Review for First Exam
AOSC /CHEM 433 & AOSC /CHEM 633

Ross Salawitch

Class Web Sites:
http://www?2.atmos.umd.edu/~rjs/class/spr2022
https://myelms.umd.edu/courses/137772

First exam is Thurs, 3 March, in class:
¢ Closed book
e Focus on concepts, no calculations
e Will cover material & required readings, Lectures 1to 8
e Today, | will:
— quickly review Problem Set 2
— review Lectures 1t0 8
— review exam given last time we had an in class exam
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Greenhouse Effect

Solar radiation powers What is the most important
el greenhouse gas (GHG) ?

Some solar radiation
Is reflected by
the Earth and the
atmosphere.

A

MO |

About half the solar radiation
I= absorbed by the
Earth's surface and warms If. Infrared radiation is
emitted from the Earth's

surface,

FAQ 1.3, Figura 1. An idealized model of the natural greenhouse effect. See &xt for explanabion,

Question 1.3, IPCC, 2007
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Greenhouse Effect

Solar radiation powers What is the most important
the climate system. anthrOpO_qeniC greenhouse gas
(GHG) ?

Some solar radiation
Is reflected by
the Earth and the

atmosphere. Second most important ?

: 2TMOSPEE N

About half the solar radiation
I= absorbed by the
Earth's surface and warms If. Infrared radiation is
emitted from the Earth's

surface,
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Greenhouse Effect

Solar radiation powers What is the most important
the climate system. anthrOpO_qeniC greenhouse gas
(GHG) ?

Some solar radiation
Is reflected by
the Earth and the

atmosphere. Second most important ?

: 2TMOSPEE N

About half the solar radiation
I= absorbed by the
Earth's surface and warms If. Infrared radiation is
emitted from the Earth's

surface,

Third ?

FAQ 1.3, Figura 1. An idealized model of the natural greenhouse effect. See &xt for explanabion,

Question 1.3, IPCC, 2007
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Radiative Forcing of Climate, 1750 to 2019

Changelin effectivg radiative forcing fronl1 1750 to 2101 9
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Light absorbing particles on
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Figure 7.6, IPCC (2021)
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC AR6 WGI TS.pdf
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Radiative Forcing
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FAQ 1.1, Figure 1. Etimate of the Earth’s amual and giobal mean energy balance. Over §ie long ferm, the amaunt of incoming sofar raoiation abaorbed by the Earth and
amosphere iz balanced by the Earth and &mosphiere releasing the same amount of ouigoing longwave radiafon. About haif of the incoming soiar radiaion i absorbed by the
Eath's surface Tz energy iz transferred to the atmosphere by warming the ar in confact with the surface thermals), by evapofranspiration and by longwave radiafon thet is

abzorbed by douds and greenfiouse gases. The atmosphere in tum ragiates longwave engrgy back to Earth az well as out o space Source: Kigh! and Trenberth (1847

Question 1.1, IPCC, 2007

Radiative Forcing of Climate is Change in Energy
reaching the lower atmosphere (surface to tropopause) as GHGs rise.
“Back Radiation” is most important term.
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Radiative Forcing of Climate, 1750 to 2019
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Figure 7.6, IPCC (2021)

Changelin effectivq radiative florcing frorp 1750 to 2.019
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https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC AR6 WGI TS.pdf
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CO, is dominant anthropogenic
(human) greenhouse gas (GHG).
Once released, CO, persists in
the atmosphere for
hundreds of years.

Between 1750 and 2019,
the rise in atmospheric CO,
caused RF of climate to rise

by 2.2 W m—2


https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf

Radiative Forcing of Climate, 1750 to 2019

Changelin effectivq radiative fprcing frorp 1750 to 2.019

Methane (CH,) is the 2" most
important human GHG. Once
released, CH, persists in the
atmosphere for about decade.

