Mid-Latitude Stratospheric Chemistry
AOSC/CHEM 433 & AOSC/CHEM 633

Ross Salawitch

Class Web Sites:
http://www?2.atmos.umd.edu/~rjs/class/spr2024
https://umd.instructure.com/courses/1358887

Today:

 Background on CFCs

Ozone Depletion Potenial

Importance of how a chemical cycle is completed wrt odd-oxygen loss
Role of halogens and aerosol loading on mid-latitude ozone
Connection to recent research
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Motivation For Today

Total Column Ozone not recovering as fast as “expected”, particularly in NH mid-latitudes
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Fig 3-7, WMO/UNEP Twenty QAs Ozone
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Motivation For Today

Current Trajectory of Stratospheric Halogens also not recovering as fast as

had once been projected (Montreal 2007 line)
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Fig Q14-1, WMO/UNEP Twenty QAs Ozone
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EXCESS SKIN CANCER CASES

Nonetheless, the Montreal Protocol has been a huge success and

has prevented a runaway increase in skin cancer cases

EXCESS SKIN CANCER CASES IN THE UNITED STATES PER YEAR
DUE TO OZONE DEPLETION FOR VARIOUS CFC SCENARIOS

140,000 R R | '
- Montreal
112,000 {— No Protocol =
84,000 London—
56,000 |
Copenhagen
1992
28,000 |— / —

: Mor]treal 19917/
: i . | . \ . | .
1980 2000 2020 2040 2060 2080 2100




Montreal Protocol and Various Amendments
Have Banned Industrial Production of CFCs and Halons

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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Montreal Protocol and Various Amendments
Have Banned Industrial Production of CFCs and Halons

Global Emissions of all CFCs, Fig Q0-1, WMO/UNEP Twenty QAs Ozone
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Why was the introduction of Freon-12 as a refrigerant gas in the 1930s hailed as a great triumph?

What was the dire unintended consequence of the introduction of Freon-12?
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Chlorine (left) & Bromine (right) Source Gases

Entering the Stratosphere

Halogen Source Gases Entering the Stratosphere
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https://csl.noaa.gov/assessments/ozone/2022/downloads/Chapter1 20220zoneAssessment.pdf
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Ozone Depletion Potential and Halocarbons

Table Q6-1. Atmospheric lifetimes, global emissions, Ozone Deletion Potentials, and Global Warming Potentials of some halogen source
gases and HFC substitute gases.

AtmosphericlLifetime Ozone Depletion
(years)

Potential (ODP)®

continuous

ODP (species "i") =

"l'H

global loss of O, due to unit mass emission of

Chlorine Gases

CFC-11 (CCI,F) 571 1
Carbon tetrachloride (CCl,) 30 0.87
CFC-113 (CCLFCCIF,) 93 0.82
CFC-12 (CCI,F,) 102 075
Methyl chloroform (CH5CCl5) 5.0 0.12
HCFC-141b (CH,CCI;F) 8.8 0.102
HCFC-142b (CH,CCIF,) 17 0.057
HCFC-22 (CHF,CI) 12 0.038
Methyl chloride (CH,Cl) 0.9 0.015
Bromine Gases

Halon-1301 (CBrF5) 72 17
Halon-1211 (CBrCIF,) 16 7.1
Methyl bromide (CH,Br) 0.8 0.57
HFC-23 (CHF,) 228 0
HFC-143a (CH,CF,) 52 0
HFC-125 (CHF,CF5) 31 0
HFC-134a (CH,FCF;) 14 0
HFC-32 (CH,F,) 553 0
HFC-152a (CH,CHF,) 1.5 0
HFO-1234yf(CF;CFCH,) 0.03 0
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global loss of O, due to unit mass emission of CFC-11

~ (o ng, +ngy) 7 MW e, continuous
3 Terea11 MW,

where :
7 1s the global atmospheric lifetime

MW 1is the molecular weight

n 1s the number of chlorine or bromine atoms

« 1s the effectiveness of ozone loss by bromine
relative to ozone loss by chlorine



Ozone Depletion

According to Section 2.8 of Chemistry in Context, how much depletion of stratospheric ozone at
mid-latitudes (60°S to 60°N) has occurred?

