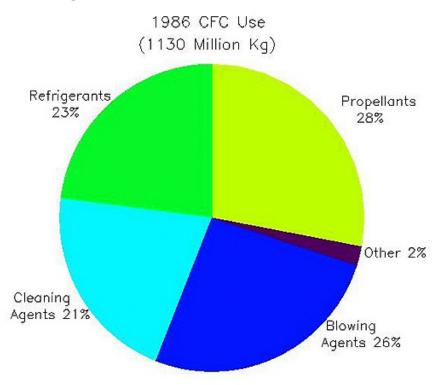
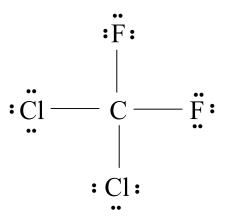
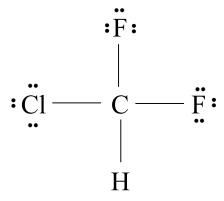
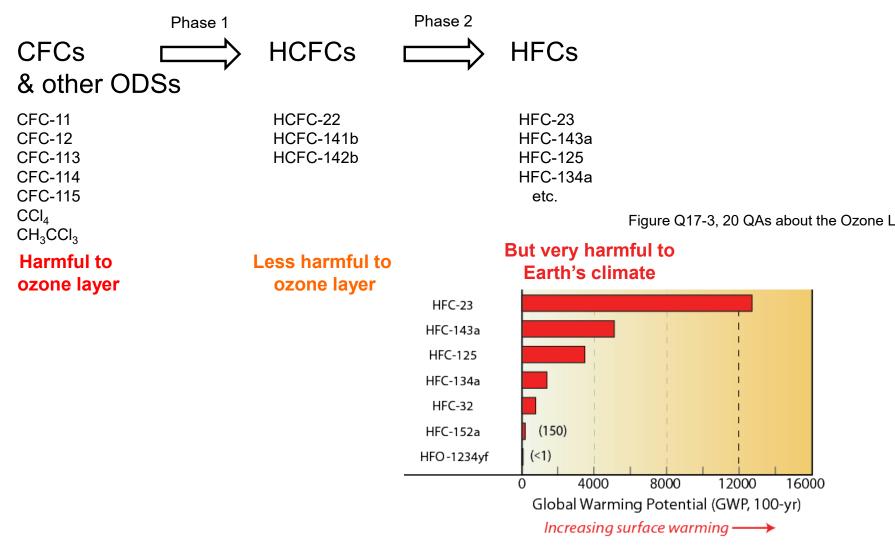




Figure 5b. Changing use patterns for CFCs (from Fisher and Midgley, 1994).


The uses of CFCs in various sectors before the 1987 Montreal Protocol, which required countries to phase out their production to protect the ozone layer.

From <a href="http://www.ccpo.odu.edu/SEES/ozone/class/Chap\_10/index.htm">http://www.ccpo.odu.edu/SEES/ozone/class/Chap\_10/index.htm</a> based upon <a href="https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/94JD00738">https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/94JD00738</a>

## CFCs were replaced with HCFCs




CFC-12 or Freon-12 or R-12



or Freon-22 or R-22

#### Phase out of CFCs and other Ozone Depleting Substances (ODSs)



See http://www.atmos.umd.edu/~rjs/class/spr2020/supplemental readings/Naming Convention for CFCs Halons.pdf

