Pollution of Earth’s Stratosphere:
Ozone Recovery and Chemistry/Climate Coupling

AOSC /CHEM 433 & AOSC /CHEM 633

Ross Salawitch

Class Web Sites:
http://www?2.atmos.umd.edu/~rjs/class/spr2022
https://myelms.umd.edu/courses/137772

Motivating questions:
a) How might climate change (future variations in temperature and/or
circulation) driven by rising GHGs affect stratospheric ozone?
b) Might climate at the surface be affected by stratospheric ozone?
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Recovery of the Ozone Layer
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Time series of chlorine content of organic
halocarbons that reach the stratosphere.
Past values based on direct atmospheric
observation. Future values based on
projections that include the lifetime for
removal of each halocarbon.

] Table 6-4, WMO/UNEP 2018
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Recovery of the Ozone Layer
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Time series of chlorine content of organic
halocarbons that reach the stratosphere.
Past values based on direct atmospheric
observation. Future values based on
projections that include the lifetime for
removal of each halocarbon.

Table 6-4, WMO/UNEP 2018
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Gan Atmospheric Ozone Depletion
Lifetime (years) Potential (ODP)®

Halogen Source Gases
Chlorine Gases
CFC-11 (CCIF) 52 1
Carbon tetrachloride (CCly) 32 0.87
CFC-113 (CCI:FCCIFy) 93 0.81
CFC-12 (CCI,F;) 102 073
I(\ée:;g(;?)loroform 5.0 0.14
HCFC-141b (CHsCCIF) 9.4 0.102
HCFC-142b (CHCCIF,) 18 0.057
HCFC-22 (CHF,CI) 12 0.034
Methyl chloride (CHCl) 09 0.015
Bromine Gases

' Halon-1301 (CBIFs) 65 15.2
Halon-1211 (CBrCIF;) 16 6.9
Methyl bromide (CH3Br) 0.8 0.57

‘ Hydrofluorocarbons (HFcé)
HFC-23 (CHF3) 228 0
HFC-143a (CH3CF3) 51 0
HFC-125 (CHF.CF3) 30 0
HFC-134a (CHzFCF3) 14 0
HFC-32 (CHzF2) 54 0
HFC-152a (CHsCHF2) 1.6 0
HFO-1234yf (CF3CF=CHz) 0.03 0
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Past Trends, Upper Stratospheric Ozone

Ozone Anomalies 2 hPa/42 km

Grey: range of model calculations,
where models are forced by

/ rising levels of stratospheric

halogens
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Trends in ozone at ~40 km are “well understood”
and generally follow track time history of
stratospheric chlorine loading.
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Future Trends, Upper Stratospheric Ozone

14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100
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Climate and Chemistry Coupling

Scientists have long known that rising GHGs leads to cooling of the
stratosphere, due to direct radiative effects

The stratosphere has been cooling past several decades in a manner quite
consistent with theory:

Northern Mid-Latitude Ozone Trends
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Fig ES-7, WMO/UNEP Ozone Report Executive Summary
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Future Trends, Upper Stratospheric Ozone

14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100

will exceed upper stratospheric ozone in
62 ill d tratospheri in 1960
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Future Trends, Upper Stratospheric Ozone

14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100

62
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/ will exceed upper stratospheric ozone in 1960

Due to stratospheric cooling !

Why this response of ozone to lower T ?

Gas phase rate constants are sensitive
to temperature

In particular, 0 + O, + M —»> O; + M
as T drops

This cooling will alter the partitioning
of O and O,

1975 2000 2025 2050

Year
Dhomse et al., ACP, 2018
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Tropopause versus Latitude

40

35

30

25 =

»

15 =

Altitude (km)

10
5
0
-80 —60 —40 -20 0 20 40 60 80
Latitude (%)

Brewer-Dobson circulation (arrows), ozone (colors), and tropopause (black dashed line).
Shaw and Shepherd, Nature Geoscience, 2008.
Brewer-Dobson Circulation is a model of atmospheric circulation, proposed by Alan Brewer in

1949 and Gordon Dobson in 1956, that attempts to explain why tropical air has less column ozone
than polar air, even though the tropical stratosphere is where most atmospheric ozone is produced

Lecture 3, Slide 38
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Global Satellite Map of Total Ozone, 7 April 2022

KNMI / DLR / EUMETSAT Forecast total ozone (D+1)

GOME2 (METOP-C} = 7 Apr 2022
= 12UTC

https://www.temis.nl/protocols/O3global.php
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More Chemistry and Climate Coupling

Annual
(a)
Figure 5-17. Trends in exchange of air from troposphere-
to-stratosphere computed by 14 CCMs.
8GISS : » »
E? g:ggchm Trends (units of Gg s~ year ') are represented by the

slope of each line.