According to the Question 12 of the WMO/UNEP QAs, how much depletion of the Global Total Ozone
layer has occurred?

Also, state whether you are either "good" or "concerned” with the different estimates for depletion of
the ozone layer given in Question 12 of the WMO/UNEP QAs, compared to Section 28 of Chemistry in
Context (i.e, your answer to the prior question).

Global and Regional Total Ozone Changes

Observed changes relative to the 1964-1980 average
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Multiple Linear Regression Inputs and Outputs

Inputs
_ 20001 stratospheric halogens i
o - -
%’ - -
g & 1000} 3
w B L n
2 Natural sources ]

[0} NN PR PR FETE FETTE FRETS PR FETES FETTS PR P N TrE ST

b
Incoming solar radiation

1362 d

13611 4

Total solariradiance
(W/m?)

]360 illllilllIillllilIIIiIIllillllillllillllillllillllilIllilillilll
*“ [Mt. Agung Fuego ElChichén Mt. Pinatubo

0 (&%) 04°N)  (7N) (15°N) Stratospheric aerosols
E é o v ' v
£ . e :
80y 0Ir Major volcanic eruptions =
"’§ Q@ Increasing
230 stratospheric
g o aerosols
» g e

o

| IR

s ala iy
1960 1970

1 | I e |

paa el P
1980 1990 2000

M NI N
2010 2020

Fig Q13-1, WMO/UNEP Twenty QAs Ozone

Copyright © 2024 University of Maryland.

DU

DU

DU

DU

DU

DU

e b b b
1980 1990 2000

Outputs

Total Column Ozone Anomaly
7‘lII“eolﬂlsl_l‘eolcrl‘ll;a;il;l{‘;iII‘M‘BLE;I:l‘o'le‘lelull‘llll“:
X = 2.15

i
[ANhARRNNNRANI

I
E<
=}
<

No VSL Chlorine

MIII TTTT IH|IIII‘IIH‘IHI TTT

Il

:

sidual )
EX bt A A o _
= ""“Wsﬂ‘?""7""".'=.‘"‘m=‘7f"?" Te vl I

e e e e e e e
End of 2021 Recovery = 38.5+16%

il

I |“I|IIII HII|HII HLJ[II|IIII
|

Volcanic SAOD

st b Ly
2010 2020

McBride et al., Manuscript In Preparation, 2024

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.



Quasi-Biennial Oscillation of Stratospheric Winds

Direction and speed of equatorial, horizontal wind
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Chapman Chemistry
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FIGURE 4.6 Comparison of stratospheric ozone concentrations as a function of altitude as pre-
dicted by the Chapman mechanism and as observed over Panama (9° N) on November 13, 1970,

[O;] falls off with increasing altitude (high in stratosphere), at a rate determined by [M]* 2, because:

[O;] falls off with decreasing altitude (low in stratosphere) due to a rapid drop in J,, reflecting:

Observed [O;] < Chapman [O;] : why ?!? Lecture 10

Copyright © 2024 University of Maryland.
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Stratospheric Photochemistry: Odd Oxygen Loss By Families
Fraction of O, Loss Due to Each Catalytic Family
JPL 2002 Kinetics
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Lecture 9

After Osterman et al., GRL, 24, 1107, 1997;
Sen et al., JGR, 103, 3571. 1998;
Sen et al., JGR, 104, 26653, 1999.
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HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

Production : O'D + H,0 - OH + OH
O'D + CH, » OH +CH;,

OH < no | HO,

/

Loss: OH + HO, —» H,0 + O,
OH + HNO, — H,0 + NO,

Copyright © 2024 University of Maryland.
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HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