Carbon dioxide

Other well-mixed
greenhouse gases

= CHg N>O

Ozone On a per molecule basis,
Stratospheric CH, causes 30 times more
water vapour warming than CO,

Albedo Land use Light absorbing particles on ‘ over a 20-yr time horizon.

show and ice

Contrails & aviation-
induced cirrus

Between 1750 and 2019
the rise in atmospheric CH,

Aerosols Aerosol-cloud Aerosol-radiation caused RF of climate to rise
by 0.54 W m—2
Solar H
g = 0 1 2 3

Effective radiative forcing (W m_z)

Figure 7.6, IPCC (2021)
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC AR6 WGI TS.pdf
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Radiative Forcing of Climate, 1750 to 2019

Changelin effectivq radiative fprcing frorp 1750 to 2.019
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Nitrous oxide (N,O)
is commonly identified as the third
most important anthropogenic GHG.
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Figure 7.6, IPCC (2021)
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On either a per molecule or
a per mass basis,
N,O causes 264 times more
warming than CO,
over a 20-yr time horizon.

Between 1750 and 2011,
the rise in atmospheric N,O
caused RF of climate to rise

by 0.21 W m~?

Together, the rise in RF of climate
due to CH, and N,O was
about one-third the rise in
RF of climate due to CO,

10
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Absorption vs. Wavelength

Atmospheric Absorption

100 ‘ " M H TPk | | |
80
2 ol O,
c
O
= H,0
S 40
o]
<
20 CH,
)
O ﬁI . . S Bt AL
4 6 N:Og 10 12 14 16
. Halocarbon Absorption Spectrum
| | | | | I |
& 4r 7
@ o
S n 3F HFC-134a CFC-12 HCFC-22 .
DS
» o
H D
SE 2T i
i
~— 1 f— —
ol I VN I |
4 6 8 10 12 14 16

Wavelength (pm)

Copyright © 2022 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.



Radiative Forcing of Climate, 1750 to 2019

Changelin effectivq radiative florcing frorp 1750 to 2.019
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Figure 7.6, IPCC (2021)
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https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC AR6 WGI TS.pdf
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CFCs and other ozone
depleting substances (ODSs),
yhich are all Halogens,

also act as GHGs.
Between 1750 and 2019,
the rise in ODS
caused RF of climate to rise
by 0.41 W m—2

The rise in RF of climate due to
CH,, N,O, and ODSs was
about half of the
the rise in RF of climate due to CO,

Industrial production of CFCs
and other ODS was banned by
the Montreal Protocol.

Atmospheric levels of CFCs
have declined, although not quite
as fast as had been expected.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.


https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf

Radiative Forcing of Climate, 1750 to 2019

Changelin effectivq radiative florcing frorp 1750 to 2.019

Ozone (O,) acts as a GHG.
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/ Between 1750 and 2011,
the rise in tropospheric O,

caused RF of climate to rise
by 0.47 W m-2

This rise is due to increasing
levels of O; in Earth’s troposphere,
leading to poor public health.
Efforts to combat the rise in
tropospheric O; are led by
air quality agencies.
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Figure 7.6, IPCC (2021)
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Radiative Forcing of Climate, 1750 to 2019
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Aerosols (small particulate matter)
tend to cool climate, counter-acting the
RF of climate due to GHGs. However,
magnitude of this counter-action
is not well known.

Emissions of pollutants that lead to aerosols
are regulated worldwide by air quality
agencies.

Aerosol levels are on the decline,
which will either “unleash” a small amount,
moderate amount, or perhaps a
large amount of additional warming
due to GHGs that are presently “masked”.
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Figure 7.6, IPCC (2021)

https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC AR6 WGI TS.pdf
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Ozone in the Atmosphere
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Ozone Layer
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It is incredible that human activity
both destroys stratospheric ozone (so-called good ozone)
and produces tropospheric ozone (so-called bad ozone)
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Fig. Q1-2
20 QAs about the Ozone Layer
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Temperature versus Altitude
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Fourth chart expresses abundance of ozone concentration,
or ozone density, or [O,], in units of molecules / cm?
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Earth’s Atmosphere — Effect of Humans

Stratospheric Ozone — shields surface from solar UV radiation
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After Farman et al., Large losses of total ozone in Antarctica reveal
Seasonal ClOx/NOx interaction, Nature, 315, 207, 1985.
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And Atmospheric Levels of these Pollutants are Declining

Effect of the Montreal Protocol

Long-term changes in equivalent effective
stratospheric chlorine (EESC)
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CFCs: Chlorofluorocarbons

Contain some combination of chlorine, fluorine, and
at least one carbon. Freons are a trade name for CFCs.

Bromocarbons:

Contain bromine, perhaps chlorine, and at least one
carbon. Halons are a trade name for bromocarbons.