Dashed line is the multi-model mean, which indicates a
30% rise in the exchange of air between the troposphere
and stratosphere at the time CO, doubles relative to pre-
industrial.

After Butchart et al., Clim. Dyn., 2006.

s, 11.0kts 'year™
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Flux of air through tropopause region

2.1 FUB-CMAM

1.6 IGCM
0.1 1GCM(all)
Present Day 2 x Present Fig 5.17, WMO/UNEP (2006)
co, Day CO,
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RCP Scenarios Forecast Wide Range of Possible Futures
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Number represents ARF of climate (W m~2) at the end of this century
* GHG mixing ratio time series for CO,, CH,, N,O, as well as CFCs, HCFCs, and HFCs that are provided
to climate model groups
Figure 2-1, from Paris Climate Agreement: Beacon of Hope: https://link.springer.com/content/pdf/10.1007%2F978-3-319-46939-3 2.pdf
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More Chemistry and Climate Coupling
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Dhomse et al., ACP, 2018

== REF-C2 SEN-C2-RCP45 SEN-C2-RCP85 - Observations

Acceleration of the_Brewer-Dobson Circulation causes modeled total ozone column in the tropics to
exhibit a sustained, long term decline and modeled total ozone column at mid-latitudes
to experience a “super recovery”

Copyright © 2022 University of Maryland.
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More Chemistry and Climate Coupling
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== REF-C2 SEN-C2-RCP45 SEN-C2-RCP85 - Observations

Acceleration of the_Brewer-Dobson Circulation causes modeled total ozone column in the tropics to
exhibit a sustained, long term decline and modeled total ozone column at mid-latitudes
to experience a “super recovery”
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CH, and Stratospheric Ozone

1

—_
T © :
; CH, o 10
3.5F ] 5 5
E RCP 8.5 ] o .
3.0 3 5 ®
E RCP 2.6 ] @
[ Observation ]
2.5F - 3 20 o
s ] E
2.0; 3 ] =
'S \ \E | —AI | | |
L] R B CSH_[b] i
1950 2000 2050 2100 E (=]
= ~ .
=3 . [
Seg ™ _
0 O 15 [ Revelletal., ACP, 2012
c
oL i
N = 2 B
oo |
g T T T T T
=-an =50 =30 1] B an

1]
Latitude (°)

Stratospheric O, difference in the 2090s found for a computer simulation run
using CH, from RCP 8.5 minus that of a simulation using CH, from RCP 2.6

Rising CH, leads to:
a) ozone loss in the upper stratosphere by increasing the speed of OH and HO, (HO,) mediated loss cycles.

b) a cooler stratosphere, slowing the rate of all ozone loss cycles
c) speeds up the rate of CI+CH,, shifting chlorine from CIO into HCI (i.e., deactivates chlorine)
d) more HO, in the lowermost stratosphere where there is sufficient CO to result in O3 production by “smog chemistry”

Computer models project stratospheric column O; will increase as CH, rises

Lecture 15, Slide 39
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N,O and Stratospheric Ozone
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Difference of stratospheric O5 in the 2090s for a computer simulation run
using N,O from RCP 8.5 minus that of a simulation using N,O from RCP 2.6

Rising N,O leads to:
a) ozone loss in the middle & upper stratosphere by increasing the speed of NO and NO, mediated loss cycles.

b) speeds up the rate of OH+NO,+M—>HNO; & CIO+NO,+M— CINO;+M in the lowermost stratosphere, leading to
slower ozone loss by these cycles & less O; where these cycles dominate total loss of O,

Computer models project stratospheric column O; will decline as N,O rises

Lecture 6, Slide 74
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Future Ozone: ODSs, CO,, CH, and N,O

Global Total Ozone Changes in Response to
Ozone Depleting Substances and Greenhouse Gases
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Fig Q20-3, WMO/UNEP Twenty QAs Ozone
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Future Ozone: Regional Variations

Change in Total Ozone and Equivalent Effective Stratospheric Chlorine Since 1960
Results from atmospheric chemistry-climate models for 1960 to 2100
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Future Trends,

L (a) SSU3 (40-50 km)
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Figure 5-4, WMO/UNEP (2018)
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Stratospheric Ozone

If the stratosphere continues to cool,
for which region of the stratosphere
is ozone “most vulnerable”?