Rapid inner cycle:

HO, formation:

OH + O; - HO, + O, (1)

HO, loss:
HO, + NO — OH + NO, (2)
or HO,+O —>OH+O, (3)

O,

OH < no | HO,

or HO,+0;—>O0OH+0,+0, (4)

0,0

Copyright © 2024 University of Maryland.
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HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

Rapid inner cycle:

HO, formation:
OH + O; - HO, + 0O,
HO, loss:
HO, + NO - OH + NO,
or HO,+O —OH+O,
or HO,+0;—>OH+0,+0,

Copyright © 2024 University of Maryland.

(1)

2)
3)
(4)

HO, loss step (2): 3

OHd +0; — B9, +0,
HQ, + NO — O + NO,

Net: O;+NO — O, +NO,

This is followed quickly by: >
NO,+hv - NO+O

Yielding final “net”:
0O; > 0+0, Y,

Null cycle
with respect to production &
loss of odd oxygen
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HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

~
Rapid inner cycle: HO, loss step (3):
HO, formation: HO,+ O — OH+O,
OH + O; - HO, + O, (1) :
HO, loss: Net: O;+0 - 0,+0, Py
HO, + NO - OH + NO, (2)
or HO,+O —>OH+O, (3) N
or HO,+0;—>OH+O0,+0, 4) HO, loss step (4):
OH+ 0O; — HO, +0, .

HO,+ O; - OH+0O,+ 0,
Net: O;+0; —0,+0,+0, )

Catalytic Ozone (Odd Oxygen) Loss Cycles

Copyright © 2024 University of Maryland.
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Odd Oxygen Loss - HO,

d (Odd ixygen) =—2k,[HO,][0,] -2k, [HO,][O] Eq (7)

The reactions:

HO,+O — OH+O, (3)
HO,+0; > OH+0,+0, (4)

are rate limiting steps for O; loss by two catalytic cycles:

Cycle (1) Net:

0;+0 —520,
Cycle (2) Net:
O;+0; »30,

As a convenient short hand, we consider HO, to be odd oxygen

Then:
clear now that reactions (3) and (4) each consume two odd oxygens
at rates determined by 2 k; [HO,] [O] and 2 k, [HO,][O;]

Copyright © 2024 University of Maryland.
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Odd Oxygen Loss - HO,

At what altitudes will loss of ozone by these rate limiting steps be dominant ?
HO,+O —> OH+O, (3)
HO,+0O; > OH+ 0O, +0, (4)

One dominates at low altitude, the other at high altitude = which is which ?!?

Fraction of O, Loss Due to Each Catalytic Family
JPL 2002 Kinetics
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Odd Oxygen Loss - HO,

At what altitudes will loss of ozone by these rate limiting steps be dominant ?

HO,+0 —» OH+ O, 3)
HO,+0, >OH+0,+0, (4

One dominates at low altitude, the other at high altitude = which is which ?!?
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CH, and Stratospheric Ozone
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using CH, from RCP 8.5 minus that of a simulation using CH, from RCP 2.6

Rising CH, leads to:
a) ozone loss in the upper stratosphere by increasing the speed of OH and HO, (HO,) mediated loss cycles.

b) a cooler stratosphere, slowing the rate of all ozone loss cycles
c) speeds up the rate of CI+CH,, shifting chlorine from CIO into HCI (i.e., deactivates chlorine)
d) more HO, in the lowermost stratosphere where there is sufficient CO to result in O; production by “smog chemistry”

Computer models project stratospheric column O, will increase as CH, rises

Copyright © 2024 University of Maryland. 20
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NO, : NO and NO,

NO and NO, are central to stratospheric and tropospheric photochemistry

Stratospheric Production : O'D + N,O - NO + NO

O,

NO <"" O,

/w

Final sinks : N + NO — N, + O (uppermost stratosphere)
HNO; solubility & rainout (lowermost stratosphere)

