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a b s t r a c t

Since the mid-1990s a new generation of Earth-observing satellites has been able to detect tropospheric
air pollution at increasingly high spatial and temporal resolution. Most primary emitted species can be
measured by one or more of the instruments. This review article addresses the question of how well we
can relate the satellite measurements to quantification of primary emissions and what advances are
needed to improve the usability of the measurements by U.S. air quality managers. Built on a compre-
hensive literature review and comprising input by both satellite experts and emission inventory spe-
cialists, the review identifies several targets that seem promising: large point sources of NOx and SO2,
species that are difficult to measure by other means (NH3 and CH4, for example), area sources that cannot
easily be quantified by traditional bottom-up methods (such as unconventional oil and gas extraction,
shipping, biomass burning, and biogenic sources), and the temporal variation of emissions (seasonal,
diurnal, episodic). Techniques that enhance the usefulness of current retrievals (data assimilation,
oversampling, multi-species retrievals, improved vertical profiles, etc.) are discussed. Finally, we point
out the value of having new geostationary satellites like GEO-CAPE and TEMPO over North America that
could provide measurements at high spatial (few km) and temporal (hourly) resolution.
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1. Introduction

In the past two decades major advances have occurred in the
detection of atmospheric pollution from space. The generation of
satellite instruments launched since 1995 has proved to be capable
of observing a wide range of chemical species at increasingly high
spatial and temporal resolution. In addition, the transformation of
raw satellite retrievals to user-friendly, archived products has
progressed considerably, such that the application of satellite ob-
servations to a wide range of atmospheric problems is no longer a
daunting prospect. Previous review papers (Borrell et al., 2003;
Martin, 2008; Palmer, 2008; Hoff and Christopher, 2009) have
stressed the value of space-based observations for measuring
tropospheric air pollution from space and have pointed out the
potential to infer emission strengths. Satellite instruments measure
the concentration of a chemical species in a vertical column of air;
and, if transport and chemical conversion do not greatly interfere or
can be compensated for, then the measurements can be used to
estimate the emission rate of the species directly under that col-
umn of air.

In 2011 the U.S. National Aeronautics and Space Administration
(NASA) Applied Sciences Program (ASP) created an Air Quality
Applied Sciences Team (AQAST) to serve the needs of U.S. air quality
managers through the use of Earth science satellite data, suborbital
data, and models (NASA, 2013a). One component of the AQAST
activity is an assessment of the applicability to U.S. air quality
management of research that links satellite retrievals with emis-
sions. We pose two questions: How can air quality managers make
use of satellite retrievals to improve emission estimates? and What
developments are needed to enhance the usefulness of those re-
trievals? It is not difficult to prepare a list of possible applications:
verification of point-source compliance, quantification of uncertain
area sources (including biogenic and other natural sources), esti-
mation of neighboring emissions (say, in Canada and Mexico) and
long-distance emissions (say, in China) that may influence U.S. air
quality, the coordinated use of multiple-species retrievals, the
detection of wildfires and other episodic events, etc. But inwhich of
these areas does valuable capability lie?

In support of U.S. air quality management, EPA has developed
the National Emissions Inventory (NEI), a compilation of emission
estimates collected from state, local, and tribal (S/L/T) air agencies,
supplemented with other resources (EPA, 2013a). The NEI is
released on a triennial cycle, with the most recent version for 2008.
Some satellite data products are already included in the NEI, mainly
related to wildfires. However, there are many other areas in which
satellite products could potentially augment the NEI in the future.

The purpose of this article is to review the literature and
generate from it a U.S. perspective on what satellite observations
can tell us about emissions. Because of this focus, the reader should
not expect to find reference herein to the use of satellite data in
studies of ambient concentrations of ozone or secondary aerosols
or the movement of polluted air masses. Nor do we include studies
outside North America unless they contribute significantly to
relevant methods development or the novel treatment of emission
sources that have the potential to be transferred to the U.S. context.

The article is organized in five main sections. First, we review 12
major satellite instruments that have the capability to detect and
quantify emissions (Section 2). Next, we describe the derivation of
retrievals from these instruments for eight important chemical
species (Section 3). Methodological approaches to enhance source
quantification are described in Section 4, together with the primary
application studies that have been published to date, organized by
source type. In Section 5, we draw together the satellite capability
and the characteristics of the NEI to highlight promising avenues
for future applications, which are summarized in Section 6.

2. Satellites: platforms, instruments, and their characteristics

In this section we briefly review the history of relevant satellite
missions, highlighting those payload instruments that have helped
to advance the study of tropospheric air pollution. We focus on
modern instruments that have been widely used in the quantifi-
cation of emissions or, at minimum, in the identification of source
regions or the assessment of regional source strengths. We do not
include older instruments or modern instruments that are of
limited value for emissions estimation.

On the European side, the modern era of pollution-observing
satellites began with the launch by the European Space Agency
(ESA) of the second European Remote Sensing satellite ERS-2 on
April 21, 1995, that carried the Global Ozone Monitoring Experi-
ment (GOME) designed to measure O3, NO2, and related species
(Burrows et al., 1999). GOME was fully functional until 2003, after
which only limited data retrieval was possible until 2011. The
successor to the ERS mission, ENVISAT, was launched on March 1,
2002, and carried the SCanning Imaging Absorption spectroMeter
for Atmospheric CHartogaphY (SCIAMACHY) (Bovensmann et al.,
1999), which has been extremely valuable for observing a wide
range of trace gases in the troposphere. Sadly, the contributions of
SCIAMACHYended when contact with ENVISAT was lost on April 8,
2012. ESA and the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT) jointly initiated the MetOp
mission for operational meteorology, and launched the MetOp-A
satellite on October 19, 2006. Two instruments on MetOp-A are
of relevance to this work: GOME-2 (Callies et al., 2000)dan update
of the original ERS-2 instrumentdand the Infrared Atmospheric
Sounding Interferometer (IASI) (Clerbaux et al., 2009), which is
capable of measuring CO, NH3, CH4, and other species.

On the U.S. side, the modern era began on December 18, 1999,
when NASA launched the Earth Observing System (EOS) satellite
Terra, which featured three relevant onboard sensors: the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) (Barnes et al.,
1998), the Multi-angle Imaging SpectroRadiometer (MISR) (Diner
et al., 1998), and the Measurements Of Pollution In The Tropo-
sphere (MOPITT) instrument (Drummond, 1992). The first two of
these instruments measure particulate matter (PM) and its optical
effects, while the third specializes in the measurement of CO. Two
and a half years later, NASA launched Aqua on May 4, 2002. Aqua
carried a second MODIS instrument as well as the Atmospheric
Infrared Sounder (AIRS) (Aumann et al., 2003). On July 15, 2004,
NASA launched the Aura satellite to improve our understanding of
the changing chemistry of Earth’s atmosphere. Two Aura in-
struments are particularly valuable in an air pollution context:
the Ozone Monitoring Instrument (OMI) (Levelt et al., 2006) and
the Tropospheric Emission Spectrometer (TES) (Beer et al., 2001).
Aqua and Aura are both components of a constellation of satellites
called the “A-train” that makes coordinated measurements of the
same location as they pass over it, one at a time, within an eight-
minute period. Unfortunately, two subsequent satellites that
would have further aided the investigation of tropospheric air
pollution failed to reach orbit: the Orbiting Carbon Observatory
(OCO) in February 2009 and Glory in March 2011. On January 23,
2009, the Japan Aerospace Exploration Agency (JAXA) and collab-
orating institutions launched the Greenhouse gases Observing
SATellite (GOSAT) with the goal of measuring concentrations of CO2
and CH4 and their variability over time and space (Kuze et al.,
2009). Table 1 provides an overview of the major satellite plat-
forms, their key instruments, and their primary characteristics. It
shows the major species that each instrument is capable of
observing. Further details are provided in subsequent sections of
this paper to the extent that they are relevant to emissions
quantification.
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With no new launches of Earth-observing satellite instruments
planned for the next few years, concern has been expressed that an
interruption in the continuity of measurements could occur if
present instruments were to fail. While this is undoubtedly true,
prospects have improved in recent years with the approval of two
new missions in the U.S. The next generation of Earth science sat-
ellite missions was planned as part of the National Research Council
2007 Decadal Survey. To study tropospheric trace gases and aero-
sols from geostationary orbit, the NASA Geostationary Coastal and
Air Pollution Events (GEO-CAPE) mission was recommended for
launch in the 2013e2016 time frame (Fishman et al., 2012), which
would measure SO2, NO2, and other ozone/aerosol precursor spe-
cies hourly over North America with the highest ground resolution
of 4 km # 4 km. Due to budget constraints, the GEO-CAPE launch
was subsequently delayed beyond 2020, though refinements to the
mission plan might bring this date forward somewhat. Then, in
November 2012, a new mission called TEMPO (Tropospheric
Emissions: Monitoring of Pollution) was selected under NASA’s
Earth Venture Instrument program with the specific goal of
measuring tropospheric air pollutants (O3, NO2, SO2, formaldehyde,
glyoxal, and aerosols) over North America with high spatial
and temporal resolution from geostationary orbit (NASA, 2013b).
TEMPO is planned to be launched as a hosted payload on a com-
mercial satellite before 2020. Depending on priorities and budgets,
TEMPO could be a precursor or component of the larger GEO-CAPE
suite of instruments.

For Europe, ESA is planning the Sentinel 4 and Sentinel 5 mis-
sions, carried on EUMETSAT meteorological satellites, to measure
atmospheric composition. The Sentinel 5 Precursor mission is
planned to launch in 2015 with a TROPOMI instrument, which will
measure NO2 and SO2 with improved ground resolution
(w50 km2). Over Europe, the diurnal variations will be observed by
the geostationary Sentinel 4 mission after 2018. Clerbaux and
Crevoisier (2013) have expressed optimism about the future of
IASI-type instruments for remote sensing in this timeframe. In
addition, the Korea Aerospace Research Institute (KARI) is planning
to launch an atmospheric chemistry satellite into geostationary
orbit over East Asia in the 2018 time frame.

3. Species observations

This section describes the broad principles of satellite detection
of atmospheric constituents, focusing on eight important emitted
species that are observable from space at the present time. We
review the conditions for measuring each species and some of the
key studies undertaken to develop and apply the measurement
methods. For the methods that are the furthest developed and the
most used, we provide a little more detail on retrieval methods and
archived products than for those that are primarily in research
mode at the present time. The satellite instruments measure radi-
ation over a wide region of the electromagnetic spectrum from the
ultraviolet (UV) to the visible (Vis) in the range of w0.23e0.9 mm
and in the infrared (IR) from w4 to 50 mm. Instruments can be
classified into two types, those that observe solar backscatter ra-
diation in the UVeVis and those that observe thermal IR emission.
Chemical species in the atmosphere are detected by the absorption,
or attenuation, of radiation of specific wavelengths along the path
that the radiation travels through the atmosphere. The inferred
concentration of the chemical species, known as a retrieval, is
determined by a complex set of spectral fitting and radiative
transfer calculations, well described by Martin (2008). For the NO2
retrievals described in Section 3.1, which are the most fully devel-
oped and most widely used, we illustrate the process of deriving
concentrations from radiation measurements in more detail,Ta
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leading to the production of operational retrievals, i.e., fully pro-
cessed data sets available for user applications.

3.1. Nitrogen dioxide

Nitrogen oxides (NOx) are an important class of atmospheric
species that are implicated in a number of environmental problems,
including the formation of tropospheric ozone and aerosols, acid-
ification, eutrophication, and human health effects. NOx is primarily
formed by combustion processes, and emission factors vary ac-
cording to the fuel type and combustion conditions. For this reason,
NOx emissions can be quite uncertain, and there is potential for
aiding the estimation of NOx emissions using space-borne in-
struments. NO2 is the specific chemical form detected spectro-
scopically, so the relationship between NOx emissions and NO2
concentrations must be taken into account (Lamsal et al., 2008,
2011). Daytime global NO2 datasets are produced daily using UVe
Vis spectrometers aboard polar-orbiting, sun-synchronous satel-
lites. OMI features the highest spatial resolution (13 km [along
track] # 24 km [across track] at nadir) among this type of instru-
ment and has been providing continuous global coverage since
October 2004. The GOME-2 instrument has provided morning NO2
data since 2007. It is characterized by a spatial resolution of
40 km # 80 km with global coverage in 1.5 days. In addition, the
SCIAMACHY instrument produced NO2 data from its launch in 2002
until its demise in 2012. It was characterized by a spatial resolution
of 30 km # 60 km but had coverage gaps due to alternating limb
and nadir modes of observation, so global coverage was achieved
every six days at the equator. Their predecessor instrument, GOME,
provided NO2 data from 1995 to 2003 at 40 km # 320 km resolu-
tion, achieving global coverage every three days at the equator.

Processing of satellite measurements typically involves three or
more steps or processing “levels”. Calibrated Level 1 satellite data
include high-resolution solar and earthshine spectra (typically
better than 0.6 nm spectral resolution) for each individual mea-
surement (pixel). Earthshine radiances are divided by a reference
solar irradiance spectrum to linearize the NO2 retrieval problem.
The reflectance spectra are fitted to laboratory-measured trace-gas
spectra (e.g., Vandaele et al., 1998) convolved with an instrumental
slit function, a reference Ring spectrum (e.g., Chance and Spurr,
1997), and a polynomial function that models the spectrally
slowly varying scattering by clouds and aerosols and reflection by
Earth’s surface. The fitting algorithms use the Differential Optical
Absorption Spectroscopy (DOAS) method, in which a continuous
light source is used to send and receive light through the atmo-
sphere and measure narrow-band UVeVis absorption features
associated with trace-gas species. These are applied to a pre-
selected “fitting window” in the spectral range of 0.4e0.5 mm.
The spectral fit yields a slant column density (SCD), which repre-
sents the measured total areal density of NO2 molecules along the
effective optical path from the Sun through the atmosphere to the
satellite. Additional processes include an air mass factor (AMF)
calculation, which relates the trace gas abundance over the entire
path length to the vertical column abundance, and partitioning of
tropospheric and stratospheric components. Vertically resolved
scattering weights (SW) or box air mass factors (box-AMF) describe
the relationship between the slant column and the vertical column
and are computed with a radiative transfer code that uses surface
reflectivity, cloud fraction, cloud height, and surface topography.
The profile-weighted average of SWprovides the total stratospheric
or tropospheric AMFs used to convert measured SCD to the inferred
Level 2 vertical column density (VCD).

The overall error in the retrieval of tropospheric NO2 columns
arises from errors in the SCD, the stratosphere-troposphere sepa-
ration, and the AMF calculation. The uncertainty in SCD and the

stratosphere-troposphere separation dominates the total retrieval
error over the oceans and remote areas. Over continental source
regions, AMF errors arising from incorrect assumptions about the
NO2 vertical profile shape, surface reflectivity, cloud parameters,
and aerosols dominate the overall retrieval errors. Estimated errors
in the tropospheric NO2 columns are w30% under clear-sky con-
ditions, but can reach up to 100% under certain conditions
(Boersma et al., 2011; Bucsela et al., 2013). Instrument-specific ar-
tifacts, such as stripes in the OMI observations, may introduce
additional errors (Celarier et al., 2008). The tropospheric NO2 re-
trievals and inferred emissions can benefit from the use of high
spatial resolution information on surface reflectivity and NO2 ver-
tical profile shape in the AMF calculation, as used in the Berkeley
High-Resolution (BEHR) retrieval (Russell et al., 2011). The influ-
ence of spatial resolution on NO2 retrievals has been investigated
by Valin et al. (2011) and Heckel et al. (2011).

Production of Level 3 NO2 archived data typically includes re-
gridding pixel data to a regular latitude-longitude grid, filtering
the data, and time averaging to produce weekly-, monthly-, and
seasonally-averaged data. Time averaging of the best-quality
filtered data performed on a fine spatial grid (say, 1e5 km) allows
better characterization of stationary point sources such as power
plants or smelters. Pixel-averaging techniques result in “super-
resolution” NO2 maps, greatly enhancing the satellite detection
capability for weak point sources (see Section 4.2).

NO2 column retrievals have been the subject of a number of
validation studies involving intercomparison with a variety of
ground-based measurements, aircraft measurements, and model
outputs. These studies contain great detail about the conditions
(seasons, locations, weather conditions, etc.) under which the sat-
ellite retrievals can be expected to be the most reliable. These
studies include Blond et al., 2007; Boersma et al., 2008a; Bucsela
et al., 2008; Hains et al., 2010; Huijnen et al., 2010; Lamsal et al.,
2008, 2010; and Martin et al., 2002, 2003. Different retrievals
have been the subject of intercomparison (Boersma et al., 2008b;
Lin et al., 2012). During the past decade, NO2 retrieval algorithms
have matured considerably, such that different algorithms now
have good consistency (Boersma et al., 2011; Bucsela et al., 2013).

3.2. Sulfur dioxide

Sulfur dioxide (SO2) is an atmospheric constituent that is linked
to adverse respiratory effects and can also form secondary sulfate
particles through chemical reactions in the atmosphere. Acid
deposition is another detrimental effect of SO2. Satellite measure-
ments that are sufficiently sensitive to anthropogenic SO2 emis-
sions are spectroscopically possible by measuring backscattered
solar radiation in the UV. Measurements of anthropogenic SO2 have
been demonstrated using several of the instruments described in
Section 2, including GOME (Eisinger and Burrows, 1998), GOME-2
(Nowlan et al., 2011), SCIAMACHY (Lee et al., 2008b, 2009), and
OMI (Krotkov et al., 2006, 2008; Yang et al., 2007). Currently, SO2
data from the OMI instrument are available in NASAGoddard public
archives, such as GES-DISC and AVDC.

Different algorithms have been developed to retrieve SO2 from
satellite data. DOAS SO2 algorithms have to use spectral fitting
windows at longer UV wavelengths (>315 nm), where O3 and SO2
absorptions are weak (Lee et al., 2008b, 2009). Alternatively, the
operational OMI SO2 band residual difference (BRD) algorithm
(Krotkov et al., 2006) uses shorter wavelengths between 310.8 nm
and 315 nm that are most sensitive to SO2, explicitly accounting for
the strong O3 absorption in this spectral region. In the absence of
information concerning the vertical distribution of SO2, a constant
AMFvalue of 0.36 is assumed in the Level 2OMSO2PBLproduct. This
value is based on an average summertime SO2 profile measured by
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aircraft over the U.S. Mid-Atlantic region (Taubman et al., 2006).
Although advanced SO2 algorithms such as optimal estimation
(Nowlan et al., 2011) and direct spectral fitting (Yang et al., 2010)
have been demonstrated, they are not yet used operationally.

Several factors influence the quality of the satellite-retrieved SO2
product. The sensitivity of satellite retrievals to SO2 in the boundary
layer is low, due to enhanced Rayleigh scattering, large O3 absorp-
tion, and low surface albedo (0.01e0.03, except for snow-covered
surfaces). Level 1 radiance spectra (<320 nm) have lower signal-
to-noise ratio and higher stray light compared to measurements at
longer UVeVis wavelengths (van den Oord et al., 2006). As a result,
the noise of the SO2 retrieval is high (one standard deviation ¼ 1e
2 DU) even under optimal viewing conditions (i.e., no clouds, near
nadir, low solar zenith angle, mid- to low-latitudes). Spatial aver-
aging of pixel data reduces the noise, although not as effectively as
would be expected for random noise (Krotkov et al., 2008). In the
OMI Level 2 OMSO2 data, there is no correction for clouds, so cloud
screening and other filters (e.g., high solar zenith angle, snow cover,
row anomaly, etc.)das well as various adjustments such as correc-
tions for the Pacific sector and local AMF (Lee et al., 2009, 2011a) and
local bias (Fioletov et al., 2011)dare recommended for users. All
necessaryfilters and corrections are currently applied inOMI Level 3
processing, andusers are encouraged touse the Level 3 dailygridded
(0.25% # 0.25%) SO2 product (OMSO2e).

Despite these limitations, the operational OMI SO2 data have
been utilized in a wide range of studies (Krueger et al., 2009), in
combination with aircraft MAX-DOAS measurements (Walter et al.,
2012), in situ measurements (Dickerson et al., 2007; Lee et al.,
2011b), and chemical transport modeling (CTM) (Lee et al., 2011a).
Topics studied include the transport and transformation of emitted
SO2 (Dickerson et al., 2007; Lee et al., 2008a; Li et al., 2010a; de Foy
et al., 2009), top-down constraints on emissions and lifetime (Lee
et al., 2008a, 2011a); spatiotemporal variations (McLinden et al.,
2012; Jiang et al., 2012), and the impacts of anthropogenic emis-
sion controls on air pollution (Witte et al., 2009; Li et al., 2010b;
Fioletov et al., 2011). Temporal averaging over a month or longer
can effectively reduce the uncertainties in the daily SO2 operational
data, which are estimated at w100% (Krotkov et al., 2008) and
considered to be too large for most air quality applications. Using
pixel averaging and spatial filtration techniques, moderate point
sources of SO2 can be quantified (see Section 4.2).

Spectroscopic detection of SO2 in the infrared is also possible,
though sensitivity is hindered by the strong absorption by water
vapor in the same spectral region (Clarisse et al., 2008). Detection of
ground-level SO2 by IASI has been demonstrated in principle, but
presently the sensitivity is greatest at higher altitudes and for
strong sources. Retrievals have been described by Clarisse et al.
(2008) in the context of observations of the SO2 plume from the
2007 eruption of the Jebel at Tair volcano in the Red Sea.

3.3. Carbon monoxide

CO retrievals have unique value for observing anthropogenic
activity, evaluating emissions, and determining the transport and
influence of these emissions downwind of sources. For these rea-
sons, it has been one of the few mission-critical measurements in
all aircraft campaigns of the NASA Global Tropospheric Chemistry
Program (Fisher et al., 2010). CO is a U.S. EPA criteria pollutant, the
sources of which fall into two main classes: secondary chemical
production and incomplete combustion. Chemical production re-
sults from hydrocarbon oxidation, while combustion sources
include urban/industrial fossil-fuel burning, biofuel use, wildfires,
and tropical biomass burning. CO is the dominant sink for the hy-
droxyl radical (OH), and as such plays a critical role in controlling
OH levels with implications for a wide range of atmospheric gases.

CO is also a major precursor for tropospheric O3 on a global scale.
The CO global average lifetime against OH oxidation is about two
months, providing sufficient time for CO to be an effective tracer of
long-range pollution transport, yet sufficiently short for it to show
large contrasts between polluted air masses and the background
atmosphere (Edwards et al., 2004).

Two CO spectral bands, the thermal infrared (TIR) fundamental
at 4.6 mm and the near infrared (NIR) overtone band at 2.3 mm, can
be used for passive remote sensing (Edwards et al., 1999). In-
struments on each of NASA’s EOS platforms make nadir measure-
ments of CO at 4.6 mm from low Earth orbit: MOPITT (Deeter et al.,
2003), AIRS (McMillan et al., 2005), and TES (Rinsland et al., 2006b).
CO observations are also made by IASI on the MetOp-A satellite
(George et al., 2009). These measurements are generally most
sensitive to CO in the middle troposphere, with limited vertical
profile information available only under favorable conditions (e.g.,
Deeter et al., 2004). Using solar reflection at 2.3 mm allows for
retrieval of the total CO columnwith measurement sensitivity to all
altitudes, including the lowermost troposphere. These have been
made by SCIAMACHY (Buchwitz et al., 2006) and by MOPITT
(Deeter et al., 2009).

Currently, MOPITT is the only satellite instrument to demon-
strate the instantaneous multispectral retrievals necessary for an
independent measurement of a trace-gas concentration in the
lowermost troposphere (Worden et al., 2010). Retrieving CO from
combined TIR and NIR radiances allows increased discrimination of
vertical structure and upwards of three pieces of independent in-
formation, as characterized by the degrees of freedom of signal
(DFS) (Rodgers, 2000). The fact that significant information about
CO concentration in the lowest 2 km is often available should
improve emission estimates of not only CO, but also other com-
bustion products for which emission ratios with CO can be devel-
oped. Accurate emission inventories for CO are important for air
quality management; yet, past atmospheric observations have
often yielded results that were significantly at odds with emission
inventories (Parrish, 2006; Hudman et al., 2008; Miller et al., 2008;
Kopacz et al., 2010). Further results from CO satellite observations
are presented in Section 4.5 on anthropogenic area sources, the
source category where the strongest potential applications exist.