Lecture 16, Slide 57
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Cold Arctic Winters Tend to Exhibit Larger PFP as a Function of Time
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von der Gathen, Nature Communications, 2021

PSC Formation Potential in Arctic Vortex

based on 55 years of data from the European Centre for Medium-Range Weather Forecasts (ECMWF)
SOLID CIRCLES denote local maxima in PFP relative to a trend line

Lecture 16, Slide 79
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SSP: Shared Socioeconomic Pathway Scenarios
Will Drive Upcoming IPCC Report

Climate Model Input
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McBride et al., Earth System Dynamics, 2021
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Tendency for Colder Arctic Winters Getting Colder Driven by Rising GHGs

Climate Model

PFP is PSC Formation Potential
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Arctic Sea-Ice: Canary of Climate Change

Average Monthly Arctic Sea Ice Extent
September 1979 - 2021

Don’t need to use any heavy duty statistics to see the trend !

Extent (millions of square kilometers)

National Snow and Ice Data Center

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020

Year

e Sea ice: ice overlying ocean
e Annual minimum occurs each September
 Decline of ~12.7% / decade over satellite era

http://nsidc.org/arcticseaicenews/2021/10/

Lecture 8, Slide 24
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http://nsidc.org/arcticseaicenews/2019/10/

National Snow & Ice Data Center # RESEARCH
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Arctic_-Sea Ice News & Analysi_s_

oames September turning
The summer melt season has come to a modest end. The summer of 2021 was relatively cool compared
to the most recent years and September extent was the highest since 2014 It was nevertheless an
eventful summer, with many twists and turns.

Sea Ice Extent, Sep 2021
Arctic sea ice extent for September averaged

4 92 million square kilometers (1.90 million
square miles), the twelfth lowest in the 43-year
satellite record. This i1s 1.35 million square
kilometers (521,000 square miles) above the
record low set in September 2012, and 1.49
million square kilometers (575,000 square
miles) below the 1981 to 2010 average. The
last 15 years (2007 to 2021) have had the 15

lowest September extents in the record.
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Figure 1a. Arctic sea ice extent for September 2021 was 4.02
million square kilometers (1.90 million square miles). The
magenta line shows the 1981 to 2010 average extent for that
Total extent = 4.9 million sq km month. Sea Ice Index data. About the data

median ice edge 1981-2010

near-real-time data

National Snow

http://nsidc.org/arcticseaicenews/2021/10/september-turning/

Lecture 8, Slide 25
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Declining Arctic Sea Ice: Canary of Climate Change?

Extent {Millions of square kilometers)

0

Arctic Sea Ice Extent =

(Area of ocean with at least 15% sea ice)
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& Show all years

= Hide all years

B 1981-2010 Median
Interguartile Range
Interdecile Range

B 2021
B 2020
B 2019

. 2012 IRecord minimumi

Again, don’t need to use any heavy duty statistics to see the trend !

https://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph

Copyright © 2022 University of Maryland.
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The Antarctic

Antarctic Sea Ice Extent

(Area of ocean with at least 15% sea ice)

@ Show all years

W= Hide all years
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2:5
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https://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph
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Arctic and Antarctic Standardized Anomaly and Trend
Nov. 1978 - Oct. 2020
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1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014 2017 2020

Arctic and Antarctic Sea Ice Extent Anomalies, 1979-2020: Arctic sea ice extent underwent a strong decline
over the course of the satellite record, but Antarctic sea ice underwent a slight increase, although some regions
of the Antarctic experienced strong declining trends in sea ice extent. Thick lines indicate 12-month running
means, and thin lines indicate monthly anomalies. See the Arctic Sea Ice FAQ for more information. Image
provided by National Snow and Ice Data Center, University of Colorado, Boulder.

https://nsidc.org/cryosphere/sotc/sea ice.html
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The Ozone Hole may have shielded the Antarctic surface from warming!