Copyright © 2024 University of Maryland.
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NO, : NO and NO,

NO and NO, are central to stratospheric and_tropospheric photochemistry

Rapid inner cycle: NO, loss step (2):
NO+0O; —NO, +0,
NO, formation: NO,+hv - NO+O
NO + O; > NO, + O, (1) f .
NO, loss: Net: O;+ hv - 0+0,
NO, +hv—>NO+O (2)
or NO,+0O - NO+O0, (3)
NO, loss step (3):
NO+0O; —NO, +0,
NO,+0O — NO+O0O,
Net: O;+ O —20,
Can show:
d
O, N dO _ d (Odd Oxygen) _ 2k [NO,][O]
dt dt dt

As a convenient short hand, we consider NO, to be odd oxygen

Copyright © 2024 University of Maryland.
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N,O and NO,

Loss of N,O occurs mainly in the stratosphere due to:
photolysis — main sink
reaction with electronically excited O('D) — minor sink

45

- I\
—)

35 A
30

ALTITUDE (krm)
ka3
% ]

25 A

20

15‘ T T T T T
0 10 20 30° 40 S0 G0

Latiiude

Fig. 11. Diurnally averaged loss rate for N;O (10? molecules cm™ s7') . .
asga function ofimmg?nﬂ latitude, calculated with the line-by-line Minschwaner, Salawitch, and McElroy, JGR, 1993

model, for equinox. The loss rate includes destruction of NoO by reac-
tion with O('D) as well as photolysis.

The minor sink for N,O loss has a path that results in “reactive nitrogen”: Lecture 6
N,O + O('D) - NO + NO
Reactive nitrogen (NO,) is crucial to stratospheric chemistry

Oxides of nitrogen catalyze loss of stratospheric O; & participate in a series of
chemical reactions that affect partitioning of hydrogen and chlorine radicals, etc.

Copyright © 2024 University of Maryland.
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N,O and Stratospheric Ozone
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Stratospheric O, difference in the 2090s found for a computer simulation run
using N,O from RCP 8.5 minus that of a simulation using N,O from RCP 2.6

Rising N,O leads to:
a) ozone loss in the middle & upper stratosphere by increasing the speed of NO and NO, (NO,) mediated loss cycles.

b) speeds up the rate of OH+NO,+M—HNO;+M & CIO+NO,+M— CINO4;+M in the lowermost stratosphere,
leading to slower ozone loss by these cycles & therefore more O; where these cycles dominate total loss of O,

Computer models project stratospheric column O; will decline as N,O rises

Lecture 6

Copyright © 2024 University of Maryland. 24
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CIO, : ClO and ClI

ClO 1s central to stratospheric photochemistry, at mid-latitudes and polar regions

Production : CFCs +hv— Inorganic chlorine

O,

cl (W cl
yaty,

Final sinks : HCI solubility & rainout (lowermost stratosphere)

O

Copyright © 2024 University of Maryland.
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CIO, : ClO and ClI

ClO is central to stratospheric photochemistry, at mid-latitudes and polar regions:

Rapid inner cycle:

ClO formation:

Cl+ 0O; —» CIO+ 0O, (1)
ClO loss:
CIO + NO — Cl + NO, (2)
or CIO+0—->Cl+0, 3)
Can show:

do, N dO d(Odd Oxygen)

dt dt dt

ClO loss step (2):

Cl+0, — CIO +0,
ClIO + NO — Cl+NO,

Net: O;+ NO— NO, +0,
Followed by: NO,+hv —->NO+O

Final net: O;+hv - O+0,

CIO loss step (3):

Cl+0, —> ClO +0,
CIO+0 — Cl+0,

Net: O;+ O —>20,

— 2k, [CIO][O]

As a convenient short hand, we consider ClO to be odd oxygen

Copyright © 2024 University of Maryland.
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Proof Halocarbons Reach The Stratosphere

