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Polar Ozone Depletion

Discovery of the ozone hole:
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Farman et al., Large losses of total ozone in Antarctica

reveal seasonal ClO,/NO, interaction, Nature, 315,207,
1985.
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Polar Ozone Depletion

First view from space:

TOMS Total Ozone Monthly Averages

October 81

Stolarski et al., Nature, 322, 808, 1986.

The paper showed data for Octobers of 1979 through 1985 in black & white contour diagrams.
This image, produced soon after, showed color plots of total column ozone during Antarctic

spring, including measurements for year 1986.
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Polar Vortex Circulation

During winter:
» radiative cooling leads to cold air in polar stratosphere

* large scale low pressure region develops over pole
» strong “polar night jet” develops, isolating air at high latitudes from air at low latitudes
* T continues to fall in the “vortex like” circulation near the pole

EP/TOMS Total Ozone for Sep 1, 2001
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Polar Ozone Depletion Theories

Soon after the discovery of the ozone hole three theories emerged to explain the
rapid springtime loss of ozone over Antarctica:

1. Chemistry due to enhanced levels of CIO, driven by heterogeneous reactions on the surface
of polar stratospheric clouds (PSCs) [McElroy et al., Nature, 1986; Solomon et al., Nature, 1986]

a) two new catalytic cycles, both involving halogen radicals and requiring ~1 ppb of CIO to
be effective (CIO + CIO + M —» CIOOCI +M; BrO + CIO — Br + Cl + O,)
[Molina and Molina, JPC, 1987; McElroy et al., Nature, 1986]

b) suggestion that PSC particles might be composed of HNO; and upon sedimentation

could appreciably lower NO, (which would prevent conversion of ClO to CINO;)
[Toon et al., GRL, 1986]

c) decreasing ozone column driven by rising CIO, due to buildup of chlorine from CFCs

2. Chemistry due to enhanced levels of NOx, driven by variations in solar UV
[Callis and Natarajan, Nature, 1986]

3. Loss by transport due to upwelling of ozone poor air from the troposphere
[Tung et al., Nature, 1986]
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Polar Stratospheric Clouds

« Studies prior to the discovery of the ozone hole documented :

— high altitude (~20 km) “mother of pearl” clouds over Norway
[e.g., Carl Stormer, Remarkable clouds at high altitudes, Nature, 7929]

— greater prevalence of polar stratospheric clouds in SH compared to NH
[e.g., McCormick et al., Polar Stratospheric Cloud Sightings by SAM I,
JAS, 1982].

'(a) Southern Hem‘isPherl‘: ] ,' (b) Northern Hen{ispheré |
June 17 - Oct. 2,1979 || Nov. 26,1978 - Feb. 17, 1979 |

Number of Observations

FIGURE 4.20 The top panels show a histogram of the total number of vertical temperature profiles
having a given minimum temperature for the Antarctic and Arctic winters. The darkened bars repre-
sent observations of PSCs. The lower panel shows the frequency of PSC observations as a percent-
age of the total events with the same minimum temperature (McCormick et al., 1982). All events for
temperatures =185 K are included in the 185 K bin.
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National Ozone Expedition: McMurdo Station, 1986

Balloon-borne ozonesondes showed:

Region of nearly complete removal of ozone between ~12 and 20 km:
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National Ozone Expedition: McMurdo Station, 1986

Ground based measurements revealed:

¢ Presence of ~1 ppb of CIO over Antarctica
e Decreasing column HNO; throughout springtime and suppressed column

HCI and CINO,, consistent with existence of large amounts of CIO
[Farmer et al., Nature, 1987]
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Left: Cl0 profiles retrieved over McMurdo Station based on ground based microwave spectra acquired 1-22 Sept 1986,
for initial mixing ratio guesses of 0.1, 0.5, 1.0, and 2.0 ppb. Because pressure broadening > spectral bandwidth below
~15 km, the initial guess is unaltered by the retrieval algorithm below ~15 km. Right: Time series of CIO over
McMurdo, assuming constant C1O mixing ratio vs altitude between 15-20 km (circles), 15-22 km (crosses), or 15-24 km
(diamonds). Thin lines connected by dots are stratospheric temperature at 18 km. From DeZafra et al., Nature, 1987 and
P. Solomon et al., Nature, 1987.
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Heterogeneous Chemistry, Mid-Latitude vs Polar Regions

In all cases, y must be measured in the laboratory
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Reaction probabilities given for various surface types, with formulations of various
degrees of complexity, in Section 5 of the JPL Data Evaluation.