HCFCs: Hydro-chlorofluorocarbons

Same as CFCs, except one or more hydrogen has
replaced a chlorine.

HFCs: Hydrofluorocarbons

Contain some combination of hydrogen, fluorine, and
carbon. These gases do not contain any bromine or
chlorine, and hence pose no damage to the ozone
layer. Some HFCs are potent GHGs.

EESC: Equivalent, effective stratospheric chlorine. Reflects combined influence of chlorine and bromine on ozone, via

a simple formula: [Chlorine] + 60 x [Bromine]

Figure Q14-1, 20 QAs about the Ozone Layer
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Phase out of CFCs and other Ozone Depleting Substances (ODSs)

Phase 1
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Copyright © 2022 University of Maryland.
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Figure Q17-3, 20 QAs about the Ozone Layer
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Phase out of CFCs and other Ozone Depleting Substances (ODSs)
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As of 15 October 2016, future production of HFCs controlled by the Montreal Protocol,
based on amendment passed in Kigali, Rwanda
http://multimedia.3m.com/mws/media/1365924O/unep-fact-sheet-kigali-amendment-to-mp.pdf
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Climate Benefit of the Kigali Amendment
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Figure Q19-2, 20 QAs about the Ozone Layer
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GHG Record Over Last Several Millennia

Common Era
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Figure 1.2, Paris Beacon of Hope (updated)
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GHG Record Over Last Several Millennia

Common Era
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Figure 1.2, Paris Beacon of Hope (updated)
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Going Back 600,000 years
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Figure 6.3. Variations of deuterium (3D: biack), a proxy for local temperature, and the atmospheric concentrations of the greenhouse gases CO, (red), CHy (biue), and nitrous
oxide (N,0; green) derived from air trapped within ice cores from Antarctica and from recent atmospheric measurements (Petit et al, 1999; Inderminle et al., 2000; EPICA com-
munity members, 2004: Spahni et al., 2005; Siegenthaler et al., 2005a,b). The shading indicates the last interglacial warm periods. Intergiacial periods also existed prior to 450
ka, but these were apparentiy colder than the typical interglacials of the latest Quaternary. The length of the curent inferglacial is not unusual in the context of the last 650 kyr.
The stack of 57 globally distributed benthic 3750 marine records (dark grey), a proxy for giobal ice volume fluctuations (Lisiecki and Raymo, 2005), is displayed for comparison
with the ice core data. Downward frends in the benthic 8780 curve reflect increasing ice valumes on land. Note that the shaded vertical bars are based on the ice core age
model (EPICA community members, 2004), and that the marine record is plotted on its ariginal time scale based on tuning to the orbital parameters (Lisiecki and Raymo, 2005).
The stars and labels indicate atmospheric concentrations at year 2000.

Figure 6.3, IPCC 2007

See https://epic.awi.de/id/eprint/18400/1/0er2008a.pdf for description of EPICA , European Project for Ice Coring in Antarctica
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GWP - Global Warming Potential

time final

Ay X [CH,(1)] dt

GWP (CH,) = time initial

time final

Acoy X[CO, (1) dt]

time initial

where:
acy,= Radiative Efficiency (W m=2 kg ~!) due to an increase in CH,

aco, = Radiative Efficiency (W m~2 kg-!) due to an increase in CO,

CH, (t) = time-dependent response to an instantaneous release of a pulse of certain mass of CH,

CO, (t) = time-dependent response to an instantaneous release of a pulse of the same mass of CO,

time final

J. aN20 X [Nzo(t)] dt
GWP (N,0) = e niil

Acoy, X[CO, (1) dt]

time initial

Copyright © 2022 University of Maryland.
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GWP - Global Warming Potential

time final
Ao, [CH, (D] dt
GWP (CH,) = st

egs x[CO, (1) d1]

time initial

time final
aNEO X[Ngo(t)] dt
GWP (N,0) = time initial

time final

Ao x[CO, (1) dt]

time initial
1 T T T T T T T T T T T T T T T T T T
0.8 CO2 4
Area = 14.39 ]
c 4
Los ]
[&] 4
E 4
LL |
204 .
S
o
0.2 -
0 PR [T S [N NI (I |