3.4. Methane

Methane (CH4) is the second most important anthropogenic
greenhouse gas after CO2, and, as a short-lived climate forcing
agent with a lifetime of w10 years, it provides a lever for slowing
near-term climate change. Emission controls also have co-benefits
for improving air quality (Fiore et al., 2002). Efforts to reduce CH4
emissions around the globe are undertaken against the backdrop of
poor quantitative understanding of CH4 sources (Heimann, 2011).
Major anthropogenic sources include natural gas extraction and
use, coal mining, landfills, livestock, rice cultivation, and biomass
burning. Wetlands are the largest natural source. Bloom et al.
(2010) were able to estimate worldwide CH4 emissions from wet-
lands and rice paddies using SCIAMACHY coupled with other
measurements. Present-day global emissions of CH4 are
580 & 100 Tg yr'1, constrained by knowledge of the main global
sink (reaction with the OH radical) from the methylchloroform
budget (IPCC, 2007). However, the allocation of global emissions to
source types and source regions is highly uncertain (Dlugokencky
et al., 2011). To cite just one contemporary example, U.S. natural
gas production has boomed in recent years as a result of new
drilling techniques to unlock fuel trapped in shale formations.
There is poor understanding of the associated CH4 emissions, and
the shifting nature of oil/gas exploration complicates their ac-
counting in standard inventories.
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Satellite observations provide a unique resource for constraining
CH4 emissions through inverse modeling, because of the dense and
continuous data they provide. Methane can be retrieved from
space-based measurements of solar backscatter in the shortwave
infrared (SWIR) and of terrestrial radiation in the thermal infrared
(TIR). SWIR retrievals are available from SCIAMACHY for 2003e
2012 (Frankenberg et al., 2005, 2011), though pixel degradation in
the detector reduced data quality after 2005, and from GOSAT for
2009epresent (Yokota et al., 2009; Butz et al., 2011; Parker et al.,
2011). The retrievals are sensitive to the entire tropospheric col-
umn, but their dependence on reflected sunlight precludes obser-
vations at night, over most ocean surfaces, and over most cloudy
targets. TIR retrievals are available from AIRS for 2002epresent

(Xiong et al., 2009, 2010), TES for 2004epresent (Worden et al.,
2012b), and IASI for 2007epresent (Crevoisier et al., 2009; Razavi
et al., 2009); they have limited sensitivity to the lower tropo-
sphere but can be performed at night, over land and ocean, and for
cloudy scenes.

SCIAMACHY data have been used in global and continental in-
verse modeling studies of CH4 emissions (Bergamaschi et al., 2007,
2009; Meirink et al., 2006, 2008), although the early studies were
affected by retrieval biases propagating through the inversion
(Bergamaschi et al., 2009). Fig. 1 compares SCIAMACHY observa-
tions for JuneeAugust 2004 to concurrent boundary layer obser-
vations from the NASA INTEX-A aircraft campaign, as well as to
GEOS-Chem model results using a state-of-science emission

Fig. 1. Methane concentrations over North America in JuneeAugust 2004 as observed by SCIAMACHY (column mixing ratios) and INTEX-A (mixing ratios below 700 hPa). The
middle panels show the corresponding GEOS-Chem model values, and the bottom panels show the observed-model differences.
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inventory as the a priori (Pickett-Heaps et al., 2011). There is
excellent correlation between SCIAMACHY and INTEX-A vertical
profile data (r ¼ 0.93, regression slope ¼ 0.96). Comparison with
GEOS-Chem shows patterns of model underestimation in the cen-
tral U.S. and overestimation along the east coast. Placing these
discrepancies in the context of the a priori emissions suggests that
livestock emissions are underestimated, while landfill and wetland
emissions may be overestimated. But we also see that major
sources in the south-central U.S. (likely from oil/gas recovery)
appear to be missing from the emission inventory. Formal source
attribution of the model overestimates and underestimates must
be achieved through inverse modeling. Adjoint inverse modeling,
as demonstrated by Meirink et al. (2006, 2008) and Bergamaschi
et al. (2009), allows for emission estimates at the native resolu-
tion of the model. Specific source-type attribution needs to be
derived by comparing the high-resolution inverse emission esti-
mates with detailed bottom-up information.

The ability to validate satellite observations for CH4 has greatly
expanded in recent years with the increased availability of aircraft
vertical profiles and of ground-based column observations from the
Total Carbon Column Observing Network (TCCON). Wecht et al.
(2012) used the extensive vertical profiles from the HIAPER Pole-
to-Pole Observation (HIPPO) program over the Pacific to success-
fully validate the new TES v5 retrieval, including information in the
lower troposphere. Validation of GOSAT with TCCON data,
including over North America, shows that it can capture column
changes of a few tenths of a percent, providing strong constraints
for inverse modeling (Butz et al., 2011; Parker et al., 2011). GOSAT is
likely to be an important source for space-based observation of CH4
emissions in the future.

The complementary vertical sensitivities of SWIR and TIR re-
trievals can be combined to improve emission estimates by con-
straining lower tropospheric CH4 concentrations. Kuai et al. (2013)
have demonstrated the utility of this approach using CO2 retrievals
from TES and TCCON, but to our knowledge no similar study has
been done combining satellite-based CH4 retrievals. Fig. 2 shows
the flight paths of the CalNex aircraft campaign in AprileJune 2010

and the locations of TES and GOSATobservations during this period.
This figure is a good illustration of the relative spatial coverage of
satellite and aircraft measurements that frame the intercompar-
ison. By performing a set of inversions using combinations of Cal-
Nex, TES, and GOSAT data during the CalNex period, it is possible to
evaluate the utility of each instrument or combination of in-
struments for constraining California CH4 emissions.

3.5. Nonmethane volatile organic compounds

Nonmethane volatile organic compounds (NMVOC) in the at-
mosphere have important implications for air quality and climate
through their effects on atmospheric chemistry. They serve as
precursors of organic aerosol, organic nitrates, and tropospheric O3,
and can either enhance or deplete OH concentrations. Ability to
observe NMVOC from space is mainly limited to C1e3 molecules,
because larger molecules do not have the fine band structure
necessary for detection. Solar backscatter measurements of atmo-
spheric columns require strong absorption features in the UVeVis
region and have been limited so far to formaldehyde (HCHO)
(Chance et al., 2000) and glyoxal (CHOCHO) (Wittrock et al., 2006).
Absorption bands in the IR enable the measurement of many other
species by solar occultation or terrestrial emission, including
methanol (CH3OH), formic acid (HCOOH), hydrogen cyanide (HCN),
ethane (C2H6), ethylene (C2H4), acetylene (C2H2), acetonitrile
(CH3CN), peroxyacetylnitrate (PAN, CH3C(O)OONO2), and acetone
(CH3C(O)CH3). However, sensitivity for these measurements is
limited to the middle or upper troposphere.

Satellite observations of HCHO columns by solar backscatter are
available from GOME, SCIAMACHY, OMI, and GOME-2. These in-
struments provide a long and continuous record of observations
(De Smedt et al., 2008; Stavrakou et al., 2009b). The detection limit
is a few ppb in the boundary layer. HCHO is a high-yield product of
NMVOC oxidation and has a lifetime of only a few hours against
photolysis and oxidation. Satellite observations show large HCHO
enhancements over vegetated and biomass burning regions,
reflecting fast production from short-lived NMVOC. Urban areas are

Fig. 2. Flight paths of the CalNex aircraft campaign in California in AprileJune 2010 and the locations of TES and GOSAT satellite observations during this period.
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detectable only under very polluted conditions, reflecting the
relatively small fluxes of short-lived anthropogenic NMVOC (Shim
et al., 2005; Fu et al., 2007; Millet et al., 2008; Curci et al., 2010).
Palmer et al. (2003) and Millet et al. (2006) have shown that HCHO
in non-combustion regions is mainly a tracer of isoprene emissions
because of its large flux, its short lifetime against oxidation by OH,
and its prompt yield of HCHO as a first-generation product.

A number of studies have demonstrated the value of HCHO
columns from space to infer isoprene emissions in different parts of
the world, using HCHO-isoprene relationships derived from a CTM
(Palmer et al., 2003, 2006; Barkley et al., 2008; Millet et al., 2008;
Marais et al., 2012). Although isoprene chemistry under low-NOx
conditions is not well known, this appears to have little effect on
HCHO yields (Palmer et al., 2006; Marais et al., 2012). The largest
source of error appears to be the “smearing” associated with the
time delay between isoprene emission and HCHO formation
(Marais et al., 2012). This smearing error can be addressed with a
formal inverse analysis using the adjoint of a CTM (Stavrakou et al.,
2009c). However, the results are then sensitive to the coupling
between chemistry and transport on the time scales of boundary
layer mixing.

Glyoxal is measurable from space by solar backscatter in its
420e460 nm absorption bands (Wittrock et al., 2006; Vrekoussis
et al., 2009, 2010). Operational products are available from SCIA-
MACHY and GOME-2. Like HCHO, it is produced in the atmosphere
from the oxidation of NMVOC, and it has a lifetime of a few hours
against photolysis and oxidation by OH. However, it has very
different yields from HCHO, depending on the precursor. There is
evidence for fast production of CHOCHO from the oxidation of
isoprene, but the mechanism involved is not well understood.
CHOCHO data from SCIAMACHY show prominent signatures from
pyrogenic, biogenic, and anthropogenic sources, but also elevated
concentrations over tropical oceans that suggest a marine biogenic
source (Wittrock et al., 2006). Vrekoussis et al. (2009) examined the
CHOCHO/HCHO column ratios observed by SCIAMACHY for 12
continental source regions and found significant variability,
reflecting different source signature mixes of precursor NMVOC.

Several global model studies have focused on better defining the
atmospheric budget of CHOCHO, including evaluation with in situ
and SCIAMACHY observations (Fu et al., 2008; Myriokefalitakis
et al., 2008; Stavrakou et al., 2009a). Models are unable to repro-
duce the high values observed over tropical oceans and are also
generally too low over land. Stavrakou et al. (2009a) argued that the
latter underestimate could reflect a missing secondary biogenic
source of CHOCHO accounting for 50% of the global CHOCHO
source. Liu et al. (2012b) inferred a largemissing source of CHOCHO
over China from SCIAMACHYmeasurements, which they attributed
to an underestimate of anthropogenic emissions of aromatics.
Overall, the SCIAMACHY data imply shortcomings in our current
understanding of CHOCHO sources, with potentially important
implications for NMVOC emissions and organic aerosol formation.

IR observations of NMVOC are available from the ACE-FTS
(2003e) solar occultation instrument, the MIPAS (2002e) limb
thermal emission instrument, and the TES (2004e) and IASI
(2006e) nadir thermal emission instruments. Solar occultation and
limb measurements are restricted to the upper troposphere. ACE-
FTS data have been reported for CH3OH (Dufour et al., 2006),
HCOOH (Rinsland et al., 2006a), C2H4 (Herbin et al., 2009), HCN
(Rinsland et al., 2005), and C2H6 and C2H2 (Rinsland et al., 2005;
González Abad et al., 2011). MIPAS data have been reported for
C2H6 (Clarmann et al., 2007; Glatthor et al., 2009), HCN (Glatthor
et al., 2009), HCOOH (Grutter et al., 2010), C2H2 (Parker et al.,
2011), CH3C(O)CH3 (Moore et al., 2012), and PAN (Wiegele et al.,
2012). The ACE-FTS and MIPAS data provide climatological distri-
butions and seasonal cycles in the upper troposphere, as well as

correlations among species, that are of great value for testing global
CTMs (Dufour et al., 2007; González Abad et al., 2011). Their value
for testing emission inventories is more limited at present because
of the convolution with vertical transport and chemistry and
because upper tropospheric observations integrate emissions in-
formation over a large domain. Nevertheless, because of the diffi-
culties in compiling bottom-up emission inventories of speciated
NMVOC emissions from many source categories and in many parts
of the world, the contribution of satellite observations of individual
chemical species may ultimately prove to be of value. For example,
Rinsland et al. (2007) used ACE-FTS data in freshly convected
biomass burning plumes to infer emission ratios.

Nadir IR observations from TES and IASI have higher horizontal
resolution and are sensitive to lower altitudes, thus providing
better constraints to relate observed concentrations to sources and
to test emission inventories. TES has been used to detect large ur-
ban enhancements of CH3OH (Beer et al., 2008) and to test current
inventories of global biogenic CH3OH emissions (Wells et al., 2012).
A new retrieval algorithm for TES observations of CH3OH presents
seasonal and spatial variability (Cady-Pereira et al., 2012). IASI has
provided data for CH3OH, HCOOH, PAN, C2H4, C3H6, and furan
(C4H4O) (Clarisse et al., 2011b). Detection of most of these species
requires large enhancements from a point source such as a large fire
(Clerbaux et al., 2009; Coheur et al., 2009). However, high-quality
global data sets have been produced for CH3OH and HCOOH
(Razavi et al., 2011), and these have been used in inverse analyses to
constrain emissions and secondary sources (Stavrakou et al.,
2011a,b).

3.6. Ammonia

Ammonia (NH3) plays an important role in atmospheric chem-
istry and biogeochemical cycles of reactive nitrogen (Galloway
et al., 2003). By contributing to the transport and deposition of
reactive nitrogen, NH3 poses a hazard to sensitive ecosystems. The
formation of ammonium sulfate and ammonium nitrate aerosol
impacts human health, visibility, and climate. However, routine
monitoring of surface-level NH3 concentrations is sparse, as it is a
difficult substance to measure in situ (von Bobrutzki et al., 2010).
The potential for space-based observations of NH3 is thus especially
appealing. Profiles of atmospheric NH3 have been retrieved from
two instruments: TES (Beer et al., 2008; Shephard et al., 2011) and
IASI (Clarisse et al., 2009, 2010), both of which measure thermal IR
in the range of 940e969 cm'1 twice daily.

The biggest challenges in remotely observing NH3 are that much
of the NH3 is close to the surface, which makes it difficult to detect
from space, and the horizontal distribution of NH3 can have strong
spatial gradients. Under conditions with significant thermal
contrast near Earth’s surface and a large enough signal-to-noise
ratio, both instruments can be sensitive to boundary-layer NH3
concentrations (Clarisse et al., 2010). The shape of the profiles
retrieved by these instruments is strongly influenced by the
retrieval a priori information, as the retrievals themselves typically
contain less than one degree of freedom for signal. Typical retrieval
sensitivities peak near 800e600 hPa. Compared to IASI, TES has a
higher spectral resolution (0.06 vs 0.5 cm'1) and is thus more
frequently sensitive to NH3 in the boundary layer. Theoretical
analysis indicates that the lower detection limit of the TES instru-
ment for NH3 isw1 ppb (Shephard et al., 2011); it is likely 2e5 ppb
for IASI (Clarisse et al., 2010). However, while TES has a smaller
footprint (viewing area of approximately 5.3 km # 8.3 km), the
observations are spaced far apart, which makes mapping difficult.
On the other hand, IASI has much higher spatial coverage,
providing global coverage twice daily with a 12 km # 12 km foot-
print, which is important because NH3 has high spatial variability.
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Given the paucity of existing surface measurements of NH3,
there is significant potential for enhancing our understanding of
NH3 using remote-sensing observations. It has been shown that TES
is able to resolve spatial and temporal gradients in surface NH3
concentrations (Pinder et al., 2011). Heald et al. (2012) used IASI
measurements to study NH3 concentrations over the U.S., finding
underestimation of emissions in California and in the springtime in
the Midwest. Zhu et al. (2013) have shown that TES observations of
NH3 can be used to constrain monthly average emissions. Model
optimization for the U.S. improves the representation of measured
NH3 in April and October. Overall, remote-sensing constraints
suggest that the NH3 emission inventory is broadly underestimated
in many parts of the U.S., particularly in the West.

3.7. Particulate matter

Aerosol data products from a subset of satellite sensors have
been explored to estimate ground-level particle characteristics over
land. MODIS and MISR measure particle abundance and composi-
tion with nearly global coverage at moderate spatial resolutions,
even over complex land surfaces. One of the most robust aerosol
parameters that MISR and MODIS can retrieve is aerosol optical
depth (AOD), also known as aerosol optical thickness (AOT). AOD is
defined as the integral of aerosol extinction coefficients along the
vertical atmospheric column from Earth’s surface to the top of the
atmosphere. There are MODIS instruments aboard both the Terra
(equator crossing time 10:30 am) and Aqua (equator crossing time
1:30 pm) satellites. A comparison of early-version Terra MODIS and
Aqua MODIS AOD values indicated that differences vary by region
without consistent patterns (Ichoku et al., 2005).

The MODIS operational "Dense Dark Vegetation" (DDV)
retrieval algorithm is designed to infer clear-sky aerosol properties
over land surfaces that have low surface reflectance. This algo-
rithm removes the surface impact by using the 2.1 mm band to
estimate the surface reflectance, assuming a relationship of sur-
face reflectance between this band and the blue (440 nm) and red
(670 nm) bands as a function of both NDVI and scattering angle
(Remer et al., 2005). AOD can then be derived by searching pre-
computed lookup tables corresponding to different aerosol
models. The MODIS operational algorithm has developed consid-
erably over the last several years, with Collection 6 being recently
described (Levy et al., 2013).

The DDV algorithm is not performed over bright surfaces (i.e.,
when the 2.1 mmsurface reflectance is above 0.15). TheMODIS Deep
Blue (DB) algorithm alleviates the bright-surface problem by
employing radiance measurements from the blue channels to infer
the properties of aerosols (Hsu et al., 2004). A maximum-likelihood
method is used to match the appropriate values of AOD and SSA
from a lookup table to the measured radiances. Studies over the
Sahara Desert and nearby Arabian Peninsula, as well as the Gobi
Desert, indicate that this algorithm is particularly sensitive to
mineral dust over their bright source regions (Hsu et al., 2006;
Fischer et al., 2009). Currently, MODIS DDV and DB AOD data
(Collection 5.1) are reported as separate parameters in the Level 2
data products (MOD04 and MYD04) at 10 km # 10 km nominal
spatial resolution.

MISR employs a unique multiangle design that allows it to
observe the atmosphere through different effective path lengths,
leading to a very different aerosol retrieval algorithm (Martonchik
et al., 1998). To effectively separate surface-leaving light reflection
from atmosphere-leaving light reflection over land, MISR uses the
presence of spatial contrasts within a 17.6 km # 17.6 km retrieval
region to derive an empirical orthogonal function (EOF) represen-
tative of the region-averaged, surface-leaving light reflection. MISR
defines a set of aerosol mixtures to represent aerosol types globally,

which carry information about aerosol size distribution, shape,
refractive index, and scale height. As a research instrument, MISR
provides a rich aerosol dataset to study long-term spatial and
temporal trends of particle mass, composition, and other infor-
mation. MISR-retrieved AOD is reported in its Level 2 aerosol data
product (MIL2ASAE) on a 17.6 km # 17.6 km grid.

The stereoscopic nature of MISR data also enables it to retrieve
the top heights of distinct plumes through a stereo-matching
technique. Due to its narrow swath (w400 km), however, pre-
liminary studies have shown that MISR only observes approxi-
mately 10% of large wildfire smoke plumes (Kahn et al., 2008).
Plume recognition is more likely to succeed close to the sources of
fires, dust storms, volcanic eruptions, etc. The MISR plume-top
height information is reported in the Level 2 cloud product
(MIL2TCSP) on a 1.1 km # 1.1 km grid.

MODIS and MISR AOD data provide the possibility for large-
scale air pollution monitoring over land. Since the launch of
MODIS and MISR, numerous studies have explored the relationship
between satellite-retrieved aerosol parameters and ground-level
air pollution measurements (e.g., Chu et al., 2003; Liu et al., 2005,
2007; Wang and Christopher, 2003). Most studies have focused
on the relationship between AOD and surface PM2.5, although a few
have considered PM10 as well, sincemeasurements of PM2.5 outside
North America and Western Europe are rare. The analytical
methods have evolved from semi-quantitative descriptions of air
pollution patterns, through correlation and simple linear regres-
sion, to more sophisticated multivariate spatial and temporal
models (van Donkelaar et al., 2010; Kloog et al., 2011; Lee et al.,
2011c; Liu et al., 2012a).

Both PM and AOD can be observed using visible imagery from
geostationary orbit, offering high spatial (30 min # 30 min) reso-
lution. Examples of geostationary platforms with AOD products
include the U.S. Geostationary Orbiting Earth Satellite (GOES) se-
ries, the Japanese GMS and MTSAT, and the European SEVIRI. These
AOD retrievals typically use only one or two visible channels
(Prados et al., 2007). The geostationary AOD products offer higher
observation frequency but have larger errors than MODIS or MISR
(Paciorek et al., 2008). The Suomi-NPP VIIRS instrument was
launched in October 2011 and has similar capabilities to MODIS but
with higher resolution (6 km at nadir). The retrieval algorithm is
developing rapidly and offers exciting possibilities to understand
aerosol sources.

3.8. Carbon dioxide

Observing CO2 concentrations from space is not difficult. In fact,
manyof the space-borne instruments have the capability tomeasure
CO2 columns, either by detecting the attenuation or emission of
infrared radiation. The problem is to separate the CO2 flux arising
from natural sources from the flux due to human activity. Natural
carbon fluxes are on the order of 300 GtC yr'1, while the anthro-
pogenic contribution is only about 2% of this value, or w6 GtC yr'1.
This presents a great challenge to themeasurement instrumentation
and the design of satellite platforms. Global measurements with an
accuracy of w1 ppm CO2 are needed at high spatial and temporal
resolution in order to be able to detect anthropogenic CO2 in a useful
way. Measurements of CO2 concentrations using SCIAMACHY, AIRS,
and TES have all been reported, as well as from the dedicated
greenhouse-gas satellite GOSAT. It is generally held that satellite
observations alone are at present unable to provide the required
observational power for detecting point-source emissions, but that
the coupling of satellite data with a ground-based sensor array and
accuratemeteorological datamight beable to succeed (JASON, 2011).

Specification of the necessary attributes of a space-borne global
CO2 observational platform that could detect anthropogenic
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emissions began more than a decade ago. These were established
with the design, development, and operation of the OCO and
GOSAT platforms in mind. A number of inversion and precision
analyses have been conducted to quantify how well CO2 column
measurements would be able to estimate surface sources and
sinks of CO2 (e.g., Chevallier et al., 2007, 2009; Miller et al., 2007;
Baker et al., 2010; Pillai et al., 2010). Houweling et al. (2004) first
confirmed that rather precise satellite measurements (w1e2 ppm)
would be needed to constrain sub-continental carbon fluxes.
Lauvaux et al. (2009) focused on the effects of transport uncer-
tainty on inversion modeling of sources and sinks. All these
studies pointed out both the opportunities and the great chal-
lenges ahead.

Buchwitz et al. (2007) first reported direct observations of at-
mospheric CO2 concentrations between 2003 and 2005 from
SCIAMACHY. Good agreement with CarbonTracker data was found,
and the analysis was able to detect the CO2 seasonal cycle and, for
the first time, the year-to-year increase of CO2, which agreed with
the CarbonTracker increase to within 1 ppm yr'1. Subsequent work
compared a new SCIAMACHY column CO2 retrieval with four
TCCON sites and CarbonTracker data (Reuter et al., 2011). System-
atic differences were in the range of 0.2e0.8 ppm with a single-
measurement precision of 2.5 ppm. The validation confirmed the
potential of SCIAMACHY to provide information about column CO2
in regions with few in situmeasurements. Observations of CO2 from
TES have been reported (Kulawik et al., 2010; Nassar et al., 2011).
Kulawik et al. (2010) demonstrated good agreement with a variety
of observational datasets, including CONTRAIL aircraft data, surface
sites, AIRS data, and CarbonTracker. Nassar et al. (2011) inferred CO2
fluxes using inverse modeling of the satellite and surface mea-
surements jointly with GEOS-Chem; the quantification of global
fluxes from oceans and the terrestrial biosphere was in good
agreement with other studies.

The first results from GOSAT were reported in 2009 by the
Japanese team (Yokota et al., 2009) using SWIR reflected light at
1.6 mm. Pending further instrument calibration and validation,
Yokota et al. (2009) were able to observe inter-hemisphere differ-
ences in CO2 concentrations, but with an underestimation of ab-
solute concentration values. Subsequently, GOSAT retrievals of
column-average CO2 during its first year of operation (April
2009eJuly 2010) were compared with TCCON and showed very
close correlation (Butz et al., 2011). The seasonal CO2 cycle and
general source/sink patterns were evident. Further validation of
GOSAT retrievals against TCCON data by Oshchepkov et al. (2012)
and against TCCON and GEOS-Chem model calculations by Cogan
et al. (2012) have also showed close correlation after removal of
observations contaminated by cloud and aerosol. Global maps of
CO2 distributions from GOSAT have now been released as a Level 3
product (Hammerling et al., 2012), generally in agreement with
carbon modeling work, except for South America in July and
August, which may point to inaccuracies in flux estimates due to
the sparseness of in situ measurements there.