Measurements of Chlorine Gases
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Altitude (kilometers)

Proof Halocarbons Reach The Stratosphere

Measurements of Chlorine Gases
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Trends in Ozone, ~40 km

Line: range of model calculations,
where models are forced by

2hPa/ 42km
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Fig 3-9, WMO/UNEP Ozone Report
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changing levels of stratospheric halogens

Trends in ozone at 40 km are “well understood”:

ozone is anti-correlated with time history
of upper stratospheric chlorine loading
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But: ozone at 40 km has little effect
on surface UV radiation
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Chemical reaction on surface of volcanic aerosol couples NO, and HNO,

* As sulfate aerosol rises, NO, (NO and NO,) falls
* As NO, drops, CINO; falls and CIO rises

* Big Dogs in Chlorine Family: HCI & CINO;,
« Small Bog, Big Bite (for O3): CIO
H C I * When lots of NOx is present, [CIO] / [CINO;] suppressed by CIO+NO,+M
* When a major volcanic eruption occurs, heterogeneous reaction
N,O +H,O(sulfate aerosol) - 2 HNO, , sequestering NOx
* Once NOx is sequestered, Small Dog with Big Bite (CIO) is free

O, OH, hv CINO3

NO,

O3
m hv, OH
Cl < no | CIO

O
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Response of Stratospheric Constituents to Mount Pinatubo:
aka The Rise (ClO) and Fall (NO,) of Radicals

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. D9, PAGES 18,861-18,869, SEPTEMBER 20, 1994

A two-dimensional modeling study of the volcanic
eruption of Mount Pinatubo

S. Bekki and J. A. Pyle

Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge. England
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Figure 6. Percentage changes in (a) NO; and (b) CIO
columns as a function of time and latitude for the vol-
canic run relative to the background run.

Latitude (deg.)

Copyright © 2024 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.



Abundance of stratospheric ozone responds to:
a) rise and fall of chlorine

b) volcanic perturbations to aerosol loading
c) measured & modeled ozone column anomaly (deviation from mean)
simulated quite after June 1991 eruption of Mount Pinatubo, particularly in NH
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Montreal Protocol and Various Amendments
Have Banned Industrial Production of CFCs and Halons

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
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Montreal Protocol Had Banned Most
Industrial Production of CFCs & Other ODS

Ehe New Nork Times

In a High-Stakes Environmental
Whodunit, Many Clues Point to China

Interviews, documents and advertisements collected by The New York
Times and independent investigators indicate that a major source —
possibly the overwhelming one — is factories in China that have ignored a
global ban and kept making or using the chemical, CFC-11, mostly to
produce foam insulation for refrigerators and buildings.

“You had a choice: Choose the cheaper foam agent that’s not so good for
the environment, or the expensive one that’s better for the environment,”
said Zhang Wenbo, owner of a refrigerator factory here in Xingfu, in
Shandong Province, where he and many other small-scale manufacturers
said that until recently, they had used CFC-11 widely to make foam
insulation.

https://www.nytimes.com/2018/06/24/world/asia/china-ozone-cfc.html
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CFC-11 Emissions Update

Figure ES-3. CFC-11 global emissions
and reported production. Shown are
emissions of CFC-11 derived from AGAGE
(Advanced Global Atmospheric Gases
Experiment; red) and NOAA (National
Oceanic and Atmospheric Administration;
blue) global network measurements of
CFC-11 abundances (see also Figure 1-3
of the Assessment) and a model using a
CFC-11 lifetime of 52 years. Also shown
is the production history reported to the
UN Environment Programme for all uses
(green), the average of annual emissions
over the 2002-2012 period (horizontal
purple line) extended to 2020 (dashed
purple line), and scenario projections
based on observations through 2006 or
through 2012 (grey dotted and dashed
lines). These emission projections are cal-
culated using standard methodologies
based on reported production, inventory
estimates of the bank, and an empirically
determined release fraction from the bank
over the seven years before 2006 or 2012,
which is then applied to subsequent years
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(see Chapters 1 and 7). Uncertainties in emissions, shown as vertical lines on the data points, include the influence of measure-
ment and model representation uncertainties, and do not include the influence of dynamical variability. The uncertainties are
smaller than those presented in Figure 1-3, because uncertainties related to factors constant across the whole time period, such
as lifetimes and calibration scale, have been omitted.