0 20 40 60 80 100 120
Years

0.8

o
o

Pulse Fraction
=
B

o
(¥

Global Warming Potentials

GHG IPCC (1995) IPCC (2001) | IPCC(2007) | IPCC (2013)
100 Year Time Horizon
CH,4 21 23 25 28
N,O 310 296 298 265
20 Year Time Horizon
CH,4 56 62 72 84
N,O 280 275 289 264
T T T T T T T T T T T T T T T T T T 1 T T T | T T T | T T T T T T T T T T T T
] Area = 19.36 ]
CH4 1 0.8 NZO 8
] c
. 206 .
Area = 10.53 1 3
] o
| % 0.4 |
E =
g o
[ B 0 worn oo flnnnlln ool oo
20 40 60 80 100 120 0 20 40 60 80 100 120
Years Years

CO,(t)= 0.217 +0.186x CO, (t=0) e™*** + 0.338x CO, (t=0) ™ "** +0.249x CO, (t=0) &'’

CH, ()= CH,(t=0) e™""**
N,O(t) = N,O(t=0) e™"*'*

where all times are given in units of year
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GWP - Global Warming Potential

time final
Global Warming Potentials
[ '%@x[CHz‘(t)] dt g
GWP (CH,)= “t‘;fe“;;ff GHG IPCC(1995) | IPCC(2001) | IPCC(2007) | IPCC (2013)
100 Year Time Horizon
time initial
CH, 21 23 25 28
time final N,O 310 296 298 265
20 X[ N; ) )
A, 20 Year Time Horizon
‘ﬁ?l) — tme mitia
G (NZO)_ time final
CH, 56 62 72 84
time initial N,O 280 275 289 264
20 Year Time Horizon means time final = 20 years in these integrals
1 T T T T T T T T T T T T | T T T | T T T 1 T T T ‘ T T T ‘ T T T ‘ T T T | T T T | T T T 1 T T T | T T T | T T T T T T T T T T T T
] ] Area = 19.36 ]
0.8 CO2 1 0.8 CH4 1 0.8 NZO .
Area = 14.39 4 4
c 4 c 4 c
2086 . 2086 . 206 .
g 1 g Area = 10.53 1 3
w ] w ] w ]
S04 . J04 . S04 =
3 3 | 3 T
o o = o
0.2 — 0.2 f 0.2 —
0 iondl oo | I I 0 [ R 0 Lo o flnonlloanllonos
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Years Years Years

CO,(t)= 0.217 +0.186x CO, (t=0) e ""*** + 0.338x CO,(t=0) e ""** +0.249x CO, (t=0) ¢ '™’
CH,(t)= CH,(t=0) ¢"""**
N,O(t) = N,O(t=0) e '*"*

where all times are given in units of year
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GWP - Global Warming Potential

Global Warming Potentials

time final

[ K x[CH, (0] dt
time initial

GWP (CH,) =

time final
time initial
time final
E‘QO\X [N
‘ﬁ?l) __ time mitial
G (NZO) ™ time final

GHG IPCC (1995) IPCC (2001) | IPCC(2007) | IPCC (2013)
100 Year Time Horizon
CH,4 21 23 25 28
N,O 310 296 298 265
20 Year Time Horizon
CH,4 56 62 72 84
N,O 280 275 289 264

100 Year Time Horizon means time final = 100 years in these integrals
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CO,(H) = 0.217 +0.186x CO, (t=0) e "** + 0.338x CO, (t=0) e "** +0.249x CO, (t=0) e "'"*
CH4 (t) — CH4 (t:O) e—t/12.4

N,O(t) = N,O(t=0) e "*"*

where all times are given in units of year
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Modern CO, Record

CO, at MLO on 8 Feb 2021: 419.3 parts per million (ppm)
CO, at MLO on 8 Feb 2020: 416.0 parts per million (ppm)

ACO, =3.3 ppm per year

o
Atmospheric CO, at Mauna Loa Observatory or 0.8%  peryear

T T

420F 7 T T T | " T ' T ]
Scripps Institution of Oceanography
NOAA Global Monitoring Laboratory
400 -
c - ]
&
— 380 -
(=]
2 L
€
— 360‘_ -
o
a
P L
8 340 J
I SCF‘IPPEIhtruunoum ';@h‘. :
300 - OCEANOGRAPHY S
UC San Diego . Vo |3
C ] i 1 1 1 1 | i | 1 | |"‘... ] &
1960 1970 1980 1990 2000 2010 2020
Year