A prime objective of space-based observations of CO2 is to be
able to detect emissions from individual point sources, which has
yet to be fulfilled. Bovensmann et al. (2010) derived requirements
for detecting the CO2 emissions from a typical power plant. Mini-
mum requirements of a spatial resolution of 2 km # 2 km, a wide
swath width (w500 km), and a precision of 2 ppm could, they
assert, be achieved with existing technology. The statistical un-
certainty of the retrieval was found to be in the range of 12e36% of
the emissions of a mid-sized power plant, with wind speed and
aerosol concentration being the main interferences. The concept
developed by Bovensmann et al. (2010), which they termed Car-
bonSat, could detect and quantify CO2 emissions from large point
sources and would therefore have the potential to provide

independent verification of emission reductions under a future
global agreement.

Kort et al. (2012) demonstrated the potential to quantify CO2
concentration enhancements due to human activity at the scale of
megacities, using GOSAT observations over Los Angeles
(3.2 & 1.5 ppm) and Mumbai (2.4 & 1.2 ppm). They estimate that
changes as small as 0.7 ppm could be detected (in Los Angeles) from
GOSAT observations at 95% confidence level. McKain et al. (2012)
demonstrated the capability to determine changes in CO2 emis-
sions from an urban area (Salt Lake City) with a ground-based
monitoring network and a CTM. Changes in emissions of &15%
could be detected at 95% confidence level. It was argued that in-
tegrated CO2 column measurements, of the kind that could be
provided by space-borne instruments, would greatly enhance the
detection of CO2 emissions from source regions. Using SCIAMACHY
data, Schneising et al. (2013) estimated an enhancement of
1.1 & 0.5 ppm for the U.S. east coast.

With the limitations of current satellites to detect CO2 emissions
at the required level of detail and the failure of OCO in 2009, eyes
turn to future satellite capability. The second version of the Orbiting
Carbon Observatory (OCO-2) is presently under development with
a scheduled launch date still to be determined, but possibly 2014/
2015; it would provide the capability needed to characterize
sources and sinks of CO2 at high resolution, when combined with
ground-based measurements and related observations. A CO2
measurement platform in geosynchronous orbit would have many
benefits, including the ability to revisit individual source locations
on a time scale of hours rather than the 15e20 days of current low
Earth orbit satellites (JASON, 2011).

4. Methods for emissions estimation and examples of
applications

In this section, we first review analytical methods for constrain-
ing emission estimates from remote sensing observations (4.1). This
is followed by discussion of how more-detailed information about
sources can be obtained by increasing the resolution of the satellite
retrievals (4.2) and by the use of satellite data as a proxy for emis-
sions trends (4.3). Thenwe discuss the potential to gain quantitative
information about different kinds of sources from space-borne ob-
servations by highlighting results from applications related to
anthropogenic point sources (4.4), anthropogenic area sources (4.5),
natural point sources (4.6), andnatural area sources (4.7).Wediscuss
synergy with field campaigns in a final sub-section (4.8).

4.1. Inverse modeling techniques

The most straightforward approach to developing “top-down”
constraints on emissions directly attributes changes in observed
concentrations to changes in emissions. This is commonly done for
evaluating point sources (Sections 4.2 and 4.4) or for estimating
long-term trends (Section 4.3). Such estimates can be based on
observations alone. For assessment of area sources or point sources
for which the signals are not distinct, because of transport, chem-
istry, or the atmospheric lifetime of the species in question, more
formal inverse methods are used.

Inverse modeling seeks to formally develop constraints on
emissions by combining three types of information: a set of ob-
servations such as satellite measurements (y), an estimate of the
distribution of sources of the species in question (xa, referred to as
the a priori, prior, initial, or background), and a modeled simulation
of the observed quantity using an estimate of the emissions (H(x))d
all with associated error estimates (see, e.g., Sandu and Chai, 2011).
Many of the approaches to constraining emissions stem from Bayes
theory, which describes how to determine the distribution of a set
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of parameters (in this case, emissions) consistent with estimates of
the remotely observed quantity that are closest to the distribution
of these observations, while simultaneously accounting for prior
information regarding reasonable values of these parameters. In
general, solving for this probability distribution in full is computa-
tionally prohibitive. In the following sections we review common
methods for inverse modeling that approximate the Bayesian
approach at varying levels of detail. The methods are distinguished
by the ways in which the models are used, how the desired spatial
and temporal scales of the analysis warrant various levels of
complexity, and how errors in the inversion inputs are determined
and propagated throughout the analysis.

A common method for constraining emissions of short-lived
species using remote sensing data is to average a set of satellite
measurements over a particular location and derive top-down
constraints on surface emissions using a mass balance approach.
Model simulations based on an a priori emissions estimate are used
to simulate atmospheric column or profile concentrations. The ratio
of the simulated to the observed concentration, weighted according
to estimates of the error in the observations and simulations, is
then used to directly adjust the model emissions (e.g., Martin et al.,
2003). In this approach, the influences of atmospheric transport
and chemistry on the relationship between emissions in one grid
cell and concentrations in another grid cell are assumed to be
negligible, presuming that the short chemical lifetime of the spe-
cies translates to a smearing length scale less than the width of the
model grid cell (see, e.g., Palmer et al., 2003). These assumptions
are most suitable for short-lived species (e.g., NOx) and for rela-
tively coarse (>1%) model simulations. However, even for short-
lived species, the influence of emissions in a coarse air-quality
model may extend beyond the column directly overhead (Turner
et al., 2012). Kernels, or smoothing representations of the emis-
sion field, have been used to account for the influence of adjacent
cells (Toenges-Schuller et al., 2006; Boersma et al., 2008a). The
procedure can be iterated to account for nonlinear relationships
between emissions and column concentrations or profiles, or
transport from neighboring grid cells (e.g., Zhao and Wang, 2009;
Ghude et al., 2013). Differences in concentrations from multiple
observations at different times can also be used to constrain the
mass balance (Lin et al., 2010b).

For longer-lived species or finermodel resolutions, more explicit
treatment of chemistry and transport becomes necessary. Formally,
these approaches seek to minimize a cost function, J(x), which is a
scalar measure of the misfit of the model (H(x)) compared to ob-
servations (y), weighted by the observational error covariance
matrix (R), plus the departure of the emissions from their a priori
estimates (xb), also weighted by the a priori error covariance
matrix (B):

JðxÞ ¼ 1=2ðHðxÞ ' yÞTR'1ðHðxÞ ' yÞ þ 1=2ðx ' xbÞ
TB'1ðx ' xbÞ

(1)

Approaches taken to finding the set of emissions that minimize
this cost function depends upon several factors. The direct
(or analytical) solution, which leads to the best linear unbiased
estimate of emissions for linear systems, can be directly found as:

x ¼ xb þ Kðy ' HðxÞÞ (2)

where K is the gain matrix,

K ¼ BHT
!
HBHT þ R

"'1
(3)

and H is a Jacobian matrix that relates changes in emissions to
changes in model estimates of observations determined from a

(linearized) sensitivity analysis of the atmospheric chemistry and
transport model H. This equation can be evaluated in a single step
for all observations (direct or analytic inversion) or broken up into
sequential steps (Kalman Filter) to update x, xb, and B, as a function
of time.

One of the main challenges with either approach is determining
the Jacobian matrix. For a large number of emission values, or a
large number of observations, this can simply become computa-
tionally intractable. A common practice is to consider emissions
aggregated at large spatial scales and then directly evaluate the
Jacobian through successive forwardmodel calculations (e.g., Heald
et al., 2004; Stavrakou and Müller, 2006; Kopacz et al., 2009). A
drawbackwith this approach is the subjective lumping of emissions
across broad regions, i.e., aggregation error. To define the Jacobian
at finer scales, several approaches can be considered. More-
efficient sensitivity techniques, such as direct decoupled or
adjoint methods, may also be used to evaluate the Jacobian (e.g.,
Napelenok et al., 2008). Konovalov et al. (2006) define the rela-
tionship between emissions and concentrations through Monte
Carlo sampling of linear statistical relationships. Mijling and van
der A (2012) introduced a Kalman-filter algorithm specifically
designed for rapid inversion of short-lived atmospheric constitu-
ents at a spatial scale of w25 km # 25 km, by approximating the
Jacobian matrix through 2D trajectory analysis.

An alternative approach is the ensemble Kalman filter method
(Evensen, 1994). This does not require specification of Jacobian
matrices; instead, the influence of emissions and their un-
certainties on the model estimates is assessed through analysis of
the spread of ensembles (typically 20e40) of forward model eval-
uations. For example, Miyazaki et al. (2012a) use the ensemble
Kalman filter approach to constrain NOx emissions with OMI ob-
servations. Such approaches, becoming increasingly common in
weather forecasting systems, have become attractive in recent
years given their scalability on parallel computing systems.

Lastly, the minimum of the cost function may be sought itera-
tively using gradient-based optimization techniques. This method,
referred to in the context of air quality forecasting as 4D-Var, is
based on the calculus of variation, wherein a perturbation in a
scalar, receptor-based metric is propagated backward in time
through a set of equations that are auxiliary (adjoint) to the locally
linearized system. This affords calculation of the gradient with
respect to numerous parameters simultaneously. These gradients
are then used in conjunction with an optimization scheme to
minimize the cost equation. The 4D-Var method was first used to
constrain emissions in an Eulerian air-quality model of chemically
active species in the troposphere by Elbern et al. (2000). Effectively,
this method affords constraints on model emissions at the native
model resolution (e.g., Kopacz et al., 2009; Jiang et al., 2011;
Hooghiemstra et al., 2012), which minimizes the aggregation er-
ror incurred when solving Equation (2) directly for a vector or
emissions defined across broad areas. The approach does, however,
require the existence of an adjoint model, and estimating the un-
certainty in the resulting emissions requires additional effort.

Within the frameworks for developing top-down emissions
constraints described above, there are several challenges related to
the use of new remote sensing constraints, applications to new
inverse modeling objectives, and ascertaining the uncertainties in
the resulting inventories. One issue at the forefront of inverse
modeling is to use measurements from multiple species, or from
multiple platforms. Data assimilation techniques have typically
focused on the recovery of emissions of a single species. For
example, Dubovik et al. (2008) used MODIS AOD to estimate fine-
and coarse-mode aerosol emissions. More recently, Huneeus et al.
(2012) demonstrated the simultaneous estimate of global emis-
sions of multiple gaseous and aerosol species (dust, sea salt, BC, OC,
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and SO2) using a 4D-Var approach assimilating MODIS total and
fine-mode AOD. Miyazaki et al. (2012b) have used the same data
assimilation system to combine observations of four interrelated
speciesdNO2, O3, CO, and HNO3dfrom four satellitesdOMI, TES,
MOPITT, and MLSdwith additional aircraft and ozonesonde data.
More work is needed on top down-estimates for multiple species
(such as NO2 and VOC or NO2 and O3). Early attempts (Zhang et al.,
2008; Carmichael et al., 2008) produced mixed results, where in
some regions the assimilation was pulled in opposite directions by
the different data sets.

There are also issues with trying to assimilate a single parameter
frommultiple retrievals. For example, Jones et al. (2009) compared
an analytic inversion, Equation (2), of MOPITTand TES in the tropics
in November 2004. While, in general, the a posteriori emissions
showed some consistency, over North Americadwhere in boreal
fall emissions make only a small contribution to total CO abun-
dancedMOPITT and TES adjusted initial estimates in opposite di-
rections. Fortems-Cheiney et al. (2009) presented a first
comparison of inversions using IASI and MOPITT data and found
that the regional totals were broadly consistent. George et al.
(2009) compared IASI CO retrievals with MOPITT, AIRS, and TES
(see Fig. 3) and found, on average, total column discrepancies
of w7% in the Northern Hemisphere and in the equatorial region.
All the studies concluded that there was a need for better charac-
terization of biases among data sets.

Model errors also pose a significant limitation on the accuracy of
top-down emission estimates. Arellano and Hess (2006), in an

inter-model comparison, showed that the results of inversions are
particularly sensitive to the model treatment of convection and to
transport out of the boundary layer. A linearization error is intro-
duced when the chemical loss of CO is accounted for by specified
OH abundances (Müller and Stavrakou, 2005), an approach
commonly used to minimize the computation cost of the inversion.
Differences between inversions based on remote sensing observa-
tions of column concentrations compared to surface observations
can also be used to identify components of model transport error
that impact the emissions constraints (Jiang et al., 2013).

The selection of source types to be constrained also impacts the
inversion solution. For example, since CO observations mainly
constrain total emissions, an increase in one source category may
be compensated for by a decrease in another. A careful character-
ization of the state vector using the spatiotemporal resolution and
precision of observations rather than geographical boundaries is
required. Accounting for the CO contribution that is not directly
emitted adds another level of uncertainty. In most studies (e.g.,
Palmer et al., 2003; Heald et al., 2004; Arellano and Hess, 2006;
Jones et al., 2009; Kopacz et al., 2009), the biogenic NMVOC
source, representing a main source for CO precursors, is aggregated
into a background global chemical source of CO. Stavrakou and
Müller (2006) and Jiang et al. (2011) explicitly solved for the
biogenic NMVOC source at the same spatial resolution at which
the combustion CO emissions were constrained and showed
that aggregating the biogenic NMVOC source into the global
background could result in significant over-adjustment of the a

Fig. 3. Averaged IASI, MOPITT, AIRS, and TES CO total column distributions, binned on a 1% # 1% grid for August 2008. All observations are for daytime and were cloud-filtered
following the recommendations provided by each retrieval team (adapted from George et al., 2009).
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posteriori CO emissions. The range of solutions from different in-
versions was shown to be much larger than the a posteriori errors,
indicating that the solution is more sensitive tomodifications to the
inverse system than a posteriori errors suggest. Without a reason-
able model error estimate, the results of inverse analyses will be
sensitive to the choice of the observation domain and the proximity
of observations to the source location of interest.

4.2. Oversampling/spatial smoothing

Some species have well-defined plumes that tend to be
smoothed out during spatial averaging. It is possible to improve the
definition of these plumes by oversampling the original swath data
to a higher resolution. Oversampling is a powerful tool, because
higher resolution data are produced from coarse observations and
noise is reduced, thereby enhancing weak signals. This technique
has been widely used for NO2 (e.g., Martin et al., 2003; Beirle et al.,
2004b; Lamsal et al., 2008) andwas recently applied to high-quality
SO2 pixels from the OMI sensor to a resolution of 3 km # 3 km
for retrievals above Mexico City (de Foy et al., 2009). Using this
technique, the separate plumes and dispersion patterns of an in-
dustrial complex and a passively degassing volcano became clearly
visible. By averaging OMI NO2 columns to a grid resolution of
0.025% # 0.025% over California, Russell et al. (2010) were able to
identify spatial patterns in the weekday-weekend concentrations
in the Los Angeles basin.

Fioletov et al. (2011) used a similar technique to evaluate the
strengths of large point sources of SO2 in the U.S. on a 2 km # 2 km
grid. Because the elevated SO2 values associatedwith a point source
generally become insignificant beyond w50 km, they averaged all
OMI pixels within a 12 km radius of the source. At the highest
spatial resolution currently available from OMI (>300 km2) the SO2
detection limit is 0.1e0.3 DU, which corresponds to annual emis-
sions larger than w70 Gg SO2 yr'1. Currently, there are about 40
point sources in North America (smelters and coal-fired power
plants in Canada, the U.S., and Mexico) that exceed this source
strength. Fioletov et al. (2011) also observed reductions of column
SO2 of w40% that were consistent with reported decreases in
emissions between 2005e2007 and 2008e2010. Fig. 4 shows the

high-resolution SO2 retrievals reported in Fioletov et al. (2011).
Applying the same method to Alberta, Canada, McLinden et al.
(2012) showed annual increases in NO2 columns between 2005
and 2010 due to the development of oil sands (see Section 4.5).
These techniques have generated higher-resolution emissions dis-
tributions that significantly improve our ability to detect and
quantify emission sources.

4.3. Timely updates to emission trends and other temporal
variations

The bottom-up approach of compiling emission inventories by
aggregating activity data and emission factors provides the most
comprehensive treatment of emissions, but this approach is amajor
undertaking that can require time to complete. For example, at the
time of writing (2013) the current NEI from the U.S. EPA is for the
year 2008, though estimates for more recent years are available in
other products (see below). More timely information could
improve the accuracy of model simulations for time periods after
the release of the inventory. Satellite observations offer near-real-
time information on a range of species, as discussed above, and
the trends in the satellite measurements can be used to update
bottom-up emission trends, pending the gathering of source in-
formation to construct a new bottom-up inventory.

Lamsal et al. (2011) demonstrated that satellite observations of
NO2 provide timely information about changes in anthropogenic
NOx emissions, when combined with model information on the
relationship between changes in tropospheric NO2 columns and
changes in NOx emissions. Fig. 5 shows the spatial variation of
anthropogenic NOx emissions for 2005 from a bottom-up inventory
and a predicted NOx inventory for 2010 from OMI measurements.
The predicted NOx inventory (24.8 Tg N yr'1) is 2.5% higher than the
bottom-up inventory (24.2 Tg N yr'1) for regions dominated by
anthropogenic NOx emissions. The difference between the pre-
dicted inventory for 2010 and the bottom-up inventory for 2005
presented in Fig. 5 (bottom frame) shows significant reductions
over the eastern U.S., Japan, and parts of Europe, and increases over
eastern China. Changes in anthropogenic NOx emissions during
2005e2010 indicate a decrease of 22.7% and 13.7% over the U.S. and

Fig. 4. Mean SO2 burdens over the Ohio River Basin for 2005e2007 (left) and 2008e2010 (right) measured by OMI, confirming a substantial reduction in SO2 pollution around the
largest coal-fired power plants, as a result of the implementation of SO2 emission control measures (adapted from NASA Earth Observatory, as reported in Fioletov et al., 2011).
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OECD Europe, respectively, and an increase of 24.9% in East Asia,
with a 26.8% growth in Chinese NOx emissions. The predicted
decrease of 22.7% for the U.S. is very similar to the decrease
calculated from U.S. EPA trends data for 2005 and the unreleased
2010 NEI, providing confirmation of the updating approach.

A similar approach may be applicable to other species such as
CO and NH3 to monitor emission changes over time (e.g., Worden

et al., 2013). Fortems-Cheiney et al. (2011) conducted an inversion
of the 10-year time series of MOPITT CO and interpreted interan-
nual changes in terms of variability due to biomass burning,
climate, and socioeconomic factors. However, this study used
MOPITT v4 data, which did not account for instrument drift that has
resulted in a 0.8 & 0.2% yr'1 increase in the retrieved column
(Deeter et al., 2010). Recent MOPITT v5 data (Deeter et al., 2012)

Fig. 5. Spatial distributions of anthropogenic NOx emissions at 1% #1.25%: bottom-up inventory for the year 2005 (top); inventory predicted from OMI NO2 observations for the year
2010 (middle). Inventory totals refer to colored regions only. The difference between the OMI-derived emissions for 2010 minus the bottom-up emissions for 2005 is shown at the
bottom (adapted from Lamsal et al., 2011).
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account for this drift and compare well with temporal trends from
other satellite data, as shown in Fig. 6, which is from a study by
Worden et al. (2013). This study did not analyze changes in emis-
sions directly, but compared trends in retrieved CO columns from
MOPITT, AIRS, TES and IASI for 2000e2011. They found a modest
decreasing trend (w'1% yr'1) in total column CO over the North-
ern Hemisphere and a less significant, but still decreasing trend in
the Southern Hemisphere. The decreasing trend over Europe and
the U.S. has been reported in other studies and is related to re-
ductions in anthropogenic emissions (Zellweger et al., 2009;
Angelbratt et al., 2011; EPA, 2013b).

Not only can time series of satellite retrievals help to extend and
interpret long-term trends in emissions in various parts of the
world (e.g., van der A et al., 2008; Lin et al., 2010a; Schneider and
van der A, 2012), but the effects of short-term changes in emis-
sions (days to weeks to a year)ddue to deliberate human inter-
vention or to autonomous forcesdcan be observed. This suggests
significant capability to improve the sensitivity of emission in-
ventories by convolving satellite-derived temporal variability.

Anomalies in annual trends have been reported in a number of
studies, both in the U.S. and other parts of the world. Russell et al.
(2012) noted from examination of NO2 retrievals in California that
there had been a decrease in diesel truck activity attributed to the
economic recession (Russell et al., 2012). Castellanos and Boersma
(2012) observed similar NO2 reductions over Europe during

2008e2009, though in both California and western Europe the
continued implementation of NOx emission controls makes it
difficult to assign causation unequivocally. Satellite-detected effects
of the economic recession on NOx emissions have also been re-
ported for China (Lin and McElroy, 2011), Greece (Vrekoussis et al.,
2013), and international shipping (de Ruyter de Wildt et al., 2012).
And in a related shorter-term study of economic impact, Yoshida
et al. (2010) showed that the effects of Hurricanes Katrina and
Rita in 2005 could be detected in the form of reduced OMI NO2
signals around the Gulf of Mexico, associatedwith disruptions to oil
and gas production, oil refining, and power generation.

Changes in emission levels on the scale of days tomonths due to
particular policy interventions or other driving forces have been
observed. The first reported example of this was the change in NOx
emissions in Beijing at the time of the Sino-African Summit in
November 2006 (Wang et al., 2007). Beijing municipal authorities
instituted policy measures to limit traffic in Beijing during a six-day
period, with an estimated 30% reduction in the numbers of vehicles
on the road. OMI observed a reduction in column densities of about
a factor of two during the period of the Summit. In some ways, this
event was a dress rehearsal for the 2008 Beijing Olympic Games, in
anticipation of which even more drastic emission reductions were
implemented, covering both mobile and stationary sources, and
extending from Beijing itself to several surrounding provinces. This
unprecedented intervention to reduce emissions over roughly a

Fig. 6. Comparison of MOPITT, AIRS, TES, and IASI retrieved annual average CO column amounts for the period 2002e2012 over four different world regions: E. China, E. USA,
Europe, and India (adapted from Worden et al., 2013).
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two-month period stimulated many research studies utilizing
ground-based measurements, satellite observations, and emission
inventories: NO2 from GOME-2 and OMI (Mijling et al., 2009), NO2
and SO2 from OMI and CO from MOPITT (Witte et al., 2009), aero-
sols from MODIS (Cermak and Knutti, 2009; Liu et al., 2012a),
aerosols from MODIS and NO2 from OMI (Zhang et al., 2009b), and
CO from MOPITT (Worden et al., 2012a). In all cases, the satellite
measurements confirmed the emission reductions that were re-
ported to have been implemented. A return to pre-existing emis-
sion levels after the conclusion of the Olympic Games was in some
cases masked by the onset of an economic recession in the fall of
2008. The experience of the Beijing Olympic Games was revisited
during the 2010 World Expo in Shanghai, when Hao et al. (2011)
reported significant (8e14%) emission reductions of NO2, CO, and
aerosols during the six-month period of the Expo.

Because of the daily coverage provided by some of the satellites,
it is possible to investigate even finer temporal cycles of emissions.
In the first study of its kind, Beirle et al. (2003) were able to discern
different weekly cycles of NOx emissions in different parts of the
world from GOME NO2 columns. In countries with a largely
Christian tradition, there was a distinct reduction in emissions on
Sundays and a slight reduction on Saturdays. In Israel the minimum
occurred on Saturdays, and in Islamic cities of the Middle East there
was a slight reduction on Fridays. In China, no weekly effect was
observed, possibly due to the fact that emissions are dominated by
power plants and industrial plants that operate seven days a week.
Kaynak et al. (2009) extended the work of Beirle et al. (2003) by
using SCIAMACHY retrievals during the period 2003e2005 over
rural, urban, and power-plant areas of the continental U.S. A
distinct weekly pattern was observed in cities, with a minimum on
Sundays and a smaller reduction on Saturdays, as found by Beirle
et al. (2003). Rural areas showed no clear weekly pattern. Areas
dominated by power plants showed only a small Sunday reduction.
It was possible to infer the relative contributions of mobile sources
to total emissions from theseweekly patterns, with results differing
somewhat from what would be obtained from bottom-up in-
ventories, suggesting a possible application of the satellite data to
refine day-to-day variability of emissions over urban areas. Russell
et al. (2010) examined the situation over California from OMI data
and confirmed that weekday emissions are higher than weekend
emissions. They observed that transportation studies have ascribed
much of the difference to the absence of heavy-duty diesel trucks
on weekends. Similar weekly cycles were reported over Europe by
Zhou et al. (2012). Even observations of AOD have revealed weekly
cycles over the U.S., central Europe, India, and the Middle East (Xia
et al., 2008).