Fig ES-3, 2022 WMO/UNEP Scientific Assessment of Ozone Depletion Executive Summary
https://csl.noaa.gov/assessments/ozone/2022/downloads/executivesummary.pdf
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Very-Short Lived (VSL) Chlorine

These gases, all mainly anthropogenic,
have lifetimes for atmospheric removal of
less than 6 months and are not controlled

by the Montreal Protocol.
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Fig 1-8, 2022 WMO/UNEP Scientific Assessment of Ozone Depletion Report
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Argh, “Long-Lived” Chlorine Not Declining As Fast As We Had Projected

Projections Based on 2018 World Meteorological Organization
Scientific Assessment of Ozone Depletion Report
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2018 WMO Scientific Assessment of Ozone Depletion Report:
https://www.esrl.noaa.gov/csd/assessments/ozone/2018
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Argh, “Long-Lived” Chlorine Not Declining As Fast As We Had Projected

Projections Based on 2022 World Meteorological Organization
Scientific Assessment of Ozone Depletion Report
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Argh, “Long-Lived” Chlorine Not Declining As Fast As We Had Projected

1

AMS

104TH ANNUAL MEETING
..(, 28 JANUARY-1 FEBRUARY 2024

»
f£:" A BALTIMORE, MD & ONLINE

12A.1 - Kicking the Can Down the Road in Ozone Recovery

* u @ @ Wednesday, January 31, 2024
(] @ 4:30 PM-4:45PM

Q 310 (The Baltimore Convention Center)

Megan Lickley, Georgetown University, Washington, DC; Georgetown University, Cambridge, MA; and R. J. Salawitch, J. S. Daniel, L. McBride, and G. Velders

9 310 (The Baitimore Convention Center)

Abstract

Every four years the international scientific assessment of ozone depletion is prepared to support decisions made by
the Parties to the Montreal Protocol. A key component of each assessment is an outlook of the ozone recovery timeline,
which has been quantified using equivalent effective stratospheric chlorine (EESC), a metric that has been developed to
relate surface level atmospheric abundance of ozone depleting substances (ODSs) to stratospheric ozone destruction.
In each assessment, the year in which EESC values will return to below 1980 levels is estimated, given the best scientific
understanding of atmospheric processes and assuming global compliance with the Protocol. However, since 2006, the
expected EESC return date to below 1980 levels has been consistently delayed between assessments from an expected
EESC return date of 2049 in the 2006 assessment to 2066 in the 2022 assessment, an ozone recovery delay of 17
years over a 16-year assessment period. Has this delay in expected ozone recovery been a result of consistently
underestimating global production and emissions of ODSs or due to changes in the scientific understanding and
representation of atmospheric processes? Here, we investigate this question by identifying the primary drivers that have
delayed the expected ozone recovery date between each consecutive international ozone assessment from 2006 to
2022. We find that changes in the formulation of fractional release factors that underlie the calculation of EESC can only
partially explain this delay, and that changes in 1) atmospheric lifetime assumptions 2) bank calculation methods 3)
updated historical mole fraction estimates and 4) an under-estimate of the atmospheric release of CCl4 account for
much of the remaining delay. Since some of these factors are amenable to future controls (i.e., capture of ODSs from
banks and limitations on future atmospheric release of CCl4), it is important to understand the reasons for the delays in
the expected ozone recovery date.

https://ams.confex.com/ams/104ANNUAL/meetingapp.cqi/Session/67035
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