Atmospheric Chemistry and Physics by Seinfeld and Pandis provides extensive treatment
of aqueous phase chemistry, properties of atmospheric aerosol, organic aerosols, etc.

Lecture 12, Slide 45
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Heterogeneous Chemistry, Mid-Latitude vs Polar Regions

a) What type of aerosol particles are present in the mid-latitude stratosphere (i.e., what is the
chemical composition of these aerosols?)

b) What heterogeneous chemical reaction occurs on the aerosol particles present in the mid-latitude
stratosphere and how is the abundance of CIO affected by this reaction?

c) What type of particles are present in the polar stratosphere during winter (i.e., what are these
particles called and what is the chemical composition of a "common type" of these particles?)

d) What is the effect of these particles on the chemical composition of the polar stratosphere?
Scientists have shown that chemical reactions occurring on the surface of these particles convert
species such as and (that do not deplete ozone) and that, while reactive,
do not not cause harm to the ozone layer during the darkness of winter.

e) Following the return of sunlight, significant levels of what radical compound builds up inside the
Antarctic stratosphere, leading to rapid loss of ozone?

f) Why does the ozone hole occur only over Antarctica?
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PoLaAR OzoNE Loss

CoLD TEMPERATURES — POLAR STRATOSPHERIC CLoOUDS (PSCs)

REACTIONS ON PSC SURFACES LEAD TO ELEVATED CIO
HCI + CINO; = Cl, (gas) + HNO, (solid)
CINO, + H,0 »HOCI + HNO,
Cl, + SUNLIGHT + O, - CIO
HOCI + SUNLIGHT + O, = CIO
HNO,; SEDIMENTS (PSCs fall due to gravity)

ELEVATED ClO + SUNLIGHT DESTROYS O,
BrO : REACTION PARTNER FOR CIO = ADDITIONAL O5 LOSS
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Airborne Antarctic Ozone Expedition:
Punta Arenas, Chile,1987

23 August 1987
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Polar Ozone Loss Cycles

Cycle (1a):
CIO+CIO+M — CIOOCI+M
Cl+0; - CIO+0,
Cl+0; —» ClIO+0,
ClIOOCIl +hv —» CIOO + Cl
CIOO + heat -» CI+0,
Net: O;+0; - 30,

Cycle (1b):
ClO+CIO+M — CIOOClI+M
CIOOCI + heat —» CIlO + CIO

Net: M+ heat > M

Cycle (2a):

Cycle (2b):

Cycle (2¢):

BrO + CIO —» BrCl +0,
Br+0O; —» BrO +0,
Cl1+0; —» ClIO+0,

BrCl+hv — Br+Cl

Net: O;+0; - 30,

BrO + ClO —» ClOO + Br
Br+0O; — BrO +0,
Cl+0O; —» ClIO+0,

CIOO + heat— Cl+ O,
Net: O;+0;—->30,

BrO + ClIO — OCIO + Br
OCIO+hv —» O+CIO
Br+0O; - BrO+0,

Net: 0, >0+0,

Cycle (1) accounts for ~60% of polar ozone loss; Cycle (2) accounts for nearly all of the rest

Rate constants and products for these reactions worked out by many scientists:

Molina and Molina, JPC, 1987

Sander, Friedl, and Yung, Science, 1989
Moore, Okumura et al., Phys. Chem. A,1999
Bloss, Nickolaisen, Sander et al., JPC, 2001
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Thermal Decomposition