Since each NOx source has specific characteristics that deter-
mine the seasonal variation of the tropospheric NO2 columns, the
seasonality of NO2 satellite observations can be used to identify the
dominant sources of emissions (van der A et al., 2006, 2008; Ghude
et al., 2010; Zhang et al., 2012). The idea builds on seasonal char-
acteristics that have been exploited in earlier studies to understand
sources. For example, regions that are dominated by anthropogenic
emissions have a seasonal NO2 maximum in the winter (Martin
et al., 2003); biomass burning of forests and savanna usually
takes place during the dry season such as early spring; and soil
emissions can result in enhanced NO2 signals in summertime
(Jaeglé et al., 2004). Using these characteristics, van der A et al.
(2008) first identified the dominant sources of NOx emissions on
a global scale at a resolution of 1% # 1% on the basis of GOME and
SCIAMACHY measurements. On a regional scale, they found that
eastern and western China are dominated by anthropogenic and
natural emissions, respectively. Recently, Zhang et al. (2012)
applied a similar methodology to a multiyear analysis from 1996
to 2010. They observed that the highly polluted regions (areas

dominated by anthropogenic emissions) in China have expanded
from the east to the central and the west, and new highly polluted
regions have formed throughout the nation in the past 15 years.
This technique shows the potential for determining changes over
time in the spatial extent of different area sources having different
emitting patterns that can then be fed back into bottom-up
inventories.

4.4. Anthropogenic point sources

Emissions from large, man-made point sources are clearly one of
the major targets for measurement from space, both because they
represent a strong signal that should be within the detection limits
of available instruments and also because they are potentially large
polluters that command the attention of environmental regulatory
bodies. The ability to detect changing emissions from these types of
sources has the potential to aid in the verification of region-wide
pollution control policies and in determining the compliance of
individual point sources with emission control requirements.
Consequently, anthropogenic point sources, particularly of NOx and
SO2, have been the subject of many research studies. For application
to U.S. air quality management, the interplay between observed
emissions and regulatory policy is a key component of such work.

During the era of measuring air quality from space (wmid-
1990s to present), there have been several important environ-
mental efforts in the U.S. directed at reducing the emissions of NOx
and SO2 from coal-burning power plants. For example, EPA issued
the 1998 NOx State Implementation Plan (SIP) Call with the intent
to reduce NOx emissions during the summer season and thereby to
reduce ground-level O3 concentrations. And in 2005 EPA issued the
Clean Air Interstate Rule (CAIR) with the goal of decreasing NOx and
SO2 emissions even further. Both the SIP Call and CAIR apply to the
eastern U.S., where emissions in an upwind state can significantly
impact air quality in another, downwind state.

There are a number of methods for significantly reducing
emissions of NOx and SO2 from the effluent of stationary sources,
most importantly Selective Catalytic Reduction (SCR) for NOx and
flue-gas desulfurization (FGD) for SO2. SCR and FGD units can
effectively remove up to 90% of NOx and SO2, respectively, from the
effluent stream. Application of these systems on a number of power
plants, coupled with other strategies to limit emissions from
polluting plants, has caused NOx and SO2 emissions from power
plants to decrease substantially from 1999, when about one-
quarter of total NOx emissions and almost all SO2 emissions in
the U.S. were associated with power generation. Given the short
lifetimes of NOx and SO2, data collected from space can be used to
confirm reductions reported by individual power plants, particu-
larly those not impacted by large area sources such as cities.
Inferring emissions or changes in emissions from point sources
using satellite data requires careful attention, however, as the es-
timate depends on the assumed lifetimes for SO2 and NO2, which
can be highly variable due to weather and other factors (see, e.g.,
Beirle et al., 2011; Walter et al., 2012; Zhou et al., 2012).

The first work on U.S. power plants was reported by Kim et al.
(2006), who used GOME and SCIAMACHY data to examine the
long-term evolution of NO2 columns in the eastern U.S. from 1997
to 2005, with the intention of assessing regional changes in NOx
emissions associated with the 1998 NOx SIP Call. They inferred that
NOx emissions from power plants in the Ohio River Valley had
decreased by about 35% over this period, which was in line with
reported measured emission changes from Continuous Emissions
Monitoring Systems (CEMS). This result was in contrast to the
Northeast urban corridor, where there was no clear trend in
emissions. In subsequent work Kim et al. (2009) reported an
analysis of 2005 NO2 satellite data for 13 individual power plants in
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the western U.S. Agreement with WRF-Chem modeled columns
was found to be excellent for three retrievals: SCIAMACHY
(r ¼ 0.93); the University of Bremen OMI (r ¼ 0.97), and NASA OMI
(r ¼ 0.95). These plants are considerably more remote from other
sources than plants in the eastern U.S., making the signals from
their plumes more distinctive. Russell et al. (2012) used NO2 col-
umn data from the OMI BEHR retrieval algorithm to infer that NOx
emission changes from 23 large power plants throughout the U.S.
were variable because of region-specific regulations, decreasing on
average by 26 & 12% from 2005 to 2011.

China and India are excellent test beds for the study of point
sources. Both countries contain large coal-fired power plants that
are relatively poorly controlled and therefore have high emission
rates. Not only that, the boom period of the mid-2000s saw the
construction of many new plants of this kind, meaning that we
have the luxury of being able to observe the satellite responses
before and after the sources of emissions came into existence. This
is rarely possible in the developed world these days. The close
relationship between NO2 columns and the locations of large coal-
fired power plants in China and India is shown in Fig. 7.

The potential for investigating emissions from power plants in
China was triggered by the groundbreaking paper of Richter et al.
(2005), which reported the large growth (w50%) in NOx emis-
sions in China inferred fromGOME and SCIAMACHYmeasurements
during the period 1996e2004. This was confirmed by a combined

bottom-up and top-down examination of China’s NOx emission
trends over the same period (Zhang et al., 2007). Subsequently,
Zhang et al. (2009a) studied the NOx emissions from new power
plants built in the period 2005e2007 in Inner Mongolia, China,
where the power plants are relatively far removed from large urban
areas. OMI summertime NO2 columns were found to be closely
correlated with emissions from the new large sources of pollution.
Quantitative agreement (rates of increase) were very good in cases
where new sources were added to already-developed regions
(R2¼ 0.94), but not so good in remote regions, due to uncertainty in
the background NOx (R2 ¼ 0.73 for all plant locations). This work
was subsequently expanded to a wider set of Chinese power plants
with similar results (Wang et al., 2010, 2012).

Li et al. (2010b) extended the study of Chinese power plants to
SO2, with the aim of demonstrating that OMI could detect the
presence or absence of SO2 emission control equipment and
possibly even quantify its efficiency. Following Zhang et al. (2009a),
the SO2/NO2 column ratios were determined for a number of power
plants in Inner Mongolia in 2005e2008, during which period the
plants were scheduled to install FGD equipment. Dramatic declines
in SO2 were observed at some plantsdimplying the implementa-
tion of pollution controlsdwhile the NO2 signal remained rela-
tively constantdimplying steady electricity generation over the
time period. Li et al. (2010b) clearly demonstrated that there is
great potential to verify the effectiveness of pollution measures

Fig. 7. Locations of thermal power plants in Asia, particularly in China and India, in relation to 2005e2010 average OMI NO2 column density measurements. Note that the OMI scales
are different in the two parts of this image.
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from space, which was bolstered by the high level of interest in this
work expressed by China’s Ministry of Environmental Protection.

There have been fewer papers devoted to power plants in India,
though the situation is similar to China in that many new coal-
fired plants with relatively poor controls were built after the
availability of high-performance satellite measurements. In many
ways India is a more desirable target than China because of shorter
NO2 lifetimes in hotter conditions, smaller solar zenith angle,
weaker seasonality, and lower area emissions around power
plants (Lu and Streets, 2012). GOME and SCIAMACHY trends over
India for 1996e2006 have been used to identify major hotspots of
NOx emissions, some of which were power plants (Ghude et al.,
2008). Prasad et al. (2012) used OMI data to study power plants
in India over the period 2005e2007. Lu and Streets (2012) com-
bined results from four satellite instruments, GOME, SCIAMACHY,
OMI, and GOME-2 to quantify the growth in NOx emissions from
Indian power plants.

Overall, it can be concluded that emissions of NOx and SO2 from
coal-fired power plants represent promising targets for application
of satellite observations. The China and India experience needs to
be transferred to the North American context with detailed, unit-
specific comparison of space-based emission estimates with
CEMS measurements under a variety of location, seasonal, and
meteorological conditions. An inter-comparison of derived re-
lationships between, for example, power-plant NOx emission rates
and NO2 column concentrations from different studies in different
parts of the world would also be a step forward.

Metal smelters are the largest anthropogenic point sources of
SO2 and have therefore been targets of study to test the capability of
space-borne instruments. Carn et al. (2007) first reported the
detection of SO2 emissions from two copper smelters in Peru using
OMI. Annual SO2 emissions from the larger of the two smelters, Ilo,
were estimated at 0.3 (0.2e0.5) Tg. Interestingly, the emission rate
appeared to decrease by about 40% between late 2004 and early
2005, which the authors of the paper speculate may have been
caused by modernization of the plant and an increase in the SO2
capture rate. This mirrors the work on SO2 capture by power plants
in China (Li et al., 2010b). Khokhar et al. (2008) analyzed SO2
emissions from the same two smelters in Peru and the large smelter
complex at Norilsk in Russia, using a seven-year time series of
GOME data. They estimated annual SO2 emissions from the Ilo
smelter at 1.095 & 0.2 Tg, larger than the value obtained by Carn
et al. (2007). Uncertainties related to the assumed SO2 lifetime
and AMF are cited as possible reasons for discrepancies.

The copper and nickel smelters at Norilsk in Russia are
acknowledged to be the largest anthropogenic point sources of SO2
in the world. Khokhar et al. (2008) estimated their annual emis-
sions to be 1.685& 0.3 Tg fromGOME data.Walter et al. (2012) were
able to reassess Norilsk emissions using the DOAS system on board
the CARIBIC aircraft, yielding an estimate of annual SO2 emissions
of 0.92 & 0.5 Tg. The estimate derived from closely synchronized
OMImeasurements was 0.7 (0.6e0.9) Tg. Walter et al. (2012) report
on several bottom-up estimates from such sources as the EDGAR
inventory and the Norilsk Nickel Company itself, which suggest
that emissions “ought” to be higher than the satellite observed
amountsdin the region of 2 Tg yr'1.

In a similar study Carn et al. (2004) observed the SO2 that was
released from a month-long fire at the Al-Mishraq State Sulfur
plant in Iraq in 2003. Using TOMS data they estimated a release
of w0.6 Tg of SO2 in totaldroughly consistent with the reported
inventory loss of sulfurdwhich made it the largest non-volcanic
SO2 emission event observed to date. Kearney et al. (2009) subse-
quently resampled the MODIS data to the spatial resolution of
TOMS and reanalyzed the plume SO2 for a single day, 29 June 2003,
finding good agreement between the two data sets. Large

anthropogenic SO2 point sources like these are clearly visible in the
satellite retrievals, but, fortunately, they are few and far between.

4.5. Anthropogenic area sources

Anthropogenic area sources are a natural target of opportunity
for space-based emissions estimation, as they are individually small
in size, spatially dispersed, and difficult to accurately represent in
emission inventories. Unconventional energy extraction processes
are such an area source. The important work of McLinden et al.
(2012) examined emissions of NOx and SO2 from oil/tar sands op-
erations in the Canadian province of Alberta, using the high-
resolution (w30 km # 50 km) retrievals previously discussed in
the context of Fioletov et al. (2011) and Boersma et al. (2011). In-
creases in NO2 columns between 2005 and 2010 were estimated to
be a remarkable 10.4 & 3.5% yr'1, reflecting the dramatic growth in
exploitation of this resource both in intensity and spatial extent.
Similar applications to such activities as oil and gas extraction in the
Colorado Northern Front Range and other locations are likely to
follow.

Shipping emissions represent an area source category that has
posed problems for bottom-up inventories due to the wide variety
of source types and poor statistics on numbers of vessels and
emission factors. The first remote detection of ship tracks was re-
ported by Beirle et al. (2004a) along the international shipping lane
from Sri Lanka to the Strait ofMalacca across the Indian Ocean. They
used a 6-year (1996e2001) composite of GOME NO2 data. Seasonal
differences inwind directionwere used to derive a mean lifetime of
NOx in ship exhaust of 3.7 (1.9e6.0) hours. Using this result, Beirle
et al. (2004a) derived an estimate for annual shipping emissions in
the Indian Ocean domain of 23 (10e73) Gg N, in good agreement
with inventory estimates. In that same year, Richter et al. (2004)
reported SCIAMACHY measurements of NO2 associated with ship-
ping not only in the Indian Ocean, but also in the Red Sea and the
South China Sea. Reasonable agreement with shipping emission
inventories was obtained, though in some locations uncertainty
was high. Better knowledge of the NO2 lifetime was neededdthey
used a value of 5.6 h, longer than Beirle et al. (2004a)din order to
more accurately characterize the horizontal and vertical dispersion
of the plumes and NOx removal.

This work was later extended by Franke et al. (2009) using both
SCIAMACHY and GOME-2 to obtain monthly information about
shipping emissions, though springtime biomass burning over India
and autumn burning over Indonesia interfered with the analysis.
They concluded that an annual emission estimate of 90 Gg N was
reasonable, increasing at a rapid rate that could account for dif-
ferences between GOME and SCIAMACHY measurements over the
period 1996e2007. Marbach et al. (2009) detected HCHO from
shipping in the Indian Ocean using GOME data. The HCHO is not
emitted directly from the ships but is thought to be formed by some
unknown photochemical mechanism in or close to the ship plumes.
Most recently, de Ruyter de Wildt et al. (2012) used data from four
space-borne instruments to observe NO2 columns from shipping
activity in a region stretching from the Mediterranean Sea to the
South China Sea. SCIAMACHY detected four major shipping lanes:
the Mediterranean Sea between Italy and Tunisia, the Red Sea, the
Indian Ocean (as reported by Beirle et al., 2004a), and the South
China Sea leading northeast from Singapore to Chinese ports. They
developed time trends in NO2 column density from 1996 to 2010
and compared them with trends in shipping cargo volume and
international trade volume.

One major potential application for satellite observations is to
estimate the emissions in a large metropolitan area, where there
may be very many small sources of different types that in aggregate
represent a large emissions contribution spread over a wide
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domain. In the U.S., NO2 urban signatures and their weekly cycles
were first reported for five cities (New York, Los Angeles, Chicago,
Dallas, and Detroit) using GOMEmeasurements (Beirle et al., 2003).
Later work addressed 14 western cities (Kim et al., 2009), including
annual trends and weekly cycles. Similar work was then performed
for several cities located across the U.S. (Kaynak et al., 2009) and
cities in California (Russell et al., 2010). Satellite observations show
that NO2 columns in U.S. cities have generally been declining during
the observational record, which is consistent with the imple-
mentation of the requirements of the Tier 1 and 2 vehicle standards
and the gradual turnover of the fleet of light-duty vehicles. Russell
et al. (2012) used the BEHR OMI NO2 retrieval data to estimate an
average total reduction of 32 & 7% for U.S. cities from 2005 to 2011
with a 34% decrease in NO2 from mobile sources. U.S. EPA trends
data show a reduction of 31% between 2005 and 2011. Russell et al.
(2012) attributed part of the observed decline in OMI NO2 columns
to the turnover in the mobile source fleet and part to the economic
recession that began in 2008. Specifically, they reported that NO2
columns decreased by 6 & 5% yr'1 before the recession and 8 & 5%
yr'1 during the recession.

Developing a bottom-up emission inventory for a megacity in
the developing world is an even more daunting task. Conventional
techniques for doing so are confounded by influxes of migrant
workers and unconventional vehicles from the countryside, never-
ending construction activities with their ubiquitous diesel en-
gines, unregistered vehicles, small industrial operations, household
burning of solid fuels, etc. These difficulties can, to a certain extent,
be by-passed by a satellite observation, which sees only the inte-
grated product of multifarious small sources. Indeed, the potential
of satellite NO2 observations to yield information about the size,
shape, land use, and dynamics of an urban area has prompted a new
breed of demographic/socioeconomic studies, exemplified by
Bechle et al. (2011) and Novotny et al. (2011). For urban studies
outside North America, the reader can consult satellite analyses of
cities worldwide (Clerbaux et al., 2008; Kar et al., 2010), in Europe
and the Middle East (Konovalov et al., 2010), in the eastern Medi-
terranean (Kanakidou et al., 2011), and in southeastern Europe
(Zyrichidou et al., 2009). Beirle et al. (2011) used OMImeasurements
over eight large urban agglomerations to probe the lifetime of NOx,
with an eye to elucidating the formation of urban O3. A good rela-
tionship was obtained between urban NOx emissions derived from
OMI columns with EDGAR bottom-up inventory estimates. In the
Saudi Arabian city of Riyadh a strong dependency of theNO2 column
density on wind direction was observed, with the maximum con-
centration shifted by w10e40 km downwind from the city center.
Across all the cities, the NOx lifetimes were in the range of 2.3e6.4 h,
reflecting the oxidizing capacity of the freshly emitted plumes.

As indicated earlier, it is possible that U.S. air quality studies
could be improved by the use of satellite data to augment uncertain
emission inventories for neighboring countries, of which Mexico is
the prime example. Some satellite studies have already shed light
on emission estimates in Mexico. The emissions inventory of NOx
was evaluated during the Megacity Initiative: Local And Global
Research Observations (MILAGRO/INTEX-B) campaign with a
combination of in situ aircraft measurements, satellite retrievals,
and numerical modeling (Boersma et al., 2008a, 2008b; Molina
et al., 2010). OMI top-down emission estimates have been
compared with the official Mexican National Emissions Inventory
of 1999. Large sources of SO2 were identified on either side of
Mexico City during the same campaign (de Foy et al., 2009), using
the oversampling technique described in Section 4.2. Source
strengths were compared with surface measurements using
mesoscale simulations, improving the confidence in prior emis-
sions estimates. Shim et al. (2009) used O3 and CO data from TES to
study pollution outflow from Mexico City, also as part of the

MILAGRO/INTEX-B campaign. Retrieval issues prevented measure-
ments directly over the metropolitan area. Generally, TES
enhancement ratios of O3 to COwere overestimated compared to in
situmeasurements, prompting a call for further examination of the
data sets.

4.6. Natural point sources

Volcanoes are the only natural point sources of largemagnitude,
but they can be so large that they can dwarf the emissions of SO2,
PM, and other gases from anthropogenic point sources during
eruptive and even degassing periods. Sizeable eruptive events can
release several Tg of SO2 in a day or two, as compared with about
1 Tg per year from large anthropogenic point sources like the
copper and nickel smelters at Norilsk (see, e.g., Walter et al., 2012).
The history of observations of volcanic emissions from space has
been reviewed by Thomas and Watson (2010), and the reader is
referred to that source for more information. One clear advantage
that satellites have over ground measurements is the ability to
monitor emissions from a source that may be very remote and
inaccessible, as well as being expensive and hazardous for humans
to monitor in situ. Because the volcanic source strength is great, the
SO2 signal is readily detectable by several instruments and more
easily converted to an estimate of emissions than the SO2 released
by anthropogenic sources.

Satellite observations of SO2 releases from volcanoes trace back
to the late 1970s and are perhaps best exemplified by the obser-
vation by TOMS of the eruption of the El Chichón volcano in
southernMexico in 1982 (Krueger, 1983). It was estimated from the
UV absorption properties of the released cloud that w3.3 Tg of SO2
were injected into the stratosphere over a two-day period. One of
the first comprehensive reports of satellite observations of SO2
emissions from volcanoes was by Khokhar et al. (2005), who
studied both eruptions and degassing at about 20 volcanoes around
the world during the period 1996e2002, using GOME data. Despite
the coarse spatial resolution of GOME and the relatively large un-
certainties for individual observations, it was felt at that time that
there was potential for being able to derive rough estimates of SO2
emissions from satellite retrievals. Uncertainties could be reduced
if additional information on plume height, cloud cover, aerosol
loading, and SO2 lifetime were available.

As the next generation of satellites came into operation, having
greater spatial resolution, it became possible to develop additional
information about volcanic releases of SO2. For example, Loyola
et al. (2008) studied four volcanic eruptions in Central and South
America with a combination of GOME, SCIAMACHY, and GOME-2
instruments. By combining the retrievals with a trajectory model,
they were able to determine the effective plume heights. They also
proposed the development of a near-real-time SO2 data delivery
service towarn of aviation hazards arising fromvolcanic ash clouds.
Using OMI and other retrievals, Carn and Prata (2010) reported on
the numerous episodes of explosive SO2 emissions on the Carib-
bean island of Montserrat during the period 1995e2009 and
particularly in 2003 and 2006. The largest single emission was
w2 Tg in 2006 that was injected into the lower stratosphere and
tracked halfway around the world. They suggested that space-
based routine monitoring of gaseous releases from volcanoes
might be capable of warning of impending eruptions.

The August 2008 eruption of the Kasatochi volcano on the
Aleutian Islands of Alaska, released similar amounts of SO2, esti-
mated atw1.5e2.5 Tg. Krotkov et al. (2010) combined OMI satellite
data with a trajectory model to analyze the dispersion of the SO2
cloud. The OMI data were able to constrain the SO2 plume height
and eruption times and initialize the transport model. The OMI SO2
burden was integrated over the Northern Hemisphere and
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extrapolated back to yield an initial erupted mass ofw2.2 Tg, twice
as large as the measured mass on the day. In addition, instruments
on the CARIBIC flying observatory detected remnants of the Kasa-
tochi SO2 plume in central Europe, and comparisons with GOME-2
satellite observations were possible within just a few hours,
yielding a robust correlation (Heue et al., 2010). Clarisse et al.
(2011a) were able to observe H2S in the Kasatochi plume from
IASI observations, though H2S is spectroscopically difficult to detect
and it oxidizes to SO2 in the atmosphere within a few days.

The eruption of the Icelandic volcano Eyjafjallajökull in 2010
enabled Carboni et al. (2012) to develop a new scheme to utilize
IASI retrievals to track the SO2 plume in the presence of cloud and
volcanic ash. Rix et al. (2012) were able to study SO2 and BrO col-
umns in the eruption from this volcano using GOME-2 data, as well
as to determine the SO2 plume height. Finally, Martínez-Alonso
et al. (2012) reported the first observation of CO emissions from a
volcano using MOPITT data.

4.7. Natural area sources

There are several types of natural area sources that are
important to characterize from the perspectives of assessing the
contribution of anthropogenic emissions to total emissions, un-
derstanding atmospheric chemistry and the production of sec-
ondary species, and assembling complete emissions datasets to run
CTMs and other atmospheric models. Such source types include
open biomass burning, soils, lightning, and biogenic sources.
Biogenic NMVOC were described in Section 3.5 and are not dis-
cussed further here.

Satellite estimates of open biomass burning have become
routine, and their resulting emissions are now reported on a regular
basis, e.g., the Global Fire Emissions Database, GFED (van der Werf
et al., 2010), the Fire INventory from NCAR, FINN (Wiedinmyer
et al., 2011), and the Wildland Fire Emission Inventory, WFEI
(Urbanski et al., 2011). The literature related to biomass burning
detection from space is vast and beyond the scope of this article.
Given the large uncertainty in bottom-up estimates of CO emis-
sions, inversion analyses using CO satellite observations offer
considerable promise for constraining this important source (e.g.,
Pétron et al., 2004) and separating anthropogenic and biomass
burning components.

Lightning NOx has been studied by a number of research groups
using satellite products. A typical approach to this problem is to
measure the SCD of lightning-related NOx and then develop a
formalism to relate SCD to VCD. Cloud-resolving models are useful
to calculate the appropriate AMF. A further complication is that
most of the gas exists in the upper troposphere in the form of NO,
which is not directly measurable. Beirle et al. (2009) identified the
uncertainties and sensitivities involved in using satellite observa-
tions to study lightning NOx. The analytical process involves
generating an estimate of production efficiency (number of mole-
cules produced per flash) and then multiplying that by an estimate
of the number of flashes in a given time period over a given area to
yield an estimate of the NOx produced.