for a guide to CFC naming convention

#### Climate Benefit of the Kigali Amendment

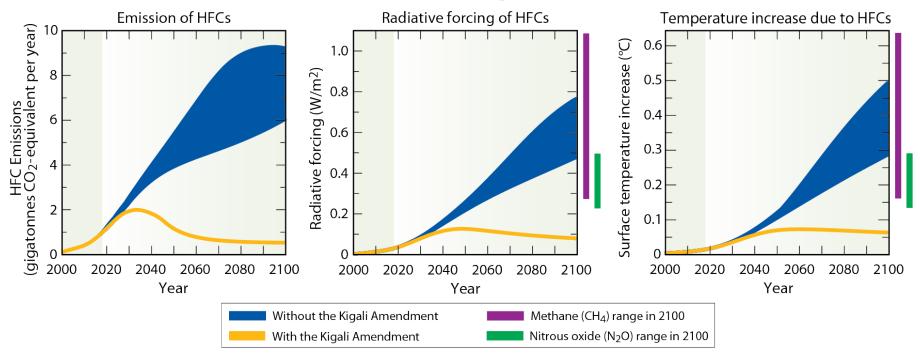



Figure Q19-2, 20 QAs about the Ozone Layer

#### Senate to Consider Kigali Amendment Ratification

November 16, 2021


Christina Theodoridi

The White House today sent the Kigali Amendment to the Montreal Protocol, the treaty to phase down hydrofluorocarbons (HFCs), to the Senate for its advice and consent to U.S. ratification. This action follows up on President Biden's executive order earlier this year.

 $\underline{https://www.nrdc.org/experts/christina-theodoridi/senate-consider-kigali-amendment-ratification}$ 

#### Montreal Protocol Has Banned Industrial Production of CFCs & Other ODS

Projections Based on 2018 World Meteorological Organization



## Montreal Protocol Had Banned Most Industrial Production of CFCs & Other ODS

## The New York Times

# In a High-Stakes Environmental Whodunit, Many Clues Point to China

Interviews, documents and advertisements collected by The New York Times and independent investigators indicate that a major source — possibly the overwhelming one — is factories in China that have ignored a global ban and kept making or using the chemical, CFC-11, mostly to produce foam insulation for refrigerators and buildings.

"You had a choice: Choose the cheaper foam agent that's not so good for the environment, or the expensive one that's better for the environment," said Zhang Wenbo, owner of a refrigerator factory here in Xingfu, in Shandong Province, where he and many other small-scale manufacturers said that until recently, they had used CFC-11 widely to make foam insulation.



Billboards in Xingfu, China, promoting locally made refrigerators. The city has around 1,700 businesses involved in the production of cooking and refrigeration equipment. Gilles Sabrié for The New York Times.

https://www.nytimes.com/2018/06/24/world/asia/china-ozone-cfc.html

#### Air Quality Index

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

| Table 1.4                         | Levels for the Air Quality Index |                              |
|-----------------------------------|----------------------------------|------------------------------|
| Air Quality Index<br>(AQI) Values | Levels of Health Concern         | Colors                       |
| When the AQI is in this range:    | air quality<br>conditions are:   | as symbolized by this color. |
| 0–50                              | Good                             | Green                        |
| 51–100                            | Moderate                         | Yellow                       |
| 101–150                           | Unhealthy for sensitive groups   | Orange                       |
| 151–200                           | Unhealthy                        | Red                          |
| 201–300                           | Very unhealthy                   | Purple                       |
| 301–500                           | Hazardous                        | Maroon                       |

- Computed for each criteria pollutant even though many newspapers only give a single value (usually for worse index)
- In the U.S. health officials are generally concerned about elevated O<sub>3</sub>, PM<sub>2.5</sub>, and ultra-fine particles

## Tropospheric Pollutants (The Air We Breathe)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

| Table 1.2 U.S. Nation                          | onal Ambient Air Quality Standards |                                                 |  |  |
|------------------------------------------------|------------------------------------|-------------------------------------------------|--|--|
| Pollutant                                      | Standard (ppm)                     | Approximate Equivalent<br>Concentration (µg/m³) |  |  |
| Carbon monoxide                                |                                    |                                                 |  |  |
| 8-hr average                                   | 9                                  | 10,000                                          |  |  |
| 1-hr average                                   | 35                                 | 40,000                                          |  |  |
| Nitrogen dioxide                               |                                    |                                                 |  |  |
| Annual average                                 | 0.053                              | 100                                             |  |  |
| Ozone                                          |                                    |                                                 |  |  |
| 8-hr average                                   | 0.075                              | 147                                             |  |  |
| 1-hr average                                   | 0.12                               | 235                                             |  |  |
| Particulates*                                  |                                    |                                                 |  |  |
| PM <sub>10</sub> , annual average              | _                                  | 50                                              |  |  |
| PM <sub>10</sub> , 24-hr average               |                                    | 150                                             |  |  |
| PM <sub>2.5</sub> , annual average             | _                                  | 15                                              |  |  |
| PM <sub>2.5</sub> , 24-hr average <sup>†</sup> |                                    | 35                                              |  |  |
| Sulfur dioxide                                 |                                    |                                                 |  |  |
| Annual average                                 | 0.03                               | 80                                              |  |  |
| 24-hr average                                  | 0.14                               | 365                                             |  |  |
| 3-hr average                                   | 0.50                               | 1,300                                           |  |  |