30.5 kcal/mole 2 x 24.3 kcal/mole
CIOOCI +M— CIO+CIO+M AH = 18.1 kcal/mole

Lecture 12, Slide 52

k THERMAL _ _ e(GREACTANTS = Gpropucts )/ RT _ KEQUILIBRIUM

k FORMATION

JPL Data Evaluation gives values of KEQUILBRIUM gand k. cuviation

Q = 27 a(8744IT) -3 Thermal Decomposition Frequency,C¢OOCEO
KEQ =1.27x 1027 e cm 109
In equilibrium: o
107
KTHERMAL [CIOOCI] = kFORMATION [C|O] [CIO] :
1074
where KTHERMAL = jFORMATION 4 KEQ —~ -
1910_3 3 e
* Energetically, system favors CIOOCI = - - -
» Entropically, system favors CIO & CIO =,
at low T, CIOOCI stable: energy wins ! [ 2 E
at high T, CIOOCI unstable: entropy rules ! -6 - -
Equilibrium constants given in Section 3 S S N R B 3
of the JPL Data Evaluation. 180 200 220 240 260 280
TEMPERATURE (K
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Polar Halogens, Seasonal Evolution

Inorganic Chlorine in the Polar Stratosphere

Inactive Surface Active Gas Phase Inactive
Chlorine Reactions Chlorine Reactions ] Chlorine
A
g HCI HCI
S CI0 + 2C100Cl
3 + 2Cl, + HOCI
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CIONO, CIONO,
Fall Early —— Winter— Late Spring
~ Halogen Catalyzed
0Ozone Destruction
LA : . :
S [, Formation, cooling,;  Surface processing, Breakup
© and descent | denitrification :
Q 1
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Q 1 T|me
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Polar Vortex Evolution

From Wilmouth, Salawitch & Canty, Stratospheric Ozone Depletion and Recovery, 2017
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Earth’s Atmosphere — Effect of Humans

Stratospheric Ozone — shields surface from solar UV radiation

Update
Total Ozone Over Halley Bay, Antarctica (76°S) Total Ozone Over Halley Bay, Antarctica (76°S)
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Antarctic Ozone versus Time

October 1972 October 1980 October 1985 October 1990

Much smaller Ozone Hole in October 2002 due to early “sudden warming” of Antarctic stratosphere polar vortex
as explained in box entitled “The 2022 Antarctic Ozone Hole” within Question 10 of the 20 QAs document.

Similarly, smaller Ozone Hole in October 2019 due to dynamical disturbance of the Antarctic vortex in late Sept
2019, not quite strong enough to officially be termed a “sudden warming”

October 1996 October 2006

October 2002 October 2019

100 200 300 400 500 600
Total Ozone (Dobson units)
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Antarctic Vortex Minimum Temperature: 2019-2020
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50-hPa Zonal Minimum Temperature for 2019 & 2020
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Antarctic Vortex Minimum Temperature: 2020-2021
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50-hPa Zonal Minimum Temperature for 2020 & 2021
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Antarctic Vortex Minimum Temperature: 2020-2021

50-hPa Zonal Minimum Temperature for 2021 & 2022
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Antarctic Ozone, 2020

Southern Hemisphere ozone hole area
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The record-breaking 2020 Antarctic ozone hole finally closed at the end of December after an exceptional season. The
2020 Antarctic ozone hole grew rapidly from mid-August and peaked at around 24.8 million km? on 20 September
2020, spreading over most of the Antarctic continent. It was the longest-lasting and one of the largest and deepest
holes since the monitoring began 40 years ago. It was driven by a strong, stable and cold polar vortex and very cold
temperatures in the stratosphere. The same meteorological factors also contributed to the record 2020 Arctic ozone
hole.

This is in contrast to the unusually small and short-lived Antarctic ozone hole in 2019.

“The last two ozone hole seasons demonstrate the year-to-year variability of the ozone hole and improve our
understanding of the factors responsible for its formation, extent and severity,” said Oksana Tarasova, head of WMO
Atmospheric Environment Research Division, which oversees WMO Global Atmosphere Watch network of monitoring
stations. “We need continued international action to enforce the Montreal Protocol on ozone depleting chemicals.
There is still enough ozone depleting substances in the atmosphere to cause ozone depletion on an annual basis,”

said Dr Tarasova.
https://public.wmo.int/en/media/news/record-breaking-2020-ozone-hole-closes
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Arctic Ozone versus Time

March 1972 March 1985 March 1990 March 1997

March 1998 March 2011 March 2012 March 2017

100 200 300 400 500 600
Total Ozone (Dobson units)
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Polar Ozone Depletion: NH and SH
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Arctic Overview