Perhaps the most widely accepted estimate of annual NOx pro-
duced from lightning worldwide developed by a method that does
not involve satellite observations is w5 Tg N in the range of 2e
8 Tg N (Schumann and Huntrieser, 2007). There have been a
number of satellite-based studies that have attempted to constrain
the global magnitude of lightning NOx generated, and we touch on
just a few of them here. Though uncertainties are still large, central
estimates agree quite well. More than a decade ago, Bond et al.
(2002) used satellite imagery from the Lightning Image Sensor
(LIS) on board the Tropical Rainfall Measuring Mission (TRMM)
satellite to obtain an emission estimate of 6.3 Tg N yr'1 in the

tropics. Beirle et al. (2004c) combined the LIS data on lightning
activity with GOME NO2 measurements for a statistical case study
over central Australia, where other NOx sources are very few.
Extrapolation of the results yielded a global production estimate of
2.8 (0.8e14) Tg N yr'1 Boersma et al. (2005) also used GOME
measurements to estimate an annual global NOx production rate of
1.1e6.4 TgN in 1997.

Martin et al. (2007) used observations from four satellite in-
struments to constrain the estimate of NO production by lightning:
NO2 columns from SCIAMACHY, O3 columns from OMI and MLS,
and upper tropospheric HNO3 from ACE-FTS. Supplementing these
observations with GEOS-Chem model predictions of the times and
places of lightning occurrences, a global estimate of 6 & 2 Tg N yr'1

was obtained. When Beirle et al. (2010) studied SCIAMACHY mea-
surements of lightning NOx over the eastern U.S., they often found
poor spatial correlation between fresh flashes and enhanced col-
umn densities, inferring that aged lightning NOx or anthropogenic
NOx was interfering. Production efficiency was often lower than
expected, equivalent to a global source strength of w1 Tg N yr'1

Bucsela et al. (2010) were able to develop customized OMI re-
trievals for lightning NOx during the NASA TC4 campaign, which
were supported by aircraft observations. Combining CMAQ with
OMI observations, an estimate of 500 mol NO per flash provided
reasonable ('5 to þ13%) model/measurement agreement for the
mean summertime tropospheric NO2 column (Allen et al., 2012).

Soil NOx emissions have also been estimated from satellite ob-
servations. It is difficult to estimate soil NOx emissions by bottom-
up methods, due to high spatial and temporal variability, as well as
the sensitivity of the emission rates to climatic variables, soil
characteristics, and anthropogenic influences such as cultivation
and fertilizer application. Soil NOx emissions might therefore be a
prime candidate for measurement from space, where spatial
coverage is high and daily observation is possible. As with lightning,
NO is the primary emitted species and the rate of oxidation to other
nitrogen species is an issue. Jaeglé et al. (2004) first demonstrated
the ability of satellites to observe soil NOx emission processes.
Bertram et al. (2005) studied an agricultural area of two million
hectares in Montana using SCIAMACHY data and observed pulses of
NOx associated with application of fertilizer and precipitation. They
were able to use the satellite data to refine mechanistic parameters
in a conventional model of soil NOx. Hudman et al. (2010) used OMI
data to study soil NOx emissions in the Great Plains. They also used
a case study of a region of soybean and corn production in South
Dakota to demonstrate rain-induced pulses of NOx, as well as as-
sociations with fertilizer application. Large interannual variation in
the emission rate was observed during the period of measurement
(2005e2008), and differences between model simulations and
satellite retrievals were noted. Overall, the soil NOx emissions
resulted in an increase of w3 ppbv in 8-h O3 concentrations over
the agricultural Great Plains region. Subsequently, Hudman et al.
(2012) were able to develop a mechanistic model of global
soil NO emissions using OMI satellite data to constrain the
parameterization.

4.8. Field campaigns: observing transport and transformation

Satellite observations are becoming an increasingly integral part
of field campaigns aimed at understanding air quality and source
contributions. Although evaluating and improving space-based
measurement of tropospheric composition is a nearly universal
goal of such field experiments, satellite products can be part of the
planning process and can contribute to analysis of the results.
Consider INTEX-A (Intercontinental Chemical Transport Experi-
menteNorth America) with the objective of studying pollution
plumes over the U.S. and export from North America, and INTEX-B
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(Intercontinental Chemical Transport ExperimentePhase B) with
the objective of quantifying the outflow of pollution from Mexico
and East Asia. These projects integrated satellite products along
with model forecasts into the flight planning process. In TexAQS II
(The Second Texas Air Quality Study) satellites provided the
regional context for urban measurements of trace gases (McMillan
et al., 2005) and aerosols (Winker et al., 2007).

In several recent, large-scale field campaigns, satellite observa-
tions have been a core component. EAST-AIRE (East Asian Study of
Tropospheric Aerosols: An International Regional Experiment),
RAMMPP (Regional Atmospheric Measurement, Modeling and
Prediction Program) and DISCOVER-AQ (Deriving Information on
Surface conditions from Column and Vertically Resolved Observa-
tions Relevant to Air Quality) offer illustrative examples. For these
projects, satellite observations were incorporated into the experi-
mental plan as one of the tools to understand atmospheric pro-
cesses. EAST-AIRE (and its successor EAST-AIRC) were focused on
aerosol emissions, transport, distributions, optical and chemical
properties, and their subsequent impact on direct radiative forcing,
air quality, ecosystems, and regional climate, as summarized in Li
et al. (2007, 2011). A 2008 experiment employed a combination
of aircraft and satellite observations to constrain the S budget over
China and to estimate the lifetime and export (He et al., 2012). The
combination of aircraft and satellite observations allowed the
plume to be tracked for several days, resulting in an estimate of the
gas-to-particle conversion rate (Dickerson et al., 2007; Krotkov
et al., 2008; Li et al., 2010a).

RAMMPP is a long-standing program to provide policy-relevant
science to the nonattainment areas of the Mid-Atlantic states
(Castellanos et al., 2011: Hains et al., 2008; Lee et al., 2011a;
Loughner et al., 2011; Marufu et al., 2004; Taubman et al., 2006).
The rate of emission of SO2 over the U.S. is reasonably well known,
because many large sources are monitored with CEMS. The lifetime
of the SO2, however, depends on concentrations of the oxidants OH
and H2O2 as well as cloud cover, variables that are hard to model
accurately with CMAQ (Loughner et al., 2011). Because SO2 is the
major precursor of sulfate particles, the rate of conversion must be
understood in compliance modeling for PM2.5. Both in situ and
remotely sensed data have been used to estimate the overall rate of
loss of SO2 from the atmosphere and by implication the rate of
formation of sulfate (Lee et al., 2011a). Both RAMMPP and INTEX-A
(Hennigan et al., 2006) show a nearly exponential decrease in
mixing ratio with altitude with the bulk of the SO2 located below
2000 m. A mass balance approach indicates an SO2 lifetime of 17
(&7) hr for summer conditions. Lee et al. (2011a) expanded these
observations to the global scale using GEOS-Chem and column
contents for OMI and SCIAMACHY. The results (Fig. 8) show the
seasonal cycle and latitudinal dependence expected for photo-
chemical oxidation processes, with maximal lifetimes in the winter
and at high latitudes.

A major challenge for Earth-observing satellites is to distinguish
between pollution high in the atmosphere and pollution near the
surface that has a direct connection to emissions and a direct
relevance to human health (Lin and McElroy, 2010). In summer

Fig. 8. Modeled and measured boundary-layer SO2 tropospheric lifetimes over the eastern U.S. and global lifetimes of SO2 using a combination of numerical modeling as well as in
situ and remote observations (adapted from Lee et al., 2011a). This material is reproduced with permission of John Wiley & Sons, Inc.
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2011, the DISCOVER-AQ program began a multi-year airborne field
campaign to tackle this challenge. The first experiments were
performed over the urban area encompassing Baltimore, MD and
Washington, DC. Results indicate that there is a strong correlation
between column content and surface concentration, but O3 located
above the PBL can interfere, especially on days with poor air quality.
The main precursor of O3 formation over the eastern U.S. is NO2.
Preliminary results indicate that the bulk of NO2 lies near the sur-
face, both in the morning and afternoon. If NO2 is generally
confined to the surface, then satellite observations should be ex-
pected to correlate well with surface observations. The similarities
of NOx both upwind of the Baltimore/Washington area (morning
measurements) and downwind (afternoonmeasurements) indicate
that O3 is formed over a broad area. This shows that emissions
controls can yield benefits hundreds of kilometers from the source.
Results from OMI (Fig. 9) indicate high concentrations of NO2 near
sources such as New York City, but substantial concentrations over
rural areas as well. CMAQ captures the major source areas seen by
OMI. The ratio of urban to rural NO2 column content, however, is
higher in CMAQ than in OMI or the in situ data (Allen et al., 2012).
Current work involves verifying these differences and exploring
how the dynamics and chemistry of the CMAQ model could be
improved. Satellites can provide coverage unavailable from even
the most ambitious in situ measurements and when compared
appropriately to numerical simulations can provide guidance on
model improvement. Because plans for compliance with air quality
standards rely on simulated emission reductions, suchmodels must
be able to reliably reproduce the temporal and spatial character-
istics of pollution events.

5. The National Emissions Inventory (NEI)

It is clear from the content of Section 4 that there has been a
tremendous amount of work undertaken in the past decade to
interpret satellite retrievals with the purpose of gaining new in-
formation about the spatial and temporal aspects of emissions of a
variety of species from many types of sources. The value that these
studies have depends partly on what the perceived needs are for
the regulatory community and the degree of confidence that we
have in bottom-up inventory methods. At the end of the day, the
capability of the satellite instruments must be weighed against the
established inventory methods currently in use. Only then can we
judge the merits of focusing on particular sources and species and

deciding what resources should be invested in pushing the appli-
cation of satellite methods into the emissions estimating arena.

The U.S. National Emissions Inventory (NEI) is a national
compilation of emissions sources collected from state, local, and
tribal (S/L/T) air agencies specifically for the NEI, as well as from
other EPA emissions programs, including the Toxics Release In-
ventory (TRI), emissions trading programs such as the Acid Rain
Program, and data collected as part of EPA regulatory development
for reducing emissions of air toxics. The NEI development efforts
include assembling component datasets, blending data from mul-
tiple sources, and performing quality assurance steps that further
enhance and augment the compiled data. The NEI is produced by
EPA on a triennial cycle, with the most recently released NEI for the
calendar year 2008.

The species included in the NEI are those related to imple-
mentation of the National Ambient Air Quality Standards
(NAAQS)dknown as criteria air pollutants (CAPs), other precursors
of ozone and PM, as well as hazardous air pollutants (HAPs) asso-
ciated with EPA’s Air Toxics Program. The CAPs and their precursors
include lead (Pb), CO, NOx, VOC, SO2, NH3, PM of diameter 2.5 mm or
less (PM2.5), and PM of diameter 10 mm or less (PM10). The HAPs
include the 187 remaining HAPs from the original 188 listed in
Section 112(b) of the 1990 Clean Air Act Amendments. Key HAP
emissions species include mercury (Hg), hydrochloric acid (HCl)
and other acid gases, heavy metals such as nickel and cadmium,
and hazardous organic compounds such as benzene, formaldehyde,
and acetaldehyde.

While the NAAQS program is the basis on which EPA collects
CAP emissions from the state, local, and tribal air agencies, it does
not require collection of HAP emissions. For this reason, the HAP
reporting requirements are voluntary. Nevertheless, the HAP
emissions are an essential part of the NEI program. These emissions
estimates allow EPA to assess progress in meeting HAP reduction
goals described in the Clean Air Act amendments of 1990. These
reductions seek to reduce the negative impacts to people of HAP
emissions in the environment, and the NEI allows EPA to assess
how much emissions have been reduced since 1990. With the
exception of a few organic compounds like formaldehyde, HAP
species are not at present able to be detected by satellite in-
struments, but that may change in the future.

The Air Emissions Reporting Rule (AERR) is the rule that requires
states to submit estimates of CAP emissions and provides the
framework for voluntary submission of HAP emissions. The AERR

Fig. 9. NO2 columns for the month of July 2011 over the Mid-Atlantic states during DISCOVER-AQ. The CMAQmodel matches urban observations well but underestimates rural NO2.
Increasing the photolysis rate of alkyl nitrates in CB05 improves model-measurement agreement.
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has emissions thresholds that determine whether an S/L/T agency
must report stationary source emissions as point sources or
whether the emissions can be lumped together into a county total
as nonpoint sources. Based on the AERR requirements, S/L/T
agencies submit emissions of point, nonpoint, on-road mobile,
nonroadmobile, and fires emissions sources. These submissions are
sent to the Emission Inventory System (EIS) that EPA then uses to
review and assemble the data from the S/L/T agencies.

While the basis of the NEI is an S/L/T agency reporting program,
EPA compiles data for use by these agencies, including data that are
derived, or could be derived, from satellite-based information.
While initial resource investments are generally needed for
updating emissionsmethods to use satellite data, there can be long-
term benefits of the resultant improved data, such as making better
regulatory or other decisions.

Some uses of satellite data already exist in the NEI. A satellite-
based emissions method is the use of fire detect data from satel-
lites in the SMARTFIRE version 2 system as described in EPA
(2013a). While the satellite data are useful for compiling reason-
able location and temporal information, the data are best used for
emissions estimation when accompanied by ground-based obser-
vational information to augment the spatial extent of the fires as
well as the fuel consumption estimates derived from other models.
In addition, satellite images are routinely used by S/L/T agencies
and EPA to verify location information for point-source facilities.

Other satellite data may be able to be used in the future for the
NEI to compile other types of activity data. For example, satellite
images could conceivably be used to develop or augment traffic
count data, the size and location of animal feedlots and waste la-
goons, the locations of residential and non-residential construction,
and the characterization of “urban” or “rural” that is a part of some
methods such as residential wood combustion. Depending on the
frequency of availability, satellite images could also be used to help
assess the timing of activities such as agricultural tilling and asphalt
paving, where the timing relative to meteorological events can
determine whether the activity actually occurs and what the
emissions will be.

A summary of the construction and the components of the 2008
NEI by sector, key species, and sources of data is presented in
Table 2, with notes regarding uncertainties associated with the
various sectors. The strengths and weaknesses of the NEI vary from
year to year as changes are made to the creation processes and as
resources for the program vary. It is impossible to generalize about
the strengths and weaknesses since data are compiled from so
many sources. Since the most recent NEI was released for calendar
year 2008, this summary reflects only on that inventory. EPA esti-
mates emissions from many source categories and then uses those
datawhen states do not submit it; thus, the quality and origin of the
data can vary from state to state. As a general matter, the primary
sources of uncertainty are: (1) uncertainty in emission rates; (2)
uncertainty in the activities generating emissions; and (3) the
temporal and spatial variability of both emission rates and
activities.

6. Promising applications and future needs

Organizations that develop emission inventories can profit from
the vast amount of spatial and temporal data delivered from sat-
ellites; however, much of this opportunity has yet to be realized.
One challenge is that emission inventories consist of a series of
data-intensive calculations, while the results from most inverse
modeling studies consist of two-dimensional maps of emission
adjustments. Progress on the use of satellite data to inform emis-
sion inventories depends on connecting these emission adjust-
ments to the real building blocks of emission inventories, namely

activity levels and emission factors. This is possible with further
collaboration between emission inventory developers and the
satellite research communities. In this final sectionwe review some
ways in which the gap between promise and fulfillment of satellite
applications for emissions estimation might be narrowed.

Identification of the practical problems faced routinely by
emission inventory developers can be used to guide further inter-
action between the communities. For example, the acquisition of
temporal information from satellites to help adjust day-of-week
emission allocations that are needed for Eulerian grid models
would be beneficial for many types of area sources, including
onroad mobile, nonroad mobile, and shipping. A number of un-
conventional area sources, e.g., evaporation ponds from oil and gas
development activities, are desperately short of data. Often there is
industry and state resistance to monitoring such sources. If the
detection limit for such emissions could be improved, there is great
potential to enhance the conventional bottom-up inventory
methods. State regulators have expressed a need for help in iden-
tifying small but significant hotspots of emissions of species such as
SO2. Monitors are sparse in many areas and expensive to maintain.
This means that some sources may elude detection by the ground
monitoring network. To be able to get uniform coverage over a very
wide area could be extremely valuable and cost-effective.

Ammonia is difficult to measure in situ and measurements are
sparse; but reduced N species are becoming an increasingly
important component of reactive N deposition and are steadily
leading to adverse environmental effects. Detection of agricultural
emissions of NH3 from space would be an ideal opportunity to
improve inventories and identify hotspots. Observations could be
used to help ground-truth the results that will come from the
updated NH3 emission rate information provided by the National
Air Emissions Monitoring Study (NAEMS). And there is a continued
need in the regulatory community for satellite products that allow
estimation of biomass burning activities using software such as
SMARTFIRE to support a nationally consistent approach that brings
together the best of the satellite and on-the-ground information for
a robust inventory.

Using ratios of trace gases as an indication of emission amounts
and characteristics also shows great promise, but these require co-
location of observations. For example, biomass burning and other
inherently inefficient combustion processes have elevated CO/CO2
and CH4/CO2 ratios, while modern, efficient power plants have very
low ratios. Unregulated or under-regulated internal combustion
engines can produce elevated NO2/CO2 ratios. Such information can
help to improve emission inventories and help policy makers target
the most important sources.

The temporal and spatial characteristics of natural emitting
sources are exceedingly difficult to obtain by bottom-up methods
and are usually highly uncertain; however, they are important to
know because they can represent a sizeable fraction of total pri-
mary emissions and are known to play a highly significant role in
atmospheric chemistry. They also contribute in important ways to
the ambient concentrations ofmany primary and secondary species
in the atmosphere. Satellite measurements have so far proven
valuable in application to a number of types of natural sources:
biogenic NMVOC, volcanic SO2 and PM, wetlands CH4, biomass
burning CO and PM, soil and lightning NOx, etc. To the extent that
information about these emitting sources is necessary for modeling
their contributions to ambient concentrations, they are a necessary
part of the information portfolios of air quality managers, and the
benefit of space-based observations has not yet been fully realized.

Satellite detection of aerosol speciation is an important future
need from the public health perspective. A clear understanding of
the spatial trend and temporal variation of PM species is crucial for
U.S. EPA to design cost-effective emission control policies, as well as
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to update NAAQS species and HAPS that have different primary
emission sources and different toxicity levels. EPA’s PM mass
monitoring network hasw1200 sites, covering less than 25% of the
3100 counties in the continental U.S. In addition, EPA’s Chemical
Speciation Network and IMPROVE network together have only
w500 sites. This number is unlikely to increase given current
budgetary constraints. Satellite instruments such as MISR and OMI
have shown promising signs of ability to differentiate boundary-
layer fine PM components such as sulfate and black carbon. How-
ever, new algorithms or new sensors are needed to achieve the
level of retrieval accuracy and spatial resolution that would be

useful for air quality applications. For example, given the lower
tropospheric lifetime of fine PM (a couple of days to a week), a
satellite must be able to achieve a return frequency of 1e2 days in
order to study air pollution episodes related to wildfires, dust
storms, and heavy haze. The large spatial gradient of black carbon
requires the sensor to have a spatial resolution of 1e2 km.

As data from the current generation of satellites are used more
and more in tropospheric pollution applications, it is becoming
apparent that more intensive validation efforts are required. Two
major factors limiting our confidence in inversion studies are
uncharacterized model errors, which are addressed in Section 4.1,

Table 2
Summary of the 2008 NEI by sector, key species, and sources of data.

Sector Species Sources of data

Agriculture NH3, PM10, PM2.5 Nonpoint with minor point-source contributions by a few states who submit farms as point sources. Blend of
state and EPA data, with about 75% EPA estimates. NH3 emission rate improvements pending ongoing NAEMS
study. Ambient data suggest dust emissions are too high. In addition to emission rates, sources of uncertainty
include: (1) the timing of animal waste operations, which impact the emission rates in combination with
meteorological influences, (2) the location of animal operations, (3) the timing of tilling operations, (4) which
fields are tilled in a given year, (5) the timing of fertilizer application, and (6) which fields are fertilized in a
given year.

Dust e Construction, paved,
and unpaved road dust

PM10, PM2.5 Nonpoint with very minor point-source contributions from industrial sites. Mostly EPA estimates, generally
about 70%. Meteorological adjustments applied at monthly resolution to consider moisture. Ambient data
suggest dust emissions are too high. Paved roads emission rates updated in 2008 NEI based on latest data.

Fires CO, VOC, PM2.5,
PM10, HAPs

Satellite-based fires estimates from SMARTFIRE version 2, including allocation of all fires to wildfires,
prescribed burning, and agricultural fires. Emissions are both spatially and temporally resolved by day.
Emissions rates may be out of date, but documented. HAP emission rates do not vary spatially. Satellite-based
methods are known to both overestimate and underestimate areas burned. Sources of uncertainty include the
assessment of available fuel, fuel consumption, quantification of smoldering, extent of a burn, and the type
of the fire (a wildfire or a prescribed fire).

Fuel Combustion e Electric
Generation

NOx, SO2, PM2.5,
Hg, HAPs

Data are largely based on data from continuous emissions monitors (especially in the Eastern US), which
measure SO2 and NOx (and in few cases Hg) emissions. These data and heat input data are readily available
from the EPA and are used by states whose data submissions make up nearly 100% of the inventory for
NOx, SO2. Other species from both EPA and states, with EPA data from the Mercury and Air Toxics Standard
being used for most EGUs for Hg, other metals, and acid gases. Sources of uncertainty include emissions from
sources that do not have continuous emissions monitors.

Fuel Combustion e Industrial,
Commercial, and
Institutional

NOx, SO2, PM2.5,
Hg, other HAPs

Includes a broad mixture of point and nonpoint data, state and EPA data, which makes generalizations about
the data sources difficult. While nonpoint estimates generated by EPA are based on fuel consumption data
from the Department of Energy, fuel consumed by sources reported by states as point sources needs to be
subtracted from the nonpoint calculations. While states were responsible for this step in 2008 NEI, we do
not know if this was always done and suspect it was not in some cases. Some states may have double
counted, while other states may have left out nonpoint emissions. Emission rates are outdated in some cases
(particularly for PM2.5) with new methods now available (but not for 2008 NEI) for condensible PM2.5

emissions. Some (w15%) HAP emissions from industry reporting to the EPA Toxics Release Inventory.
Fuel Combustion e residential CO, NOx, PM2.5,

PM10, HAPs
Data are largely a nonpoint estimate that can be reasonably estimated based on fuel use and emission
factors. Natural gas heating important for NOx and is about 80% reported by states and 20% EPA estimates.
Wood heating is important for PM2.5 and is about 55% reported by states. Urban area wood combustion
estimates have been called into question with overestimates apparent as compared to ambient data.
Methodologies and default emission factors revised by state/EPA and improved for 2008.

Industrial Processes NOx, VOC, SO2,
PM2.5, HAPs

Almost all data provided by states as point sources. Quality varies greatly depending on the source of the
information provided to EPA, which is generally not possible to assess because the origin of the data is usually
not provided. For HAPs, EPA augments with TRI data submitted by industry to EPA, but this is 10e30%
depending on the industry.

Onroad mobile CO, NOx, VOC,
HAPs

Estimated by the onroad emissions model called the Motor Vehicle Emissions Simulator (MOVES), based on
modeled hourly temperatures using a 12-km gridded modeling resolution. California emissions provided by
that state. For MOVES-based emissions, data are computed hourly and summed up for the year. Many states
did not have state-specific inputs available because of the newness of the model. Activity data are based on
Federal Highway traffic count data at the state level and apportioned to counties, road types, and vehicles.

Nonroad mobile equipment CO, NOx, VOC,
HAPs

Estimated by the NONROAD model, except in California. Some known problems with double counting of
emissions in a few states, though this is atypical for this sector. EPA keeps emission rates updated with the
latest emission rates and equipment populations and activity estimates.

Nonroad mobile aircraft,
railroad, and marine

Pb, (aircraft),
CO, NOx, SO2

Primarily EPA data for key species, with a relatively high contribution of state-submitted data for NOx from
aircraft of 15%. EPA data are estimated at a national resolution and apportioned to counties, rail lines, ports,
shipping lanes, and airports using methods developed in collaboration with many states. Emission factors
are updated regularly by EPA, but apportioning approaches for category 1&2 marine vessels, which have in
some cases overestimated emissions in ports in some demonstrated cases as compared to ambient data.