Note: A standard also exists for lead, but lead does not appear in this table since most of the U.S. is in compliance

 $Chapter \ 1 \quad \textit{Source: U.S. Environmental Protection Agency. Standards also exist for lead, but are not included here.}$ 

Chemistry in Context

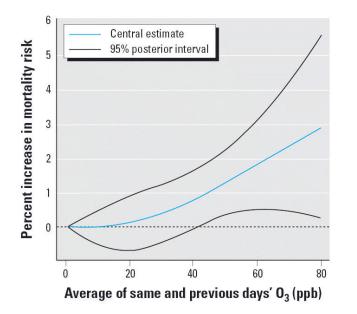
**Criteria pollutant:** identified as being common-place and detrimental to human welfare (i.e., ubiquitous pollutant)

<sup>\*</sup>PM $_{10}$  refers to all airborne particles 10  $\mu m$  in diameter or less. PM $_{2.5}$  refers to particles 2.5  $\mu m$  in diameter or less.

<sup>—</sup>The unit of ppm is not applicable to particulates.

<sup>&</sup>lt;sup>†</sup>PM<sub>2.5</sub> standards are likely to be revised after 2011.

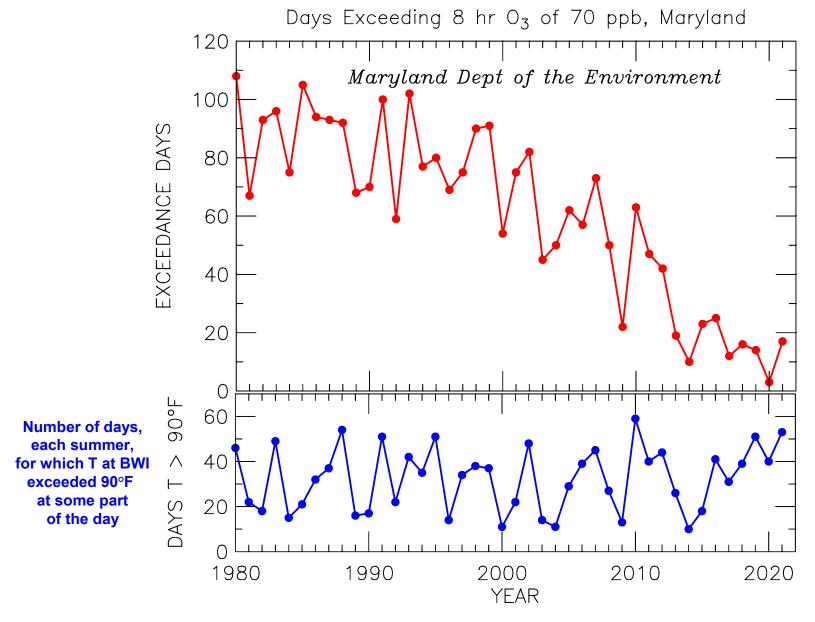
### **Tropospheric Ozone Production**


OH + CO 
$$\rightarrow$$
 CO<sub>2</sub> + H  
H + O<sub>2</sub> + M  $\rightarrow$  HO<sub>2</sub> + M  
HO<sub>2</sub> + NO  $\rightarrow$  OH + NO<sub>2</sub>  
NO<sub>2</sub> + hv  $\rightarrow$  NO + O  
O + O<sub>2</sub> + M  $\rightarrow$  O<sub>3</sub> + M  
Net: CO + 2 O<sub>2</sub>  $\rightarrow$  CO<sub>2</sub> + O<sub>3</sub>

Oxidation of CO in the presence of elevated  $NO_x$  (NO +  $NO_2$ ) leads to **production** of tropospheric ozone