Arctic vortex (polar stratosphere):
* Always warmer than typical Antarctic winter

« Tremendous year to year variability in temperature
» Chemical ozone loss occurs only during cold winters
* Enough HNO; usually remains so that CIO recovers to CINO:
faster ClO de-activation (less ozone depletion) compared to Antarctic

All of this is due to hemispheric differences in atmospheric dynamics:
* More vigorous circulation in NH due to much more land-sea contrast, which
triggers poleward transport of heat by atmospheric motions
(Antarctic ice sheet suppresses poleward transport of heat by atmosphere)
 Stronger circulation in NH leads to more disturbed vortex (warmer, less PSCs)
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Minimum Temperature: NH and SH
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The Stratosphere Cools as the Surface Warms !

Let’s take a closer look at Tggg = 255 K

20
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As Earth warms in response
to rising GHGs, the lower troposphere
will warm, the stratosphere will cool,
and the mean radiating level
will likely rise slightly higher in altitude
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The Stratosphere Cools as the Surface Warms !

Figure 5-4. Time series of global mean stratospheric temperature anomalies from 1979 to 2016. Panels show
SSU Channels 3, 2,1 (5SU3, SSU2, SSU1; a, b, ) and MSU channel 4 (MSU4; d) for the altitude ranges, datasets,
and model outputsindicated in the legends. Gray lines indicate results from a total of 23 ensemble members
across 14 Chemistry-Climate Model Initiative (CCMI) models for the REF-C2 experiment, weighted by the
appropriate satellite weighting function for comparison with observations. All data in panel d are shown as
monthly averages except the UK Met Office dataset, which uses 6-month averages, and the two radiosonde
datasets, which are annual means. The radiosonde data are as in Figure 2.8 of Blunden and Arndt (2017).
Anomalies are shown relative to 1979-1981. Adapted from Maycock et al. (2018).

Figure 5-4, WMO/UNEP (2018)
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Arctic Ozone Loss Varies as a function of PSC Formation Potential
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» Surprisingly simple relationship between chemical loss of column ozone and volume of air exposed to

PSC formation potential over winter, where
30Apr V. (t)
PFP = I —PSCY7 ¢ PEP stands for PSC Formation Potential
I Nov YvorTex (¢

and Vpg is the volume of the vortex where T is cold enough to allow for formation of PSCs, and
VyorTex IS the volume of the Arctic vortex

» Relation leads to estimate of ~20 DU additional loss of ozone per degree Kelvin cooling of Arctic stratosphere
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Arctic Temperature: Mar 2011
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Arctic Temperature: Mar 2012
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Arctic Temperature: Mar 2019
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Arctic Temperature: Mar 2020
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Arctic Temperature: Mar 2022

50-hPa Zonal Minimum Temperature for 2021 & 2022
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Arctic Ozone: 2019 and 2020
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Arctic Ozone Loss Varies as a function of PSC Formation Potential
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» Surprisingly simple relationship between chemical loss of column ozone and volume of air exposed to

PSC formation potential over winter, where
30Apr V. (t)
PFP = I —PSCY7 ¢ PEP stands for PSC Formation Potential
I Nov YvorTex (¢

and Vpg is the volume of the vortex where T is cold enough to allow for formation of PSCs, and
VyorTex IS the volume of the Arctic vortex

» Relation leads to estimate of ~20 DU additional loss of ozone per degree Kelvin cooling of Arctic stratosphere
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Cold Arctic Winters Tend to Exhibit Larger PFP as a Function of Time
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PSC Formation Potential in Arctic Vortex

based on 55 years of data from the European Centre for Medium-Range Weather Forecasts (ECMWF)
SOLID CIRCLES denote local maxima in PFP relative to a trend line
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SSP: Shared Socioeconomic Pathway Scenarios
Will Drive Upcoming IPCC Report

Climate Model Input
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Tendency for Colder Arctic Winters Getting Colder Driven by Rising GHGs

Climate Model PFP is PSC Formation Potential
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Next Two Classes

Thursday
 No AT, because reading is “light” & Problem Set #3 is due on Friday
* Please get started on Problem Set 3 prior to Thurs evening

Next Tuesday
* Will hold review of Lectures 10 to 17 in preparation for second exam
to be held on Thursday, 14 April
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