Solvents VOC, HAPs 100% state data for most solvent categories, with EPA not augmenting these sectors due to overlap between
point and nonpoint emissions that the states are expected to resolve. Have confirmed cases where states did
not submit VOC HAPs but did submit VOC and EPA did not compute or add HAP VOC. Methodologies and
default emission factors revised by state/EPA and improved for 2008. Emission factors for HAPs out of date
and not consistent with new product formulations and technology changes. Methods updated for 2008 with
activity data on solvent use used from Freedonia, though not for calendar year 2008.
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and systematic errors in the satellite retrievals. Typically, we only
assume the presence of a 0th order systematic error (bias) in the
satellite products. However, satellite retrieval errors can be corre-
lated with other geophysical quantities, such as temperature, water
vapor, surface reflectance, and cloud properties. To properly di-
agnose these potential systematic errors, we need coincident ob-
servations of both the species retrieved and any geophysical
quantities that could cause systematic errors in the retrieval. At a
fundamental level, when we assimilate observations in an inverse
modeling framework, wewant to be confident that the noise in the
observations is truly random.

All air quality observations from space so far have been from low
Earth orbit (LEO). These provide return times for observation of at
most once per day at a specific time of day. Because of clouds and
retrieval noise, useful data may therefore be obtainable only with
weekly or monthly temporal resolution. Observation from geosta-
tionary Earth orbit (GEO) would be of considerable value for air
quality investigations by providing continuous mapping on a con-
tinental scale with hourly resolution and on the order of
4 km # 4 km spatial resolution. As mentioned in Section 2, GEO-
CAPE and TEMPO are planned geostationary missions to observe
tropospheric air pollution over North America. However, with
current launch dates for both these missions likely to be 2017e
2020 or later, acceleration of the schedules would greatly benefit
the U.S. air quality management community in a number of ways.
Continuous atmospheric composition from GEO measurements
would provide for the first time the data density required for a
comprehensive investigation of pollution events, pollution trans-
port, and atmospheric processes at different altitudes and across
fine spatial and temporal scales. In particular, such data would
permit inversion of emissions at the high spatial and temporal
resolution necessary to characterize diurnal variations. Observa-
tional errors for the inversion could be effectively decreased
through the averaging of a large number of retrievals collected for a
given scene during integration times of an hour or less. The high
spatial and temporal resolution achievable in inversions would
lend insights into the causes of bottom-up and top-down in-
consistencies and potential errors in current emission inventories.
They would also provide a unique ability to constrain transient and
episodic sources such as wildfires and industrial chemical releases.

To quantify and separate the influences on chemical distributions
of varying emissions, photochemistry, and dynamical processes,
it is desirable to provide improved vertical profile information
from satellite observations, especially in the lowermost troposphere.
This has been demonstrated from LEO for CO (Worden et al., 2010)
and O3 (Fu et al., 2013) through the use of multispectral retrieval
techniques. Similar measurements are proposed for the GEO-CAPE
mission, and an independent estimate of concentrations in the
lowest 2 km should significantly improve the capability to constrain
surface emissions.

In his eulogy for the loss of SCIAMACHY (IGAC News, August
2012), John Burrows reminded us that “we cannot manage what
we can’t measure.” Reflecting on this adage is a useful way to
conclude this article. U.S. air quality managers must continually
manage air quality, even in the face of measurement shortcomings.
Emission factors are measured for a few sources and then extrap-
olated to the array of real-world devices; emission rates are
measured at the stack for those sources deemed large enough to
warrant it; activity levels are inferred from surveys of the number
of sources and their expected patterns of operation; and, in a few
cases, monitors are set up in the field and source emissions deter-
mined by modeling. The situation is far from ideal, but managers
have no choice but to accept the methodological limitations and
acknowledge the levels of uncertainty that result. Perhaps it would
be more appropriate to say that “what we can’t measure well, we

cannotmanage effectively.” The lure of satellite observations is that,
given the right conditions, wemight one day be able tomeasure the
actual emissions from many sources at the same time, all of the
time.

Acknowledgments

Nine of the co-authors of this article (DGS, GRC, BdF, RRD, BND,
DPE, DKH, DJJ, and YL) aremembers of the NASA Air Quality Applied
Sciences Team (AQAST) and acknowledge funding support from
this program. They wish to express their gratitude to the present
(John Haynes) and former (Lawrence Friedl) NASA program man-
agers. Argonne National Laboratory is operated by UChicago
Argonne, LLC, under Contract No. DE-AC02-06CH11357 with the US
Department of Energy.

References

Allen, D.J., Pickering, K.E., Pinder, R.W., Henderson, B.H., Appel, K.W., Prados, A.,
2012. Impact of lightning-NO on eastern United States photochemistry during
the summer of 2006 as determined using the CMAQ model. Atmospheric
Chemistry and Physics 12, 1737e1758.

Angelbratt, J., Mellqvist, J., Simpson, D., Jonson, J.E., Blumenstock, T., Borsdorff, T.,
Duchatelet, P., Forster, F., Hase, F., Mahieu, E., De Mazière, M., Notholt, J.,
Petersen, A.K., Raffalski, U., Servais, C., Sussmann, R., Warneke, T., Vigouroux, C.,
2011. Carbon monoxide (CO) and ethane (C2H6) trends from ground-based solar
FTIR measurements at six European stations, comparison and sensitivity anal-
ysis with the EMEP model. Atmospheric Chemistry and Physics 11, 9253e9269.

Arellano, A.F., Hess, P.G., 2006. Sensitivity of top-down estimates of CO sources to
GCTM transport. Geophysical Research Letters 33, L21807.

Aumann, H.H., Chahine, M.T., Gautier, C., Goldberg, M.D., Kalnay, E., McMillin, L.M.,
Revercomb, H., Rosenkranz, P.W., Smith, W.L., Staelin, D.H., Strow, L.L.,
Susskind, J., 2003. AIRS/AMSU/HSB on the aqua mission: design, science ob-
jectives, data products, and processing systems. IEEE Transactions on Geo-
science and Remote Sensing 41, 253e264.

Baker, D.F., Bösch, H., Doney, S.C., O’Brien, D., Schimel, D.S., 2010. Carbon source/sink
information provided by column CO2 measurements from the orbiting carbon
observatory. Atmospheric Chemistry and Physics 10, 4145e4165.

Barkley,M.P., Palmer, P.I., Kuhn,U., Kesselmeier, J., Chance, K., Kurosu, T.P.,Martin, R.V.,
Helmig, D., Guenther, A., 2008. Net ecosystem fluxes of isoprene over tropical
South America inferred from Global Ozone Monitoring Experiment (GOME) ob-
servations of HCHO columns. Journal of Geophysical Research 113, D20304.

Barnes, W.L., Pagano, T.S., Salomonson, V.V., 1998. Prelaunch characteristics of the
moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1. IEEE
Transactions on Geoscience and Remote Sensing 36, 1088e1100.

Bechle, M.J., Millet, D.B., Marshall, J.D., 2011. Effects of income and urban form on
urban NO2: global evidence from satellites. Environmental Science & Technol-
ogy 45, 4914e4919.

Beer, R., Glavich, T.A., Rider, D.M., 2001. Tropospheric emission spectrometer for the
earth observing system’s aura satellite. Applied Optics 40, 2356e2367.

Beer, R., Shephard, M.W., Kulawik, S.S., Clough, S.A., Eldering, A., Bowman, K.W.,
Sander, S.P., Fisher, B.M., Payne, V.H., Luo, M., Osterman, G.B., Worden, J.R., 2008.
First satellite observations of lower tropospheric ammonia and methanol.
Geophysical Research Letters 35, L09801.

Beirle, S., Boersma, K.F., Platt, U., Lawrence,M.G.,Wagner, T., 2011.Megacity emissions
and lifetimes of nitrogen oxides probed from space. Science 333, 1737e1739.

Beirle, S., Huntrieser, H., Wagner, T., 2010. Direct satellite observation of lightning-
produced NOx. Atmospheric Chemistry and Physics 10, 10965e10986.

Beirle, S., Platt, U., von Glasow, R., Wenig, M., Wagner, T., 2004a. Estimate of ni-
trogen oxide emissions from shipping by satellite remote sensing. Geophysical
Research Letters 31, L18102.

Beirle, S., Platt, U., Wenig, M., Wagner, T., 2003. Weekly cycle of NO2 by GOME
measurements: a signature of anthropogenic sources. Atmospheric Chemistry
and Physics 3, 2225e2232.

Beirle, S., Platt, U., Wenig, M., Wagner, T., 2004b. Highly resolved global distribution
of tropospheric NO2 using GOME narrow swath mode data. Atmospheric
Chemistry and Physics 4, 1913e1924.

Beirle, S., Platt, U., Wenig, M., Wagner, T., 2004c. NOx production by lightning
estimated with GOME. Advances in Space Research 34, 793e797.

Beirle, S., Salzmann, M., Lawrence, M.G., Wagner, T., 2009. Sensitivity of satellite
observations for freshly produced lightning NOx. Atmospheric Chemistry and
Physics 9, 1077e1094.

Bergamaschi, P., Frankenberg, C., Meirink, J.F., Krol, M., Dentener, F., Wagner, T.,
Platt, U., Kaplan, J.O., Körner, S., Heimann, M., Dlugokencky, E.J., Goede, A., 2007.
Satellite chartography of atmospheric methane from SCIAMACHY on board
ENVISAT: 2. Evaluation based on inverse model simulations. Journal of
Geophysical Research 112, D02304.

Bergamaschi, P., Frankenberg, C., Meirink, J.F., Krol, M., Villani, M.G., Houweling, S.,
Dentener, F., Dlugokencky, E.J., Miller, J.B., Gatti, L.V., Engel, A., Levin, I., 2009.

D.G. Streets et al. / Atmospheric Environment 77 (2013) 1011e1042 1035

http://refhub.elsevier.com/S1352-2310(13)00400-7/sref1
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref1
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref1
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref1
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref1
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref2
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref2
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref2
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref2
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref2
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref2
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref2
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref2
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref2
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref3
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref3
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref4
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref4
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref4
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref4
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref4
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref4
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref5
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref5
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref5
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref5
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref5
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref6
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref6
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref6
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref6
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref7
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref7
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref7
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref7
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref8
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref8
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref8
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref8
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref8
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref9
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref9
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref9
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref10
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref10
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref10
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref10
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref11
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref11
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref11
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref12
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref12
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref12
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref12
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref13
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref13
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref13
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref14
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref14
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref14
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref14
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref14
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref15
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref15
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref15
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref15
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref15
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref16
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref16
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref16
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref16
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref17
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref17
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref17
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref17
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref17
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref18
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref18
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref18
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref18
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref18
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref19
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref19


Inverse modeling of global and regional CH4 emissions using SCIAMACHY sat-
ellite retrievals. Journal of Geophysical Research 114, D22301.

Bertram, T.H., Heckel, A., Richter, A., Burrows, J.P., Cohen, R.C., 2005. Satellite
measurements of daily variations in soil NOx emissions. Geophysical Research
Letters 32, L24812.

Blond, N., Boersma, K.F., Eskes, H.J., van der, A.,R.J., Van Roozendael, M., De Smedt, I.,
Bergametti, G., Vautard, R., 2007. Intercomparison of SCIAMACHY nitrogen di-
oxide observations, in situ measurements and air quality modeling results over
Western Europe. Journal of Geophysical Research 112, D10311.

Bloom, A.A., Palmer, P.I., Fraser, A., Reay, D.S., Frankenberg, C., 2010. Large-scale
controls of methanogenesis inferred from methane and gravity spaceborne
data. Science 327, 322e325.

Boersma, K.F., Eskes, H.J., Dirksen, R.J., van der, A.,R.J., Veefkind, J.P., Stammes, P.,
Huijnen, V., Kleipool, Q.L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y.,
Brunner, D., 2011. An improved tropospheric NO2 column retrieval algorithm for
the ozone monitoring instrument. Atmospheric Measurement Techniques 4,
1905e1928.

Boersma, K.F., Eskes, H.J., Meijer, E.W., Kelder, H.M., 2005. Estimates of lightning NOx
production from GOME satellite observations. Atmospheric Chemistry and
Physics 5, 1e21.

Boersma, K.F., Jacob, D.J., Bucsela, E.J., Perring, A.E., Dirksen, R., van der, A.,R.J.,
Yantosca, R.M., Park, R.J., Wenig, M.O., Bertram, T.H., Cohen, R.C., 2008a. Vali-
dation of OMI tropospheric NO2 observations during INTEX-B and application to
constrain NOx emissions over the eastern United States and Mexico. Atmo-
spheric Environment 42, 4480e4497.

Boersma, K.F., Jacob, D.J., Eskes, H.J., Pinder, R.W., Wang, J., van der, A.,R.J., 2008b.
Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns: observing
the diurnal evolution of chemistry and emissions from space. Journal of
Geophysical Research 113, D16S26.

Bond, D.W., Steiger, S., Zhang, R., Tie, X., Orville, R.E., 2002. The importance of NOx
production by lightning in the tropics. Atmospheric Environment 36, 1509e
1519.

Borrell, P., Burrows, J.P., Richter, A., Platt, U., Wagner, T., 2003. New Directions: new
developments in satellite capabilities for probing the chemistry of the tropo-
sphere. Atmospheric Environment 37, 2567e2570.

Bovensmann, H., Buchwitz, M., Burrows, J.P., Reuter, M., Krings, T., Gerilowski, K.,
Schneising, O., Heymann, J., Tretner, A., Erzinger, J., 2010. A remote sensing
technique for global monitoring of power plant CO2 emissions from space and
related applications. Atmospheric Measurement Techniques 3, 781e811.

Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V.V.,
Chance, K.V., Goede, A.P.H., 1999. SCIAMACHY: mission objectives and mea-
surement modes. Journal of the Atmospheric Sciences 56, 127e150.

Buchwitz, M., de Beek, R., Noël, S., Burrows, J.P., Bovensmann, H., Schneising, O.,
Khlystova, I., Bruns, M., Bremer, H., Bergamaschi, P., Körner, S., Heimann, M.,
2006. Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS:
version 0.5 CO and CH4 and impact of calibration improvements on CO2re-
trieval. Atmospheric Chemistry and Physics 6, 2727e2751.

Buchwitz, M., Schneising, O., Burrows, J.P., Bovensmann, H., Reuter, M., Notholt, J.,
2007. First direct observation of the atmospheric CO2 year-to-year increase
from space. Atmospheric Chemistry and Physics 7, 4249e4256.

Bucsela, E.J., Perring, A.E., Cohen, R.C., Boersma, K.F., Celarier, E.A., Gleason, J.F.,
Wenig, M.O., Bertram, T.H., Wooldridge, P.J., Dirksen, R., Veefkind, J.P., 2008.
Comparison of tropospheric NO2 from in situ aircraft measurements with near-
real-time and standard product data from OMI. Journal of Geophysical Research
113, D16S31.

Bucsela, E.J., Pickering, K.E., Huntemann, T.L., Cohen, R.C., Perring, A., Gleason, J.F.,
Blakeslee, R.J., Albrecht, R.I., Holzworth, R., Cipriani, J.P., Vargas-Navarro, D.,
Mora-Segura, I., Pacheco-Hernández, A., Laporte-Molina, S., 2010. Lightning-
generated NOx seen by the ozone monitoring instrument during NASA’s trop-
ical composition, cloud and climate coupling experiment (TC4). Journal of
Geophysical Research 115, D00J10.

Bucsela, E.J., Krotkov, N.A., Celarier, E.A., Lamsal, L.N., Swartz, W.H., Bhartia, P.K.,
Boersma, K.F., Veefkind, J.P., Gleason, J.F., Pickering, K.E., 2013. A new strato-
spheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite
instruments: applications to OMI. Atmospheric Measurement Techniques Dis-
cussions 6, 1361e1407.

Burrows, J.P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A.,
Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U.,
Eisinger, M., 1999. The global ozone monitoring experiment (GOME): mission
concept and first scientific results. Journal of the Atmospheric Sciences 56,
151e175.

Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., Frankenberg, C.,
Hartmann, J.-M., Tran, H., Kuze, A., Keppel-Aleks, G., Toon, G., Wunch, D.,
Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J.,
Notholt, J., Warneke, T., 2011. Toward accurate CO2 and CH4 observations from
GOSAT. Geophysical Research Letters 38, L14812.

Cady-Pereira, K.E., Shephard, M.W., Millet, D.B., Luo, M., Wells, K.C., Xiao, Y.,
Payne, V.H., Worden, J., 2012. Methanol from TES global observations: retrieval
algorithm and seasonal and spatial variability. Atmospheric Chemistry and
Physics 12, 8189e8203.

Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., Lefebvre, A., 2000. GOME-2 e
Metop’s second-generation sensor for operational ozone monitoring. European
Space Agency Bulletin 102, 28e36.

Carboni, E., Grainger, R., Walker, J., Dudhia, A., Siddans, R., 2012. A new scheme for
sulphur dioxide retrieval from IASI measurements: application to the

Eyjafjallajökull eruption of april and may 2010. Atmospheric Chemistry and
Physics 12, 11417e11434.

Carmichael, G.R., Sandu, A., Chai, T., Daescu, D.N., Constantinescu, E.M., Tang, Y.,
2008. Predicting air quality: improvements through advanced methods to
integrate models and measurements. Journal of Computational Physics 227,
3540e3571.

Carn, S.A., Krueger, A.J., Krotkov, N.A., Gray, M.A., 2004. Fire at Iraqi sulfur plant
emits SO2 clouds detected by earth probe TOMS. Geophysical Research Letters
31, L19105.

Carn, S.A., Krueger, A.J., Krotkov, N.A., Yang, K., Levelt, P.F., 2007. Sulfur dioxide
emissions from Peruvian copper smelters detected by the ozone monitoring
instrument. Geophysical Research Letters 34, L09801.

Carn, S.A., Prata, F.J., 2010. Satellite-based constraints on explosive SO2 release from
Soufrière Hills Volcano, Montserrat. Geophysical Research Letters 37, L00E22.

Castellanos, P., Boersma, K.F., 2012. Reductions in nitrogen oxides over Europe driven
by environmental policy and economic recession. Scientific Reports 2, 265.

Castellanos, P., Marufu, L.T., Doddridge, B.G., Taubman, B.F., Schwab, J.J., Hains, J.C.,
Ehrman, S.H., Dickerson, R.R., 2011. Ozone, oxides of nitrogen, and carbon
monoxide during pollution events over the eastern United States: an evaluation
of emissions and vertical mixing. Journal of Geophysical Research 116, D16307.

Celarier, E.A., Brinksma, E.J., Gleason, J.F., Veefkind, J.P., Cede, A., Herman, J.R.,
Ionov, D., Goutail, F., Pommereau, J.-P., Lambert, J.-C., van Roozendael, M.,
Pinardi, G., Wittrock, F., Schönhardt, A., Richter, A., Ibrahim, O.W., Wagner, T.,
Bojkov, B., Mount, G., Spinei, E., Chen, C.M., Pongetti, T.J., Sander, S.P.,
Bucsela, E.J., Wenig, M.O., Swart, D.P.J., Volten, H., Kroon, M., Levelt, P.F., 2008.
Validation of ozone monitoring instrument nitrogen dioxide columns. Journal
of Geophysical Research 113, D15S15.

Cermak, J., Knutti, R., 2009. Beijing olympics as an aerosol field experiment.
Geophysical Research Letters 36, L10806.

Chance, K., Palmer, P.I., Spurr, R.J.D., Martin, R.V., Kurosu, T.P., Jacob, D.J., 2000.
Satellite observations of formaldehyde over North America from GOME.
Geophysical Research Letters 27, 3461e3464.

Chance, K.V., Spurr, R.J.D., 1997. Ring effect studies: Rayleigh scattering, including
molecular parameters for rotational Raman scattering, and the Fraunhofer
spectrum. Applied Optics 36, 5224e5230.

Chevallier, F., Bréon, F.-M., Rayner, P.J., 2007. Contribution of the orbiting carbon ob-
servatory to the estimation of CO2 sources and sinks: theoretical study in a varia-
tional data assimilation framework. Journal of Geophysical Research 112, D09307.

Chevallier, F., Maksyutov, S., Bousquet, P., Bréon, F.-M., Saito, R., Yoshida, Y.,
Yokota, T., 2009. On the accuracy of the CO2 surface fluxes to be estimated from
the GOSAT observations. Geophysical Research Letters 36, L19807.

Chu, D.A., Kaufman, Y.J., Zibordi, G., Chern, J.D., Mao, J., Li, C., Holben, B.N., 2003.
Global monitoring of air pollution over land from the Earth observing system-
terra moderate resolution imaging Spectroradiometer (MODIS). Journal of
Geophysical Research 108, 4661.

Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., Coheur, P.-F., 2009. Global
ammonia distribution derived from infrared satellite observations. Nature
Geoscience 2, 479e483.

Clarisse, L., Coheur, P.F., Chefdeville, S., Lacour, J.-L., Hurtmans, D., Clerbaux, C.,
2011a. Infrared satellite observations of hydrogen sulfide in the volcanic plume
of the august 2008 kasatochi eruption. Geophysical Research Letters 38, L10804.

Clarisse, L., Coheur, P.F., Prata, A.J., Hurtmans, D., Razavi, A., Phulpin, T., Hadji-
Lazaro, J., Clerbaux, C., 2008. Tracking and quantifying volcanic SO2 with IASI,
the september 2007 eruption at Jebel at Tair. Atmospheric Chemistry and
Physics 8, 7723e7734.

Clarisse, L., R’Honi, Y., Coheur, P.-F., Hurtmans, D., Clerbaux, C., 2011b. Thermal
infrared nadir observations of 24 atmospheric gases. Geophysical Research
Letters 38, L10802.

Clarisse, L., Shephard, M.W., Dentener, F., Hurtmans, D., Cady-Pereira, K.,
Karagulian, F., Van Damme, M., Clerbaux, C., Coheur, P.-F., 2010. Satellite
monitoring of ammonia: a case study of the San Joaquin Valley. Journal of
Geophysical Research 115, D13302.

Clarmann, T. v., Glatthor, N., Koukouli, M.E., Stiller, G.P., Funke, B., Grabowski, U.,
Höpfner, M., Kellmann, S., Linden, A., Milz, M., Steck, T., Fischer, H., 2007. MIPAS
measurements of upper tropospheric C2H6 and O3 during the southern hemi-
spheric biomass burning season in 2003. Atmospheric Chemistry and Physics 7,
5861e5872.

Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H.,
Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., Coheur, P.-F.,
2009. Monitoring of atmospheric composition using the thermal infrared IASI/
MetOp sounder. Atmospheric Chemistry and Physics 9, 6041e6054.

Clerbaux, C., Crevoisier, C., 2013. New directions: infrared remote sensing of the
troposphere from satellite: less, but better. Atmospheric Environment 72, 24e26.

Clerbaux, C., Edwards, D.P., Deeter, M., Emmons, L., Lamarque, J.-F., Tie, X.X.,
Massie, S.T., Gille, J., 2008. Carbon monoxide pollution from cities and urban
areas observed by the Terra/MOPITT mission. Geophysical Research Letters 35,
L03817.

Cogan, A.J., Boesch, H., Parker, R.J., Feng, L., Palmer, P.I., Blavier, J.-F.L., Deutscher, N.M.,
Macatangay, R., Notholt, J., Roehl, C., Warneke, T., Wunch, D., 2012. Atmospheric
carbon dioxide retrieved from the Greenhouse gases Observing SATellite
(GOSAT): comparison with ground-based TCCON observations and GEOS-Chem
model calculations. Journal of Geophysical Research 117, D21301.

Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., Clerbaux, C., 2009. IASI mea-
surements of reactive trace species in biomass burning plumes. Atmospheric
Chemistry and Physics 9, 5655e5667.