Legacy of Charles Keeling, Scripps Institution of Oceanography, La Jolla, CA
https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2 data mlo.png
See also https://www.co2.earth/daily-co2
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Atmospheric CH,

AT6, Q1:
According to Table 3.2 of Chemistry in Context, what was pre-industrial atmospheric abundance of CH, and is this consistent
with Figure 3.7 of the Houghton reading?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

700 ppb Table 3.2 Examples of Greenhouse Gases

Preindustrial

Broad |y Name and Concentration Concentration Atmospheric Anthropogenic Global Warming
Chemical Formula (1750) in 2008 Lifetime (years) Sources Potential
carbon dioxide 270 ppm 388 ppm 50-200* Fossil fuel combustion, 1
cO, deforestation, cement
production
methane 700 ppb 1760 ppb 12 Rice paddies, waste 21
CH, dumps, livestock
nitrous oxide 2000 — 310
N,O

CFC-12 CCL,F, B 8100

*A single value fof
based on several

e given is an estimate

r 0.4
—_
o~
B 1
& g
L o0
S =
N -
© 0.2 §
= )
=
—
o)
™~ =
]
o
- kq

Figure 3.7, Houghton 500 — g =

10 000 5000 0
Time (before 2012)
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AT6, Q2:

What is the approximate current atmospheric abundance of CH,?

Atmospheric CH,

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 3.2 Examples of Greenhouse Gases

Preindustrial

Name and Concentration Concentration Atmospheric Anthropogenic Global Warming
Chemical Formula (1750) in 2008 Lifetime (years) Sources Potential
carbon dioxide 270 ppm 388 ppm 50-200* Fossil fuel combustion, 1
cO, deforestation, cement

production
methane 700 ppb 1760 ppb 12 Rice paddies, waste 21
CH, dumps, livestock
nitrous oxide 275 ppb 322 ppb 120 Fertilizers, industrial 310
N-,O production,

combustion
CFC-12 CClyF, 0 0.56 ppb 102 Liquid coolants, foams 8100

*A single value for the atmospheric lifetime of CO, is not possible. Removal mechanisms take place at different rates. The range given is an estimate
based on several removal mechanisms.

as well as Fig 1.2 from
Paris Climate Agreement: Beacon of Hope also shown in Lecture 2

CH, (ppm)

mmon
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Er
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Atmospheric CH,

AT6, Q2:
What is the approximate current atmospheric abundance of CH,?

NOAA Earth System Research Laboratory (Boulder, Co) is “go to” place for information regarding GHGs

Latest data indicate CH, is over 1900 ppb and rising, and also that CH, exceeded 1760 ppb in late-1990s
and exceeded 1.84 ppm in mid-2017.

a Global Monitoring Laboratory

[Earth System Research Laboratories

# About= People= Research= ObservingNetworks= Data= Products = Information =

Trends in Atmospheric Methane

Global CH4 Monthly Means
October 2021: 1907.2 ppb

October 2020: 1890.1 ppb

1 9OO _I| | LI L I | | | I L I L I II_

e 1800 — ]
= _ i
<+ L |

T L |
© 1700 —
'] 600 | | L1 11 | L1 1 1 I 11 1 1 I L1 11 | L1 11 | L1 1 1 I L1 1 1 | 1 l_

1985 1990 1995 2000 2005 2010 2015 2020
YEAR
Copyright © 2022 University of Maryland. https://www.esrl.noaa.gov/gmd/ccgg/trends _ch4
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Simple Climate Model

AT = Ay (1 + fi10) (AF,, + AR + AF + AF,prosors) — OHE

CH4+N20 OTHER GHGs

where

Aps= 03K / Wm™
OHE = Ocean Heat Export

Climate models that consider water vapor feedback find:
A ~ 0.63K / Wm™, from which we deduce f,,,, = 1.08

Copyright © 2022 University of Maryland.
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Lapse Rate Feedback

Unperturbed No lapse Negative lapse Positive lapse
profile rate feedback rate feedback rate feedback
Radiative Radiative Radiative
Tropopause forcing forcing forcing
Surface
Uniform Larger Larger
temperature temperature temperature
change change change
in the upper at the
https://ourchangingclimate.wordpress.com/2013/03/01/klotzbach-revisited troposphere surface