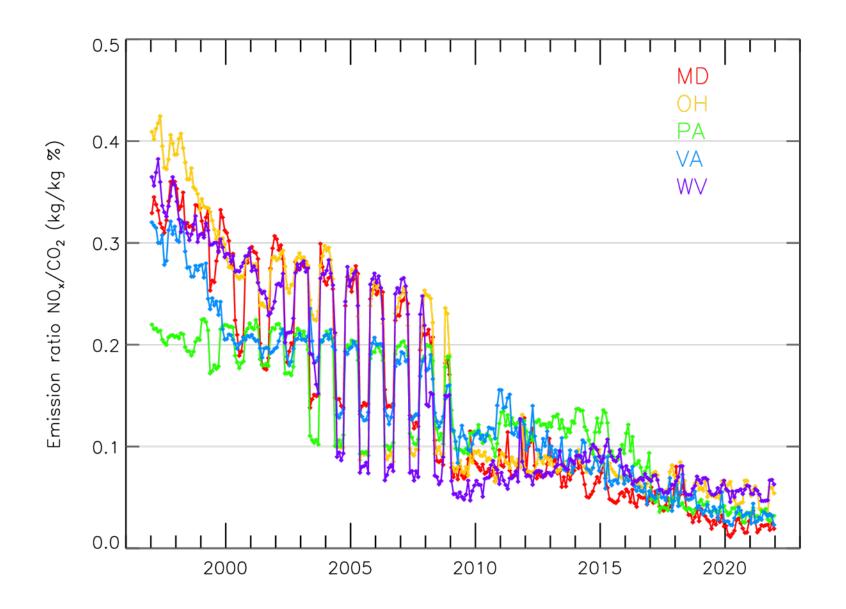
#### Air Quality Standards and Why We Care




For more information, have a look at:
<a href="https://www.weforum.org/agenda/2018/11/deadly-air-pollution-shortens-lives-by-nearly-2-years-researchers">https://agli.epic.uchicago.edu/pollution-facts</a>



Increased risk of premature death (mortality) for all levels of surface  $O_3$ Reductions in surface  $O_3$  will benefit public health, regardless of present conditions Bell *et al.*, 2006


http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC1440776

#### Significant Improvements in *Local* Air Quality since early 1980s



http://www.mde.state.md.us/programs/Air/AirQualityMonitoring/Pages/SeasonalReports.aspx

#### Trends in power plant emissions of NOx



#### Air Quality In The News

## Biden Administration to Reinstate Mercury Pollution Rules Weakened Under Trump

The E.P.A. will resume enforcing limits on the release of mercury, a neurotoxin linked to developmental damage in children, from coal-burning power plants.

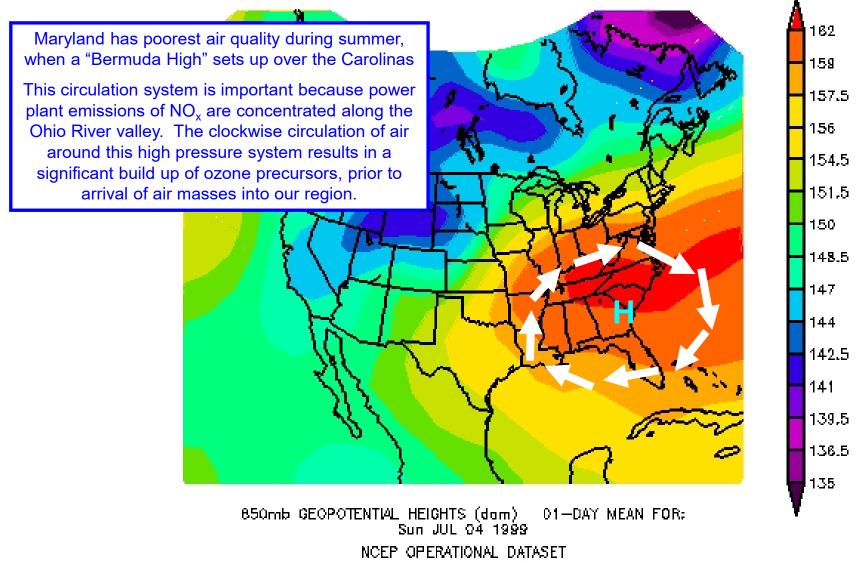


Brandon Shores Power Plant in Maryland, a plant that installed costly "scrubber" technology to reduce mercury emissions. Shannon Jensen for The New York Times



By Coral Davenport

Jan. 31, 2022 Updated 5:04 p.m. ET


WASHINGTON — The Biden administration on Monday reinstated a way of measuring the benefits of reducing air pollution, the first step in a plan that could tighten limits on the amount of mercury that can be discharged from coal-burning power plants.