D.G. Streets et al. / Atmospheric Environment 77 (2013) 1011e10421036

http://refhub.elsevier.com/S1352-2310(13)00400-7/sref19
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref19
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref19
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref20
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref20
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref20
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref20
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref21
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref21
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref21
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref21
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref22
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref22
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref22
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref22
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref23
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref23
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref23
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref23
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref23
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref23
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref23
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref24
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref24
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref24
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref24
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref25
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref25
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref25
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref25
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref25
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref25
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref25
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref25
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref26
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref26
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref26
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref26
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref26
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref27
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref27
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref27
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref28
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref28
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref28
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref28
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref29
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref29
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref29
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref29
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref29
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref29
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref30
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref30
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref30
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref30
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref31
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref31
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref31
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref31
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref31
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref31
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref31
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref31
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref32
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref32
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref32
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref32
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref32
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref33
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref33
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref33
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref33
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref33
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref33
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref34
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref34
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref34
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref34
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref34
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref34
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref34
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref34
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref35
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref35
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref35
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref35
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref35
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref35
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref35
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref36
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref36
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref36
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref36
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref36
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref36
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref37
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref37
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref37
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref37
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref37
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref37
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref37
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref38
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref38
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref38
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref38
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref38
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref39
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref39
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref39
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref39
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref40
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref40
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref40
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref40
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref40
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref41
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref41
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref41
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref41
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref41
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref42
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref42
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref42
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref42
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref43
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref43
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref43
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref44
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref44
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref44
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref45
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref45
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref46
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref46
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref46
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref46
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref47
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref47
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref47
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref47
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref47
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref47
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref47
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref48
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref48
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref49
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref49
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref49
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref49
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref50
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref50
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref50
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref50
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref51
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref51
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref51
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref51
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref52
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref52
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref52
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref52
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref53
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref53
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref53
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref53
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref54
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref54
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref54
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref54
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref55
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref55
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref55
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref56
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref56
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref56
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref56
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref56
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref56
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref57
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref57
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref57
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref58
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref58
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref58
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref58
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref59
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref59
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref59
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref59
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref59
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref59
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref59
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref59
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref59
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref60
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref60
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref60
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref60
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref60
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref61
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref61
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref61
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref62
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref62
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref62
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref62
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref63
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref63
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref63
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref63
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref63
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref64
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref64
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref64
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref64


Crevoisier, C., Nobileau, D., Fiore, A.M., Armante, R., Chédin, A., Scott, N.A., 2009.
Tropospheric methane in the tropics e first year from IASI hyperspectral
infrared observations. Atmospheric Chemistry and Physics 9, 6337e6350.

Curci, G., Palmer, P.I., Kurosu, T.P., Chance, K., Visconti, G., 2010. Estimating European
volatile organic compound emissions using satellite observations of formalde-
hyde from the ozone monitoring instrument. Atmospheric Chemistry and
Physics 10, 11501e11517.

de Foy, B., Krotkov, N.A., Bei, N., Herndon, S.C., Huey, L.G., Martinez, A.-P., Ruiz-
Suárez, L.G., Wood, E.C., Zavala, M., Molina, L.T., 2009. Hit from both sides:
tracking industrial and volcanic plumes in Mexico City with surface measure-
ments and OMI SO2 retrievals during the MILAGRO field campaign. Atmo-
spheric Chemistry and Physics 9, 9599e9617.

de Ruyter de Wildt, M., Eskes, H., Boersma, K.F., 2012. The global economic cycle and
satellite-derived NO2 trends over shipping lanes. Geophysical Research Letters
39, L01802.

De Smedt, I., Müller, J.-F., Stavrakou, T., van der, A.,R., Eskes, H., Van Roozendael, M.,
2008. Twelve years of global observations of formaldehyde in the troposphere
using GOME and SCIAMACHY sensors. Atmospheric Chemistry and Physics 8,
4947e4963.

Deeter, M.N., Edwards, D.P., Gille, J.C., Drummond, J.R., 2009. CO retrievals based on
MOPITT near-infrared observations. Journal of Geophysical Research 114,
D04303.

Deeter, M.N., Edwards, D.P., Gille, J.C., Emmons, L.K., Francis, G., Ho, S.-P., Mao, D.,
Masters, D., Worden, H., Drummond, J.R., Novelli, P.C., 2010. The MOPITT version
4 CO product: algorithm enhancements, validation, and long-term stability.
Journal of Geophysical Research 115, D07306.

Deeter, M.N., Emmons, L.K., Edwards, D.P., Gille, J.C., Drummond, J.R., 2004. Vertical
resolution and information content of CO profiles retrieved by MOPITT.
Geophysical Research Letters 31, L15112.

Deeter, M.N., Emmons, L.K., Francis, G.L., Edwards, D.P., Gille, J.C., Warner, J.X.,
Khattatov, B., Ziskin, D., Lamarque, J.-F., Ho, S.-P., Yudin, V., Attié, J.-L.,
Packman, D., Chen, J., Mao, D., Drummond, J.R., 2003. Operational carbon
monoxide retrieval algorithm and selected results for the MOPITT instrument.
Journal of Geophysical Research 108, 4399.

Deeter, M.N., Worden, H.M., Edwards, D.P., Gille, J.C., Andrews, A.E., 2012. Evaluation
of MOPITT retrievals of lower-tropospheric carbon monoxide over the United
States. Journal of Geophysical Research 117, D13306.

Dickerson, R.R., Li, C., Li, Z., Marufu, L.T., Stehr, J.W., McClure, B., Krotkov, N.,
Chen, H., Wang, P., Xia, X., Ban, X., Gong, F., Yuan, J., Yang, J., 2007. Aircraft
observations of dust and pollutants over northeast China: insight into the
meteorological mechanisms of transport. Journal of Geophysical Research
112, D24S90.

Diner, D.J., Beckert, J.C., Reilly, T.H., Bruegge, C.J., Conel, J.E., Kahn, R.A., Martonchik, J.V.,
Ackerman, T.P., Davies, R., Gerstl, S.A.W., Gordon, H.R., Muller, J.-P., Myneni, R.B.,
Sellers, P.J., Pinty, B., Verstraete, M.M., 1998. Multi-angle Imaging SpectroRadi-
ometer (MISR) instrument description and experiment overview. IEEE Trans-
actions on Geoscience and Remote Sensing 36, 1072e1087.

Dlugokencky, E.J., Nisbet, E.G., Fisher, R., Lowry, D., 2011. Global atmospheric
methane: budget, changes and dangers. Philosophical Transactions of the Royal
Society A 369, 2058e2072.

Drummond, J.R., 1992. Measurements of Pollution in the Troposphere (MOPITT). In:
Gille, J.C., Visconti, G. (Eds.), The Use of EOS for Studies of Atmospheric Physics,
pp. 77e101. North-Holland, New York, NY, USA.

Dubovik, O., Lapyonok, T., Kaufman, Y.J., Chin, M., Ginoux, P., Kahn, R.A., Sinyuk, A.,
2008. Retrieving global aerosol sources from satellites using inverse modeling.
Atmospheric Chemistry and Physics 8, 209e250.

Dufour, G., Boone, C.D., Rinsland, C.P., Bernath, P.F., 2006. First space-borne mea-
surements of methanol inside aged southern tropical to mid-latitude biomass
burning plumes using the ACE-FTS instrument. Atmospheric Chemistry and
Physics 6, 3463e3470.

Dufour, G., Szopa, S., Hauglustaine, D.A., Boone, C.D., Rinsland, C.P., Bernath, P.F.,
2007. The influence of biogenic emissions on upper-tropospheric methanol as
revealed from space. Atmospheric Chemistry and Physics 7, 6119e6129.

Edwards, D.P., Emmons, L.K., Hauglustaine, D.A., Chu, D.A., Gille, J.C., Kaufman, Y.J.,
Pétron, G., Yurganov, L.N., Giglio, L., Deeter, M.N., Yudin, V., Ziskin, D.C.,
Warner, J., Lamarque, J.-F., Francis, G.L., Ho, S.P., Mao, D., Chen, J., Grechko, E.I.,
Drummond, J.R., 2004. Observations of carbon monoxide and aerosols from the
Terra satellite: Northern Hemisphere variability. Journal of Geophysical
Research 109, D24202.

Edwards, D.P., Halvorson, C.M., Gille, J.C., 1999. Radiative transfer modeling for the
EOS Terra satellite Measurement of Pollution in the Troposphere (MOPITT) in-
strument. Journal of Geophysical Research 104, 16755e16775.

Eisinger, M., Burrows, J.P., 1998. Tropospheric sulfur dioxide observed by the ERS-2
GOME instrument. Geophysical Research Letters 25, 4177e4180.

Elbern, H., Schmidt, H., Talagrand, O., Ebel, A., 2000. 4D-variational data assimila-
tion with an adjoint air quality model for emission analysis. Environmental
Modelling & Software 15, 539e548.

Environmental Protection Agency (EPA), 2013a. 2008 National Emissions Inventory.
Version 2 Technical Support Document. http://www.epa.gov/ttn/chief/net/
2008neiv2/2008_neiv2_tsd_draft.pdf (accessed March 2013.).

Environmental Protection Agency (EPA), 2013b. Trends in NO2, CO, and SO2 Con-
centrations (accessed March 2013.). http://www.epa.gov/airtrends/2011/.

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. Journal of
Geophysical Research 99 (C5), 10143e10162.

Fioletov, V.E., McLinden, C.A., Krotkov, N., Moran, M.D., Yang, K., 2011. Estimation of
SO2 emissions using OMI retrievals. Geophysical Research Letters 38, L21811.

Fiore, A.M., Jacob, D.J., Field, B.D., Streets, D.G., Fernandes, S.D., Jang, C., 2002.
Linking ozone pollution and climate change: the case for controlling methane.
Geophysical Research Letters 29, 1919.

Fischer, E.V., Hsu, N.C., Jaffe, D.A., Jeong, M.-J., Gong, S.L., 2009. A decade of dust:
Asian dust and springtime aerosol load in the U.S. Pacific Northwest.
Geophysical Research Letters 36, L03821.

Fisher, J.A., Jacob, D.J., Purdy, M.T., Kopacz, M., Le Sager, P., Carouge, C., Holmes, C.D.,
Yantosca, R.M., Batchelor, R.L., Strong, K., Diskin, G.S., Fuelberg, H.E.,
Holloway, J.S., Hyer, E.J., McMillan, W.W., Warner, J., Streets, D.G., Zhang, Q.,
Wang, Y., Wu, S., 2010. Source attribution and interannual variability of Arctic
pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite
(AIRS) observations of carbon monoxide. Atmospheric Chemistry and Physics
10, 977e996.

Fishman, J., Iraci, L.T., Al-Saadi, J., Chance, K., Chavez, F., Chin, M., Coble, P., Davis, C.,
DiGiacomo, P.M., Edwards, D., Eldering, A., Goes, J., Herman, J., Hu, C., Jacob, D.J.,
Jordan, C., Kawa, S.R., Key, R., Liu, X., Lohrenz, S., Mannino, A., Natraj, V., Neil, D.,
Neu, J., Newchurch, M., Pickering, K., Salisbury, J., Sosik, H., Subramaniam, A.,
Tzortziou, M., Wang, J., Wang, M., 2012. The United States’ next generation of
atmospheric composition and coastal ecosystem measurements: NASA’s Geo-
stationary Coastal and Air Pollution Events (GEO-CAPE) mission. Bulletin of the
American Meteorological Society 93, 1547e1566.

Fortems-Cheiney, A., Chevallier, F., Pison, I., Bousquet, P., Carouge, C., Clerbaux, C.,
Coheur, P.-F., George, M., Hurtmans, D., Szopa, S., 2009. On the capability of IASI
measurements to inform about CO surface emissions. Atmospheric Chemistry
and Physics 9, 8735e8743.

Fortems-Cheiney, A., Chevallier, F., Pison, I., Bousquet, P., Szopa, S., Deeter, M.N.,
Clerbaux, C., 2011. Ten years of CO emissions as seen from measurements of
pollution in the troposphere (MOPITT). Journal of Geophysical Research 116,
D05304.

Franke, K., Richter, A., Bovensmann, H., Eyring, V., Jöckel, P., Hoor, P., Burrows, J.P.,
2009. Ship emitted NO2 in the Indian Ocean: comparison of model results with
satellite data. Atmospheric Chemistry and Physics 9, 7289e7301.

Frankenberg, C., Aben, I., Bergamaschi, P., Dlugokencky, E.J., van Hees, R.,
Houweling, S., van der Meer, P., Snel, R., Tol, P., 2011. Global column-averaged
methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY:
trends and variability. Journal of Geophysical Research 116, D04302.

Frankenberg, C., Meirink, J.F., van Weele, M., Platt, U., Wagner, T., 2005. Assessing
methaneemissions fromglobal space-borneobservations. Science308,1010e1014.

Fu, D., Worden, J.R., Liu, X., Kulawik, S.S., Bowman, K.W., Natraj, V., 2013. Charac-
terization of ozone profiles derived from Aura TES and OMI radiances. Atmo-
spheric Chemistry and Physics 13, 3445e3462.

Fu, T.-Z., Jacob, D.J., Palmer, P.I., Chance, K., Wang, Y.X., Barletta, B., Blake, D.R.,
Stanton, J.C., Pilling, M.J., 2007. Space-based formaldehyde measurements as
constraints on volatile organic compound emissions in east and south Asia and
implications for ozone. Journal of Geophysical Research 112, D06312.

Fu, T.-Z., Jacob, D.J., Wittrock, F., Burrows, J.P., Vrekoussis, M., Henze, D.K., 2008.
Global budgets of atmospheric glyoxal and methylglyoxal, and implications for
formation of secondary organic aerosols. Journal of Geophysical Research 113,
D15303.

Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B.,
Cosby, B.J., 2003. The nitrogen cascade. BioScience 53, 341e356.

George, M., Clerbaux, C., Hurtmans, D., Turquety, S., Coheur, P.-F., Pommier, M.,
Hadji-Lazaro, J., Edwards, D.P., Worden, H., Luo, M., Rinsland, C., McMillan, W.,
2009. Carbon monoxide distributions from the IASI/METOP mission: evaluation
with other space-borne remote sensors. Atmospheric Chemistry and Physics 9,
8317e8330.

Glatthor, N., von Clarmann, T., Stiller, G.P., Funke, B., Koukouli, M.E., Fischer, H.,
Grabowski, U., Höpfner, M., Kellmann, S., Linden, A., 2009. Large-scale upper
tropospheric pollution observed by MIPAS HCN and C2H6 global distributions.
Atmospheric Chemistry and Physics 9, 9619e9634.

Ghude, S.D., Fadnavis, S., Beig, G., Polade, S.D., van der, A.,R.J., 2008. Detection of
surface emission hot spots, trends, and seasonal cycle from satellite-retrieved
NO2 over India. Journal of Geophysical Research 113, D20305.

Ghude, S.D., Kulkarni, S.H., Jena, C., Pfister, G.G., Beig, G., Fadnavis, S., van der, A.,R.J.,
2013. Application of satellite observations for identifying regions of dominant
sources of nitrogen oxides over the Indian Subcontinent. Journal of Geophysical
Research 118, 1075e1089.

Ghude, S.D., Lal, D.M., Beig, G., van der, A.,R., Sable, D., 2010. Rain-induced soil NOx
emission from India during the onset of the summer monsoon: a satellite
perspective. Journal of Geophysical Research 115, D16304.

González Abad, G., Allen, N.D.C., Bernath, P.F., Boone, C.D., McLeod, S.D.,
Manney, G.L., Toon, G.C., Carouge, C., Wang, Y., Wu, S., Barkley, M.P., Palmer, P.I.,
Xiao, Y., Fu, T.M., 2011. Ethane, ethyne and carbon monoxide concentrations in
the upper troposphere and lower stratosphere from ACE and GEOS-Chem: a
comparison study. Atmospheric Chemistry and Physics 11, 9927e9941.

Grutter, M., Glatthor, N., Stiller, G.P., Fischer, H., Grabowski, U., Höpfner, M.,
Kellmann, S., Linden, A., von Clarmann, T., 2010. Global distribution and vari-
ability of formic acid as observed by MIPAS-ENVISAT. Journal of Geophysical
Research 115, D10303.

Hains, J.C., Boersma, K.F., Kroon, M., Dirksen, R.J., Cohen, R.C., Perring, A.E.,
Bucsela, E., Volten, H., Swart, D.P.J., Richter, A., Wittrock, F., Schoenhardt, A.,
Wagner, T., Ibrahim, O.W., van Roozendael, M., Pinardi, G., Gleason, J.F.,
Veefkind, J.P., Levelt, P., 2010. Testing and improving OMI DOMINO tropospheric

D.G. Streets et al. / Atmospheric Environment 77 (2013) 1011e1042 1037

http://refhub.elsevier.com/S1352-2310(13)00400-7/sref65
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref65
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref65
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref65
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref65
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref66
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref66
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref66
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref66
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref66
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref67
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref67
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref67
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref67
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref67
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref67
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref67
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref68
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref68
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref68
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref68
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref69
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref69
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref69
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref69
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref69
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref70
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref70
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref70
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref71
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref71
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref71
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref71
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref72
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref72
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref72
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref73
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref73
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref73
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref73
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref73
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref74
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref74
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref74
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref75
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref75
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref75
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref75
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref75
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref76
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref76
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref76
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref76
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref76
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref76
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref77
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref77
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref77
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref77
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref78
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref78
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref78
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref78
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref79
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref79
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref79
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref79
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref80
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref80
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref80
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref80
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref80
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref81
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref81
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref81
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref81
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref82
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref82
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref82
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref82
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref82
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref82
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref83
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref83
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref83
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref83
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref84
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref84
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref84
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref85
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref85
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref85
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref85
http://www.epa.gov/ttn/chief/net/2008neiv2/2008_neiv2_tsd_draft.pdf
http://www.epa.gov/ttn/chief/net/2008neiv2/2008_neiv2_tsd_draft.pdf
http://www.epa.gov/airtrends/2011/
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref88
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref88
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref88
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref88
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref89
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref89
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref89
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref90
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref90
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref90
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref91
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref91
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref91
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref92
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref92
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref92
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref92
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref92
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref92
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref92
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref92
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref93
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref93
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref93
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref93
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref93
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref93
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref93
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref93
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref93
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref94
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref94
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref94
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref94
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref94
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref95
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref95
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref95
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref95
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref96
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref96
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref96
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref96
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref96
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref97
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref97
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref97
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref97
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref98
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref98
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref98
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref99
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref99
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref99
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref99
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref100
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref100
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref100
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref100
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref101
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref101
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref101
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref101
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref102
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref102
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref102
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref103
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref103
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref103
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref103
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref103
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref103
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref104
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref104
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref104
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref104
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref104
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref104
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref104
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref105
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref105
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref105
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref105
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref106
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref106
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref106
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref106
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref106
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref107
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref107
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref107
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref108
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref108
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref108
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref108
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref108
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref108
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref109
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref109
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref109
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref109
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref110
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref110
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref110
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref110


NO2 using observations from the DANDELIONS and INTEX-B validation cam-
paigns. Journal of Geophysical Research 115, D05301.

Hains, J.C., Taubman, B.F., Thompson, A.M., Stehr, J.W., Marufu, L.T., Doddridge, B.G.,
Dickerson, R.R., 2008. Origins of chemical pollution from Mid-Atlantic aircraft
profiles using a clustering technique. Atmospheric Environment 42, 1727e1741.

Hammerling, D.M., Michalak, A.M., O’Dell, C., Kawa, S.R., 2012. Global CO2 distri-
butions over land from the Greenhouse Gases Observing Satellite (GOSAT).
Geophysical Research Letters 39, L008804.

Hao, N., Valks, P., Loyola, D., Cheng, Y.F., Zimmer, W., 2011. Space-based measure-
ments of air quality during the World Expo 2010 in Shanghai. Environmental
Research Letters 6, 044004.

He, H., Li, C., Loughner, C.P., Li, Z., Krotkov, N.A., Yang, K., Wang, L., Zheng, Y., Bao, X.,
Zhao, G., Dickerson, R.R., 2012. SO2 over central China: measurements, nu-
merical simulations and the tropospheric sulfur budget. Journal of Geophysical
Research 117, D00K37.

Heald, C.L., Collett, J.L., Lee, T., Benedict, K.B., Schwandner, F.M., Li, Y., Clarisse, L.,
Hurtmans, D.R., Van Damme, M., Clerbaux, C., Coheur, P.-F., Philip, S.,
Martin, R.V., Pye, H.O.T., 2012. Atmospheric ammonia and particulate inorganic
nitrogen over the United States. Atmospheric Chemistry and Physics 12, 10295e
10312.

Heald, C.L., Jacob, D.J., Jones, D.B.A., Palmer, P.I., Logan, J.A., Streets, D.G.,
Sachse, G.W., Gille, J.C., Hoffman, R.N., Nehrkorn, T., 2004. Comparative inverse
analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate
Asian sources of carbon monoxide. Journal of Geophysical Research 109,
D23306.

Heckel, A., Kim, S.-W., Frost, G.J., Richter, A., Trainer, M., Burrows, J.P., 2011. Influence
of low spatial resolution a priori data on tropospheric NO2 satellite retrievals.
Atmospheric Measurement Techniques 4, 1805e1820.

Heimann, M., 2011. Enigma of the recent methane budget. Nature 476, 157e158.
Hennigan, C.J., Sandholm, S., Kim, S., Stickel, R.E., Huey, L.G., Weber, R.J., 2006. In-

fluence of Ohio River valley emissions on fine particle sulfate measured from
aircraft over large regions of the eastern United States and Canada during
INTEX-NA. Journal of Geophysical Research 111, D24S04.

Herbin, H., Hurtmans, D., Clarisse, L., Turquety, S., Clerbaux, C., Rinsland, C.P.,
Boone, C., Bernath, P.F., Coheur, P.-F., 2009. Distributions and seasonal variations
of tropospheric ethene (C2H4) from Atmospheric Chemistry Experiment (ACE-
FTS) solar occultation spectra. Geophysical Research Letters 36, L04801.

Heue, K.-P., Brenninkmeijer, C.A.M., Wagner, T., Mies, K., Dix, B., Frieß, U.,
Martinsson, B.G., Slemr, F., van Velthoven, P.F.J., 2010. Observations of the 2008
Kasatochi volcanic SO2 plume by CARIBIC aircraft DOAS and the GOME-2 sat-
ellite. Atmospheric Chemistry and Physics 10, 4699e4713.

Hoff, R.M., Christopher, S.A., 2009. Remote sensing of particulate pollution from
space: have we reached the promised land? Journal of the Air & Waste Man-
agement Association 59, 645e675.

Hooghiemstra, P.B., Krol, M.C., Bergamaschi, P., de Laat, A.T.J., van der Werf, G.R.,
Novelli, P.C., Deeter, M.N., Aben, I., Röckmann, T., 2012. Comparing optimized CO
emission estimates using MOPITT or NOAA surface network observations.
Journal of Geophysical Research 117, D06309.

Houweling, S., Breon, F.-M., Aben, I., Rödenbeck, C., Gloor, M., Heimann, M., Ciais, P.,
2004. Inverse modeling of CO2 sources and sinks using satellite data: a syn-
thetic inter-comparison of measurement techniques and their performance as a
function of space and time. Atmospheric Chemistry and Physics 4, 523e538.

Hsu, N.C., Tsay, S.-C., King, M.D., Herman, J.R., 2004. Aerosol properties over bright-
reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing
42, 557e569.

Hsu, N.C., Tsay, S.-C., King, M.D., Herman, J.R., 2006. Deep Blue retrievals of Asian
aerosol properties during ACE-Asia. IEEE Transactions on Geoscience and
Remote Sensing 44, 3180e3195.

Hudman, R.C., Moore, N.E., Mebust, A.K., Martin, R.V., Russell, A.R., Valin, L.C.,
Cohen, R.C., 2012. Steps towards a mechanistic model of global soil nitric oxide
emissions: implementation and space-based constraints. Atmospheric Chem-
istry and Physics 12, 7779e7795.

Hudman, R.C., Murray, L.T., Jacob, D.J., Millet, D.B., Turquety, S., Wu, S., Blake, D.R.,
Goldstein, A.H., Holloway, J., Sachse, G.W., 2008. Biogenic versus anthropogenic
sources of CO in the United States. Geophysical Research Letters 35, L04801.