* Photons emitted in UT can escape to space more easily than photons emitted near surface
* If UT warms more than surface, bulk atmospheric emissivity increases

UT :upper troposphere Emissivity: efficiency in which thermal energy is radiated

» GCMs indicate water vapor & lapse rate feedbacks are intricately linked, with the former almost
certainly being positive (in response to rising GHGs), the latter almost certainly being negative,
and the sum probably being positive

Copyright © 2022 University of Maryland.
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1 1 1 1 1 1 I
o
2+ (a) ° -
B. E ® CMIP3 mean
Bl @ CMIP5 mean
'(_) = CMIP: Climate Model Intercomparison Project
ol o o) CMIP3 used for 2007 IPCC Report
' 1 = o = CMIP5 used for 2013 IPCC Report
E CMIP6 used for 2020 IPCC Report
& CMIP4 trying to catch a break
g 8 2 IPCC: Intergovernmental Panel on
— g 8 s Climate Change
—
o 0
D 0
E o
o i.
< -1} 8 g
o
X
Q
S
T =4 F .
()]
()]
LL
3 F i
(B
1 1 1 1 1 1 1
P WV LR  WV+LR C A ALL
Feedback Type
If FB,,,, .= 1.0 Wm~ K" and we assume other feedbacks are zero, then:
1 —
I+ from = =145

I-10Wm K'x 0.31 KWm™

Therefore, f, ., =0.45; 1.e., climate models suggest f. .., =0.45
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§ 1.5 ;— .Hald CIRUT5| | inlu = 0.|80 - | I—; CRU: C.Iimate_ I_Research Unit of East ;_Anglia, Ur!ited Kingdom
T 1.0 — EM=GC Ar = 1.62 W m~2 °C™’ = EM-GC: Empirical Model of Global Climate, Univ of Maryland
® 0.5 -
o0 -
T 00 —
o -0.5 | | — Model computes influence on global mean surface temperature
—~ = o ' r ' = (GMST) of:
© 1.0 F Human activity: total P
- 0152 0.167 + 0.007 °C/decade - z
0.0 = : L : L : =
YTy 0.0 = =
‘?: 0.1 = 13 | [ V = b) Total Solar Irradiance (TSI) & Stratospheric Aerosol Optical Depth
T "02g -SA[.D A . .ty "3 (sAoD)
= ! I | T T | T ] T I ] |:
< 0.2 ENSO — o S
£ oo MMMWWWWM c) El Nifio — Southern Oscillation (ENSO)
— T E =
<J _0‘2 == | | | } | | | l | | | L | F
— T T T T | T T | T T T T T ]
o 0.2 AMOC 0.025 °C/decade —
~ 00 =a /\ ~ Yo e T - d) Atlantic Meridional Overturning Circulation (AMOC)
Q _0‘2 :_ | | | 1 | | L | | 1 1 1 1 E
S0 T T T T [ T T T T [ T T 11 1
— 40 Avg. of five datasets
; 50 Upper 700 m
o 20 £ =1.00Wm?ec™ e) Transfer of heat from atmosphere to ocean
O Xocean = 0.31
g 10
O 1 |l v b T
1850 1900 1950 2000

Similar to Lecture 2, Slide 16 (Handout)

McBride et al., 2021: https://esd.copernicus.org/articles/12/545/2021
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S

CRU: Climate Research Unit of East Anglia, United Kingdom
EM-GC: Empirical Model of Global Climate, Univ of Maryland

AT

HUMAN

- 7\'P (1 +'floml_ ) (AF('O: +AF

CH4+N20

+AF __ )— OHE

OTHER GHGs AEROSOLS

where f, ., 1s dimensionless climate sensitivty parameter that represents feedbacks,
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Similar to Lecture 2, Slide 16 (Handout)

and is related to IPCC definition of feedbacks (Bony et al., J. Climate, 2006) via:
v
1- FBTOTAL A‘P

and FB. ...