Observations

(y) @ainjesadwa) aseying ul abueyn

Gillett and Thompson, Science, 2003

SAM: difference in zonal mean sea-level pressure between 40°S and 65°S. The pattern
associated with SAM is a nearly annular pattern with a large low pressure anomaly centered
on the South Pole and a ring of high pressure anomalies at mid-latitudes. The SAM effects
storm tracks, precipitation patterns, etc. http://www.climate.be/textbook/chapter5 node6.html

As ozone depletion occurs:
The positive phase of the southern annular mode (SAM) increases,

causing Antarctic surface westerlies to intensify, resulting in cooling
of Antarctic continent

Copyright © 2022 University of Maryland.
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The Ozone Hole may have lead to increased ventilation
of CO, from southern ocean

e

7 7 7
/y/.; 7 j’/

) .r.wl'_;f' |

I““

A,

.

i

b}
1-2 I [ n [ n [ n [
J = O3hole
S 10d = Oaclim
U
m -
a
3 08-
—
™
D —
[
§ 0.6
E L
0.4 T T T T

1990
Time (year)

(b) Integrated air to sea COx flux (south of 40°S) showing stratospheric ozone depletion (Oshole) significantly reduces CO»
uptake (relative to Osclim), and is strongly correlated with changes in ApCO..

As ozone depletion occurs:

The positive phase of the southern annular mode (SAM) increases,
causing Antarctic surface westerlies to intensify, resulting in
increased ventilation of CO, from southern ocean

Copyright © 2022 University of Maryland.
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Uptake of Atmospheric CO, by Oceans
— Solubility Pump:
a) More CO, can dissolve in cold polar waters than in warm equatorial
waters. As major ocean currents (e.g. the Gulf Stream) move waters
from tropics to the poles, they are cooled and take up atmospheric CO,
b) Deep water forms at high latitude. As deep water sinks, ocean carbon (XCO,)
accumulated at the surface is moved to the deep ocean interior.

— Biological Pump:
a) Ocean biology limited by availability of nutrients such as NO;~, PO,
and Fe?" & Fe3* . Ocean biology is never carbon limited.

b) Detrital material “rains” from surface to deep waters, contributing to
higher CO, in intermediate and deep waters

o Gl Y Sonsar el \

In Lenton et al. model, elevated oceanic CO,

! is returned to the atmosphere due to stronger winds,
which leads to more ocean turbulence ...

all due to the Antarctic ozone hole !

http://science.nasa.gov/headlines/y2004/05mar_arctic.htm
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Chemistry Climate Coupling

CCMs (chemistry climate models): developed to quantify impacts of
climate change on stratospheric ozone and
impacts of ozone depletion/recovery on climate:
As GHGs rise:
1. Brewer-Dobson circulation predicted to accelerate leading to:

a) less ozone in tropical lower stratosphere (“permanent depletion”)
b) more ozone in mid-latitude lower stratosphere (“super recovery”)

2. Upper stratosphere cools, slowing down rate limiting steps for ozone
loss and therefore leading to “super recovery”
3. Eventually, CH, and N,O will drive future levels of ozone

Data analysis suggests “coldest Arctic winters getting colder”:
1. Possibly due to rising GHGs
2. Not represented well by some Chemistry Climate Model (CCMs)

As Antarctic ozone depletion had occurred:
The positive phase of the southern annular mode (SAM) increases,
causing Antarctic surface westerlies to intensify, resulting in:
1. Cooling of Antarctic continent (good for sea-level)
2. Increased ventilation of CO, from southern ocean (bad for climate)
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Chemistry Climate Coupling

CCMs (chemistry climate models): developed to quantify impacts of
climate change on stratospheric ozone and
impacts of ozone depletion/recovery on climate:
As GHGs rise:
1. Brewer-Dobson circulation predicted to accelerate leading to:

a) less ozone in tropical lower stratosphere (“permanent depletion”)
b) more ozone in mid-latitude lower stratosphere (“super recovery”)

2. Upper stratosphere cools, slowing down rate limiting steps for ozone
loss and therefore leading to “super recovery”
3. Eventually, CH, and N,O will drive future levels of ozone

Data analysis suggests “coldest Arctic winters getting colder”:
1. Possibly due to rising GHGs
2. Not represented well by some Chemistry Climate Model (CCMs)

As Antarctic ozone recovery occurs:
The positive phase of the southern annular mode (SAM) may decline,
causing Antarctic surface westerlies to weaken, resulting in:
1. Warming of Antarctic continent (bad for sea-level)
2. Decreased ventilation of CO, from southern ocean (good for climate)
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