Mercury is a neurotoxin that poses a particular danger to the brain development of children and fetuses.

The mercury announcement is among several recent actions taken or planned by the Biden administration that are aimed at reducing pollution in air and water. After a first year in which President Biden tried to push ambitious climate legislation through Congress only to see it stall, the administration is using its regulatory machinery to try to curb pollution.

https://www.nytimes.com/2022/01/31/climate/epa-mercury-pollution-coal.html

# Day-to-day meteorology (weather!) affects severity and duration of pollution episodes



http://www.mde.state.md.us/assets/document/BJH%20-%20Basics%20on%20Ozone%20Transport.ppt

## **Temperature Inversions and Air Quality**

Temperature inversion: increase in temperature with height Inversions important for Air Quality because they inhibit vertical mixing of air Air pollutants can accumulate in cities ringed by mountains, such as

Los Angeles, Mexico City, Denver, etc.

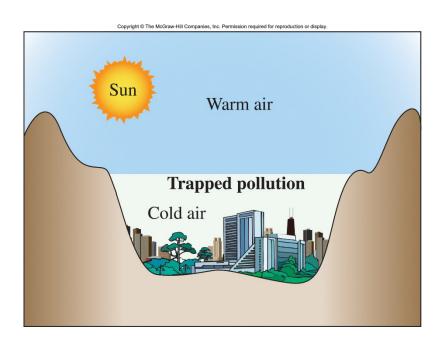
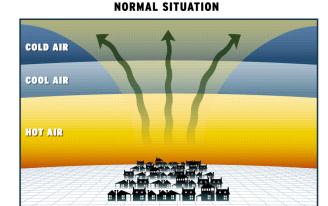
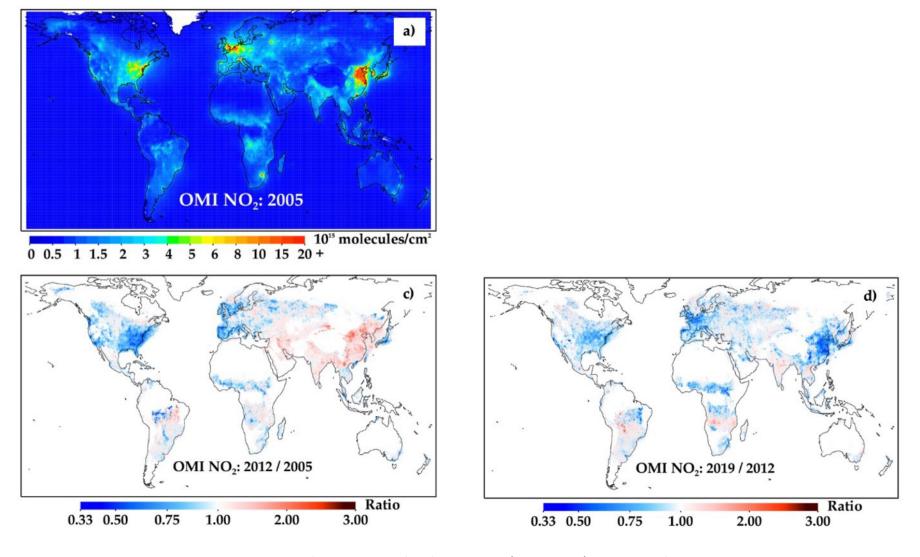




Figure 1.10, Chemistry in Context




COLD AIR

INVERSION LAYER (WARMER AIR)

COLD AIR

**TEMPERATURE INVERSION** 

http://geographygems.blogspot.com/2011/09/smog.html



**Top:** Tropospheric vertical column NO<sub>2</sub> (Trop NO<sub>2</sub>) measured in 2005 **Bottom Left:** Ratio of Trop NO<sub>2</sub> measured in 2012 and 2005 Bottom Right: Ratio of Trop NO<sub>2</sub> measured in 2019 and 2012 All observations from the NASA OMI instrument

Goldberg et al., ERL, 2021

https://iopscience.iop.org/article/10.1088/1748-9326/ac2c34/meta