1 +-f:I‘OTAL =

= FBWATER VAPOR + FBLAPSE RATE + FBCLOUDS +

FB

SURFACE ALBEDO + efc

Each FB term has units of W m~ K™', the recipricol of the units of &,
The utility of this approach is that feedbacks can be summed to get FB

1
1-1.62Wm~? /K x 0.31 K / Wm™
S

1-0.506

1 +fTOT,\1. -

2.02

~
~

2

McBride et al., 2021: https://esd.copernicus.org/articles/12/545/2021
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Combining RF GHGs & Aerosols

S[TTTT[ITTITI1
- RCP4.5

Total GHG

Radiative Forcing (W/m~2)

-1 Past: —
| Aerosol forcing A i
similar strength e/ Aerosols |
B to GHG forcing 1
VA NEENE EEENE EE NN FE RN FRE N
1850 1900 1950 2000 2050 2100

Year

Fig 1.10, Paris, Beacon of Hope
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Combining RF GHGs & Aerosols

5lIIIIIIIIIlIlIIIIIIIIIII

- RCP4.5

4 GHG - Aerosol RF —»

3 [~ Aerosol RF2011 =_0.4 W m—2

; 7

- Value in 2011

Radiative Forcing (W/m~2)
N

¥ \\\\
—_— 1 N ‘-

Aerosol forcing

similar strength
to GHG forcing

—2IIIIIIIIIIIIIIIIIIIIIIII

1850 1900 1950 2000 2050 2100
Year

Based upon Fig 1.10, Paris, Beacon of Hope
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Combining RF GHGs & Aerosols
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- RCP4.5
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3 [~ Aerosol RF2011 =_0.9 W m—2

= Value in 2011 —
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Based upon Fig 1.10, Paris, Beacon of Hope
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Combining RF GHGs & Aerosols
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- RCP4.5 .

4 - GHG - Aerosol RF —»

3 [~ Aerosol RF2011 = _1.5 W m—2

Value in 2011

Radiative Forcing (W/m~2)
N

1 | Aerosol forcing N A7 fo |
similar strength  \W&ONZ¥/  Aerosols |
to GHG forcing

—2IIIIIIIIIIIIIIIIIIIIIIII

1850 1900 1950 2000 2050 2100
Year

Based upon Fig 1.10, Paris, Beacon of Hope
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Uncertainty in RF of climate due to tropospheric aerosols is huge complication
leading to fundamental uncertainty on forecasts of future global warming

AT = Apjanek X (1+ frorar ) ARF ~OHE
where:
Jrorar = feedbacks due to water vapor, clouds, lapse rate, etc
OHE = ocean heat export

T T T T I T T T T I T LI T I T T T T '| T T T

Paris Upper Limit

O |
o 2.5 H —
> adCRUTS . =
> 35 IS =03 o
(@] . =
Q 1.0 = \Paris Goal
e 0.5 —5
o 0.0 SSP4-3.4 =
“-—-0.5 E —]
~— =1 | | | | | | | 1 I I 1 | | | | | | | | l 1 1 | =
g_) 5 ;_[ T T T ] T T I T T [ L T T T ] ] L] T [_-;
E g %:AER RF,01; = —0.4 W m™2 :E
12 = GHGs =
= ———— Nef —
0 E - LUC =
-% == Aerosols =
- | | 1 1 1 1 | L L L L | 1 J I—
1850 1900 1950 2000 2050 2100

McBride et al., 2021
https://esd.copernicus.org/articles/12/545/2021

We assume that whatever value of climate feedback is inferred from the climate record will persist into the future.
For Aerosol RF in 2011 of —0.4 W m~2 & assuming best estimate for H,O and Lapse Rate feedback is correct,
this simulation implies sum of other feedbacks (clouds, surface albedo) must be close to zero.
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Uncertainty in RF of climate due to tropospheric aerosols is huge complication
leading to fundamental uncertainty on forecasts of future global warming

AT = Apjanek X (1+ frorar ) ARF ~OHE
where:
Jrorar = feedbacks due to water vapor, clouds, lapse rate, etc
OHE = ocean heat export

|

I | | | I | ] ] I | I I I | | | I I I I I I

Paris Upper Limit

o =
S 29 HadCRUTS f =1.0 E
Z ?g EM—GC TOTAL oé
S 10 E\ParisGoal
e 0.5 —
s 0.0 SSP4—-3.4 =
:—:._0°5 ? IR R B R N T N TR TR N N N M é
g_) 5 E- | [ ! | | Ii
- :E =
< 12 ;: . :E
= =——— " Net luc =
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— — 1 L 1 | 1 I 1 1 | 1 1 1 1 | 1 1 1 | 1 1 1 —
1850 1900 1950 2000 2050 2100

McBride et al., 2021
https://esd.copernicus.org/articles/12/545/2021

We assume that whatever value of climate feedback is inferred from the climate record will persist into the future.
For Aerosol RF in 2011 of —0.9 W m~2 & assuming best estimate for H,O and Lapse Rate feedback is correct,
this simulation implies sum of other feedbacks (clouds, surface albedo) must be moderately positive.
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Uncertainty in RF of climate due to tropospheric aerosols is huge complication
leading to fundamental uncertainty on forecasts of future global warming

AT = Apjanek X (1+ frorar ) ARF ~OHE
where:
Jrorar = feedbacks due to water vapor, clouds, lapse rate, etc
OHE = ocean heat export

I
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McBride et al., 2021
https://esd.copernicus.org/articles/12/545/2021

We assume that whatever value of climate feedback is inferred from the climate record will persist into the future.
For Aerosol RF in 2011 of —1.5 W m~2 & assuming best estimate for H,O and Lapse Rate feedback is correct,
this simulation implies sum of other feedbacks (clouds, surface albedo) must be strongly positive.
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End of Century Warming, SSP4-3.4, as a fn of Feedback & Aerosol RF

AR5 best
- = estimate
0.4 = = RF due to
Z 0.3 — Tropospheric
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McBride et al., 2021
https://esd.copernicus.org/articles/12/545/2021

Copyright © 2022 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.


https://esd.copernicus.org/articles/12/545/2021

IPCC AR5 “downgraded” warming forecast by CMIP5 models

Chapter 11 of IPCC (2013) suggested CMIP5 GCMs warm too quickly
compared to observations, resulting in “likely range” (red trapezoid)
for rise in GMST relative to pre-industrial baseline (AT) being
considerably less than actual archived AT from the CMIP5 GCM runs
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Fig 11.25b, IPCC (2013)
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Probabilistic Forecast of Human-Induced Rise in GMST for model trained
on data acquired until end of 2019 and future GHG levels from SSP2-4.5
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If GHGs follow SSP2-4.5, 2% chance rise GMST stays below 1.5°C and 33% chance stays below 2.0°C

EM-GC: University of Maryland Empirical Model of Global Climate
AT: rise in GMST (Global Mean Surface Temperature) relative to pre-industrial
CRU: Climate Research Unit, Easy Anglia, UK: Premier source of data for AT

McBride et al., 2021: https://esd.copernicus.org/articles/12/545/2021
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Probabilistic Forecast of Human-Induced Rise in GMST for model trained
on data acquired until end of 2019 and future GHG levels from
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EM-GC: University of Maryland Empirical Model of Global Climate
AT: rise in GMST (Global Mean Surface Temperature) relative to pre-industrial
CRU: Climate Research Unit, Easy Anglia, UK: Premier source of data for AT

McBride et al., 2021: https://esd.copernicus.org/articles/12/545/2021
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Probabilistic Forecast of Human-Induced Rise in GMST for model trained
on data acquired until end of 2019 and future GHG levels from SSP1-2.6
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If GHGs follow SSP1-2.6, 53% chance rise GMST stays below 1.5°C and 86% chance stays below 2.0°C

EM-GC: University of Maryland Empirical Model of Global Climate
AT: rise in GMST (Global Mean Surface Temperature) relative to pre-industrial
CRU: Climate Research Unit, Easy Anglia, UK: Premier source of data for AT

McBride et al., 2021: https://esd.copernicus.org/articles/12/545/2021
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Probabilistic Forecast of Human-Induced Rise in GMST for model trained
on data acquired until end of 2019 and future GHG levels from SSP1-1.9
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If GHGs follow SSP1-1.9, 81% chance rise GMST stays below 1.5°C and 98% chance stays below 2.0°C

EM-GC: University of Maryland Empirical Model of Global Climate
AT: rise in GMST (Global Mean Surface Temperature) relative to pre-industrial
CRU: Climate Research Unit, Easy Anglia, UK: Premier source of data for AT

McBride et al., 2021: https://esd.copernicus.org/articles/12/545/2021
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