Hudman, R.C., Russell, A.R., Valin, L.C., Cohen, R.C., 2010. Interannual variability in
soil nitric oxide emissions over the United States as viewed from space. At-
mospheric Chemistry and Physics 10, 9943e9952.

Huijnen, V., Eskes, H.J., Poupkou, A., Elbern, H., Boersma, K.F., Foret, G., Sofiev, M.,
Valdebenito, A., Flemming, J., Stein, O., Gross, A., Robertson, L., D’Isidoro, M.,
Kioutsioukis, I., Friese, E., Amstrup, B., Bergstrom, R., Strunk, A., Vira, J.,
Zyryanov, D., Maurizi, A., Melas, D., Peuch, V.-H., Zerefos, C., 2010. Comparison
of OMI NO2 tropospheric columns with an ensemble of global and European
regional air quality models. Atmospheric Chemistry and Physics 10, 3273e3296.

Huneeus, N., Chevallier, F., Boucher, O., 2012. Estimating aerosol emissions by
assimilating observed aerosol optical depth in a global aerosol model. Atmo-
spheric Chemistry and Physics 12, 4585e4606.

Ichoku, C., Remer, L.A., Eck, T.F., 2005. Quantitative evaluation and intercomparison
of morning and afternoon Moderate Resolution Imaging Spectroradiometer
(MODIS) aerosol measurements from Terra and Aqua. Journal of Geophysical
Research 110, D10S03.

IGAC News, Issue No. 47, August 2012. The End of the Envisat Mission. Editorial by
John P. Burrows, pp. 3e4.

IPCC, 2007. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B.,
Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: the Physical Science Basis,

Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, p. 996.

Jaeglé, L., Martin, R.V., Chance, K., Steinberger, L., Kurosu, T.P., Jacob, D.J., Modi, A.I.,
Yaboué, V., Sigha-Nkamdjou, L., Galy-Lacaux, C., 2004. Satellite mapping of rain-
induced nitric oxide emissions from soils. Journal of Geophysical Research 109,
D21310.

JASON, 2011. Methods for Remote Determination of CO2 Emissions. Technical report
JSRe10e300. The MITRE Corporation, McLean, Virginia, p. 198.

Jiang, J., Zha, Y., Gao, J., Jiang, J., 2012. Monitoring of SO2 column concentration
change over China from Aura OMI data. International Journal of Remote Sensing
33, 1934e1942.

Jiang, Z., Jones, D.B.A., Kopacz, M., Liu, J., Henze, D.K., Heald, C., 2011. Quantifying the
impact of model errors on top-down estimates of carbon monoxide emissions
using satellite observations. Journal of Geophysical Research 116, D15306.

Jiang, Z., Jones, D.B.A., Worden, H.M., Deeter, M.N., Henze, D.K., Worden, J.,
Bowman, K.W., Brenninkmeijer, C.A.M., Schuck, T.J., 2013. Impact of model er-
rors in convective transport on CO source estimates inferred from MOPITT CO
retrievals. Journal of Geophysical Research 118, 2073e2083.

Jones, D.B.A., Bowman, K.W., Logan, J.A., Heald, C.L., Liu, J., Luo, M., Worden, J.,
Drummond, J., 2009. The zonal structure of tropical O3 and CO as observed by
the Tropospheric Emission Spectrometer in November 2004 e Part 1: Inverse
modeling of CO emissions. Atmospheric Chemistry and Physics 9, 3547e3562.

Kahn, R.A., Chen, Y., Nelson, D.L., Leung, F.-Y., Li, Q., Diner, D.J., Logan, J.A., 2008.
Wildfire smoke injection heights: two perspectives from space. Geophysical
Research Letters 35, L04809.

Kanakidou, M., Mihalopoulos, N., Kindap, T., Im, U., Vrekoussis, M., Gerasopoulos, E.,
Dermitzaki, E., Unal, A., Koçak, M., Markakis, K., Melas, D., Kouvarakis, G.,
Youssef, A.F., Richter, A., Hatzianastassiou, N., Hilboll, A., Ebojie, F., Wittrock, F.,
von Savigny, C., Burrows, J.P., Ladstaetter-Weissenmayer, A., Moubasher, H.,
2011. Megacities as hot spots of air pollution in the East Mediterranean. At-
mospheric Environment 45, 1223e1235.

Kar, J., Fishman, J., Creilson, J.K., Richter, A., Ziemke, J., Chandra, S., 2010. Are
there urban signatures in the tropospheric ozone column products derived
from satellite measurements? Atmospheric Chemistry and Physics 10, 5213e
5222.

Kaynak, B., Hu, Y., Martin, R.V., Sioris, C.E., Russell, A.G., 2009. Comparison of weekly
cycle of NO2 satellite retrievals and NOx emission inventories for the conti-
nental United States. Journal of Geophysical Research 114, D05302.

Kearney, C., Watson, I.M., Bluth, G.J.S., Carn, S., Realmuto, V.J., 2009. A comparison of
thermal infrared and ultraviolet retrievals of SO2 in the cloud produced by the
2003 Al-Mishraq State sulfur plant fire. Geophysical Research Letters 36,
L10807.

Khokhar, M.F., Frankenberg, C., Van Roozendael, M., Beirle, S., Kühl, S., Richter, A.,
Platt, U., Wagner, T., 2005. Satellite observations of atmospheric SO2 from vol-
canic eruptions during the time-period of 1996e2002. Advances in Space
Research 36, 879e887.

Khokhar, M.F., Platt, U., Wagner, T., 2008. Temporal trends of anthropogenic SO2
emitted by non-ferrous metal smelters in Peru and Russia estimated from
satellite observations. Atmospheric Chemistry and Physics Discussions 8,
17393e17422.

Kim, S.-W., Heckel, A., Frost, G.J., Richter, A., Gleason, J., Burrows, J.P., McKeen, S.,
Hsie, E.-Y., Granier, C., Trainer, M., 2009. NO2 columns in the western United
States observed from space and simulated by a regional chemistry model and
their implications for NOx emissions. Journal of Geophysical Research 114,
D11301.

Kim, S.-W., Heckel, A., McKeen, S.A., Frost, G.J., Hsie, E.-Y., Trainer, M.K., Richter, A.,
Burrows, J.P., Peckham, S.E., Grell, G.A., 2006. Satellite-observed U.S. power
plant NOx emission reductions and their impact on air quality. Geophysical
Research Letters 33, L22812.

Kloog, I., Koutrakis, P., Coull, B.A., Lee, H.J., Schwartz, J., 2011. Assessing temporally
and spatially resolved PM2.5 exposures for epidemiological studies using sat-
ellite aerosol optical depth measurements. Atmospheric Environment 45,
6267e6275.

Konovalov, I.B., Beekmann, M., Richter, A., Burrows, J.P., 2006. Inverse modelling of
the spatial distribution of NOx emissions on a continental scale using satellite
data. Atmospheric Chemistry and Physics 6, 1747e1770.

Konovalov, I.B., Beekmann, M., Richter, A., Burrows, J.P., Hilboll, A., 2010. Multi-
annual changes of NOx emissions in megacity regions: nonlinear trend analysis
of satellite measurement based estimates. Atmospheric Chemistry and Physics
10, 8481e8498.

Kopacz, M., Jacob, D.J., Fisher, J.A., Logan, J.A., Zhang, L., Megretskaia, I.A.,
Yantosca, R.M., Singh, K., Henze, D.K., Burrows, J.P., Buchwitz, M., Khlystova, I.,
McMillan, W.W., Gille, J.C., Edwards, D.P., Eldering, A., Thouret, V., Nedelec, P.,
2010. Global estimates of CO sources with high resolution by adjoint inversion
of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmospheric
Chemistry and Physics 10, 855e876.

Kopacz, M., Jacob, D.J., Henze, D.K., Heald, C.L., Streets, D.G., Zhang, Q., 2009.
Comparison of adjoint and analytical Bayesian inversion methods for con-
straining Asian sources of carbon monoxide using satellite (MOPITT) mea-
surements of CO columns. Journal of Geophysical Research 114, D04305.

Kort, E.A., Frankenberg, C., Miller, C.E., Oda, T., 2012. Space-based observations of
megacity carbon dioxide. Geophysical Research Letters 39, L17806.

Krotkov, N.A., Carn, S.A., Krueger, A.J., Bhartia, P.K., Yang, K., 2006. Band residual
difference algorithm for retrieval of SO2 from the Aura Ozone Monitoring

D.G. Streets et al. / Atmospheric Environment 77 (2013) 1011e10421038

http://refhub.elsevier.com/S1352-2310(13)00400-7/sref110
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref110
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref110
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref111
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref111
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref111
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref111
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref112
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref112
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref112
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref112
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref113
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref113
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref113
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref114
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref114
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref114
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref114
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref114
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref115
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref115
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref115
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref115
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref115
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref116
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref116
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref116
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref116
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref116
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref117
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref117
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref117
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref117
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref117
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref118
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref118
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref119
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref119
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref119
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref119
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref120
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref120
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref120
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref120
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref120
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref120
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref121
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref121
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref121
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref121
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref121
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref121
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref122
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref122
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref122
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref122
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref123
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref123
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref123
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref123
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref124
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref124
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref124
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref124
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref124
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref124
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref125
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref125
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref125
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref125
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref126
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref126
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref126
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref126
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref127
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref127
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref127
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref127
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref127
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref128
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref128
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref128
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref129
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref129
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref129
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref129
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref130
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref130
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref130
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref130
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref130
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref130
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref130
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref130
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref131
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref131
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref131
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref131
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref132
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref132
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref132
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref132
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref133
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref133
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref133
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref133
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref133
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref134
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref134
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref134
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref134
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref135
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref135
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref135
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref135
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref135
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref136
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref136
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref136
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref136
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref136
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref137
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref137
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref137
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref138
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref138
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref138
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref138
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref138
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref139
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref139
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref139
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref139
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref139
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref139
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref139
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref140
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref140
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref140
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref141
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref141
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref141
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref141
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref141
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref141
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref141
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref142
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref142
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref142
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref142
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref143
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref143
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref143
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref143
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref143
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref144
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref144
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref144
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref144
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref144
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref145
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref145
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref145
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref145
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref145
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref145
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref145
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref146
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref146
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref146
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref146
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref146
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref147
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref147
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref147
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref147
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref147
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref147
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref147
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref148
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref148
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref148
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref148
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref148
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref149
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref149
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref149
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref149
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref149
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref149
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref150
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref150
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref150
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref150
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref150
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref151
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref151
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref151
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref151
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref151
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref151
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref152
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref152
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref152
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref152
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref152
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref152
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref152
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref153
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref153
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref153
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref153
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref154
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref154
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref155
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref155
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref155


Instrument (OMI). IEEE Transactions on Geoscience and Remote Sensing 44,
1259e1266.

Krotkov, N.A., McClure, B., Dickerson, R.R., Carn, S.A., Li, C., Bhartia, P.K., Yang, K.,
Krueger, A.J., Li, Z., Levelt, P.F., Chen, H., Wang, P., Lu, D., 2008. Validation of SO2
retrievals from the Ozone Monitoring Instrument over NE China. Journal of
Geophysical Research 113, D16S40.

Krotkov, N.A., Schoeberl, M.R., Morris, G.A., Carn, S., Yang, K., 2010. Dispersion and
lifetime of the SO2 cloud from the August 2008 Kasatochi eruption. Journal of
Geophysical Research 115, D00L20.

Krueger, A.J., 1983. Sighting of El Chichón sulfur dioxide clouds with the Nimbus 7
total ozone mapping spectrometer. Science 220, 1377e1379.

Krueger, A.J., Krotkov, N.A., Yang, K., Carn, S., Vicente, G., Schroeder, W., 2009. Ap-
plications of satellite-based sulfur dioxide monitoring. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 2, 293e298.

Kuai, L., Worden, J., Kulawik, S., Bowman, K., Lee, M., Biraud, S.C., Abshire, J.B.,
Wofsy, S.C., Natraj, V., Frankenberg, C., Wunch, D., Connor, B., Miller, C., Roehl, C.,
Shia, R.-L., Yung, Y., 2013. Profiling tropospheric CO2 using Aura TES and TCCON
instruments. Atmospheric Measurement Techniques 6, 63e79.

Kulawik, S.S., Jones, D.B.A., Nassar, R., Irion, F.W., Worden, J.R., Bowman, K.W.,
Machida, T., Matsueda, H., Sawa, Y., Biraud, S.C., Fischer, M.L., Jacobson, A.R.,
2010. Characterization of Tropospheric Emission Spectrometer (TES) CO2 for
carbon cycle science. Atmospheric Chemistry and Physics 10, 5601e5623.

Kuze, A., Suto, H., Nakajima, M., Hamazaki, T., 2009. Thermal and near infrared
sensor for carbon observation Fourier-transform spectrometer on the Green-
house Gases Observing Satellite for greenhouse gases monitoring. Applied
Optics 48, 6716e6733.

Lamsal, L.N., Martin, R.V., Padmanabhan, A., van Donkelaar, A., Zhang, Q., Sioris, C.E.,
Chance, K., Kurosu, T.P., Newchurch, M.J., 2011. Application of satellite obser-
vations for timely updates to global anthropogenic NOx emission inventories.
Geophysical Research Letters 28, L05810.

Lamsal, L.N., Martin, R.V., van Donkelaar, A., Celarier, E.A., Bucsela, E.J., Boersma, K.F.,
Dirksen, R., Luo, C., Wang, Y., 2010. Indirect validation of tropospheric nitrogen
dioxide retrieved from the OMI satellite instrument: insight into the seasonal
variation of nitrogen oxides at northern midlatitudes. Journal of Geophysical
Research 115, D05302.

Lamsal, L.N., Martin, R.V., van Donkelaar, A., Steinbacher, M., Celarier, E.A.,
Bucsela, E., Dunlea, E.J., Pinto, J.P., 2008. Ground-level nitrogen dioxide con-
centrations inferred from the satellite-borne Ozone Monitoring Instrument.
Journal of Geophysical Research 113, D16308.

Lauvaux, T., Pannekoucke, O., Sarrat, C., Chevallier, F., Ciais, P., Noilhan, J., Rayner, P.J.,
2009. Structure of the transport uncertainty in mesoscale inversions of
CO2 sources and sinks using ensemble model simulations. Biogeosciences 6,
1089e1102.

Lee, C., Martin, R.V., van Donkelaar, A., Lee, H., Dickerson, R.R., Hains, J.C., Krotkov, N.,
Richter, A., Vinnikov, K., Schwab, J.J., 2011a. SO2 emissions and lifetimes: esti-
mates from inverse modeling using in situ and global, space-based (SCIAMACHY
and OMI) observations. Journal of Geophysical Research 116, D06305.

Lee, C., Martin, R.V., van Donkelaar, A., O’Byrne, G., Krotkov, N., Richter, A.,
Huey, L.G., Holloway, J.S., 2009. Retrieval of vertical columns of sulfur dioxide
from SCIAMACHY and OMI: air mass factor algorithm development, validation,
and error analysis. Journal of Geophysical Research 114, D22303.

Lee, C., Richter, A., Lee, H., Kim, Y.J., Burrows, J.P., Lee, Y.G., Choi, B.C., 2008a. Impact
of transport of sulfur dioxide from the Asian continent on the air quality over
Korea during may 2005. Atmospheric Environment 42, 1461e1475.

Lee, C., Richter, A., Weber, M., Burrows, J.P., 2008b. SO2 retrieval from SCIAMACHY
using the Weighting Function DOAS (WFDOAS) technique: comparison with
Standard DOAS retrieval. Atmospheric Chemistry and Physics 8, 6137e6145.

Lee, C.J., Brook, J.R., Evans, G.J., Martin, R.V., Mihele, C., 2011b. Novel application of
satellite and in-situ measurements to map surface-level NO2 in the Great Lakes
region. Atmospheric Chemistry and Physics 11, 11761e11775.

Lee, H.J., Liu, Y., Coull, B.A., Schwartz, J., Koutrakis, P., 2011c. A novel calibration
approach of MODIS AOD data to predict PM2.5 concentrations. Atmospheric
Chemistry and Physics 11, 7991e8002.

Levelt, P.F., van den Oord, G.H.J., Dobber, M.R., Mälkki, A., Visser, H., de Vries, J.,
Stammes, P., Lundell, J.O.V., Saari, H., 2006. The ozone monitoring instrument.
IEEE Transactions on Geoscience and Remote Sensing 44, 1093e1101.

Levy, R.C., Mattoo, S., Munchak, L.A., Remer, L.A., Sayer, A.M., Hsu, N.C., 2013. The
Collection 6 MODIS aerosol products over land and ocean. Atmospheric Mea-
surement Techniques Discussions 6, 159e259.

Li, C., Krotkov, N.A., Dickerson, R.R., Li, Z., Yang, K., Chin, M., 2010a. Transport and
evolution of a pollutant plume from northern China: a satellite-based case
study. Journal of Geophysical Research 115, D00K03.

Li, C., Zhang, Q., Krotkov, N.A., Streets, D.G., He, K., Tsay, S.-C., Gleason, J.F., 2010b.
Recent large reductions in sulfur dioxide emissions from Chinese power plants
observed by the ozone monitoring instrument. Geophysical Research Letters 37,
L08807.

Li, Z., Chen, H., Cribb, M., Dickerson, R., Holben, B., Li, C., Lu, D., Luo, Y., Maring, H.,
Shi, G., Tsay, S.-C., Wang, P., Wang, Y., Xia, X., Zheng, Y., Yuan, T., Zhao, F., 2007.
Preface to special section on east Asian studies of tropospheric aerosols: an
international regional experiment (EAST-AIRE). Journal of Geophysical Research
112, D22S00.

Li, Z., Li, C., Chen, H., Tsay, S.-C., Holben, B., Huang, J., Li, B., Maring, H., Qian, Y.,
Shi, G., Xia, X., Yin, Y., Zheng, Y., Zhuang, G., 2011. East Asian studies of tropo-
spheric aerosols and their impact on regional climate (EAST-AIRC): an overview.
Journal of Geophysical Research 116, D00K34.

Lin, J., Nielsen, C.P., Zhao, Y., Lei, Y., Liu, Y., McElroy, M.B., 2010a. Recent changes in
particulate air pollution over China observed from space and the ground:
effectiveness of emission control. Environmental Science & Technology 44,
7771e7776.

Lin, J.-T., Liu, Z., Zhang, Q., Liu, H., Mao, J., Zhuang, G., 2012. Modeling uncertainties
for tropospheric nitrogen dioxide columns affecting satellite-based inverse
modeling of nitrogen oxides emissions. Atmospheric Chemistry and Physics 12,
12255e12275.

Lin, J.-T., McElroy, M.B., 2010. Impacts of boundary layer mixing on pollutant vertical
profiles in the lower troposphere: implications to satellite remote sensing.
Atmospheric Environment 44, 1726e1739.

Lin, J.-T., McElroy, M.B., 2011. Detection from space of a reduction in anthropogenic
emissions of nitrogen oxides during the Chinese economic downturn. Atmo-
spheric Chemistry and Physics 11, 8171e8188.

Lin, J.-T., McElroy, M.B., Boersma, K.F., 2010b. Constraint of anthropogenic NOx
emissions in China from different sectors: a new methodology using multiple
satellite retrievals. Atmospheric Chemistry and Physics 10, 63e78.

Liu, Y., Franklin, M., Kahn, R., Koutrakis, P., 2007. Using aerosol optical thickness to
predict ground-level PM2.5 concentrations in the St. Louis area: a comparison
between MISR and MODIS. Remote Sensing of Environment 107, 33e44.

Liu, Y., He, K., Li, S., Wang, Z., Christiani, D.C., Koutrakis, P., 2012a. A statistical model
to evaluate the effectiveness of PM2.5 emissions control during the Beijing 2008
Olympic Games. Environment International 44, 100e105.

Liu, Y., Sarnat, J.A., Kilaru, V., Jacob, D.J., Koutrakis, P., 2005. Estimating ground-level
PM2.5 in the eastern United States using satellite remote sensing. Environmental
Science & Technology 39, 3269e3278.

Liu, Z., Wang, Y., Vrekoussis, M., Richter, A., Wittrock, F., Burrows, J.P., Shao, M.,
Chang, C.-C., Liu, S.-C., Wang, H., Chen, C., 2012b. Exploring the missing source
of glyoxal (CHOCHO) over China. Geophysical Research Letters 39, L0812.

Loughner, C.P., Allen, D.J., Pickering, K.E., Zhang, D.-L., Shou, Y.-X., Dickerson, R.R.,
2011. Impact of fair-weather cumulus clouds and the Chesapeake Bay breeze on
pollutant transport and transformation. Atmospheric Environment 45, 4060e
4072.

Loyola, D., van Geffen, J., Valks, P., Erbertseder, T., Van Roozendael, M., Thomas, W.,
Zimmer, W., Wißkirchen, K., 2008. Satellite-based detection of volcanic sulphur
dioxide from recent eruptions in Central and South America. Advances in
Geosciences 14, 35e40.

Lu, Z., Streets, D.G., 2012. Increase in NOx emissions from Indian thermal power
plants during 1996e2010: unit-based inventories and multi-satellite observa-
tions. Environmental Science & Technology 46, 7463e7470.

Marais, E.A., Jacob, D.J., Kurosu, T.P., Chance, K., Murphy, J.G., Reeves, C., Mills, G.,
Casadio, S., Millet, D.B., Barkley, M.P., Paulot, F., Mao, J., 2012. Isoprene emissions
in Africa inferred from OMI observations of formaldehyde columns. Atmo-
spheric Chemistry and Physics 12, 6219e6235.

Marbach, T., Beirle, S., Platt, U., Hoor, P., Wittrock, F., Richter, A., Vrekoussis, M.,
Grzegorski, M., Burrows, J.P., Wagner, T., 2009. Satellite measurements of
formaldehyde linked to shipping emissions. Atmospheric Chemistry and
Physics 9, 8223e8234.

Martin, R.V., 2008. Satellite remote sensing of surface air quality. Atmospheric
Environment 42, 7823e7843.

Martin, R.V., Chance, K., Jacob, D.J., Kurosu, T.P., Spurr, R.J.D., Bucsela, E., Gleason, J.F.,
Palmer, P.I., Bey, I., Fiore, A.M., Li, Q., Yantosca, R.M., Koelemeijer, R.B.A., 2002.
An improved retrieval of tropospheric nitrogen dioxide from GOME. Journal of
Geophysical Research 107, 4437.

Martin, R.V., Jacob, D.J., Chance, K., Kurosu, T.P., Palmer, P.I., Evans, M.J., 2003. Global
inventory of nitrogen oxide emissions constrained by space-based observations
of NO2 columns. Journal of Geophysical Research 108, 4537.

Martin, R.V., Sauvage, B., Folkins, I., Sioris, C.E., Boone, C., Bernath, P., Ziemke, J.,
2007. Space-based constraints on the production of nitric oxide by lightning.
Journal of Geophysical Research 112, D09309.

Martínez-Alonso, S., Deeter, M.N., Worden, H.M., Clerbaux, C., Mao, D., Gille, J.C.,
2012. First satellite identification of volcanic carbon monoxide. Geophysical
Research Letters 39, L21809.

Martonchik, J.V., Diner, D.J., Kahn, R.A., Ackerman, T.P., Verstraete, M.M., Pinty, B.,
Gordon, H.R., 1998. Techniques for the retrieval of aerosol properties over land
and ocean using multiangle imaging. IEEE Transactions on Geoscience and
Remote Sensing 36, 1212e1227.

Marufu, L.T., Taubman, B.F., Bloomer, B., Piety, C.A., Doddridge, B.G., Stehr, J.W.,
Dickerson, R.R., 2004. The 2003NorthAmerican electrical blackout: an accidental
experiment in atmospheric chemistry. Geophysical Research Letters 31, L13106.

McKain, K., Wofsy, S.C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J.R., Stephens, B.B.,
2012. Assessment of ground-based atmospheric observations for verification of
greenhouse gas emissions from an urban region. Proceedings of the National
Academy of Sciences of the United States 109, 8423e8428.

McLinden, C.A., Fioletov, V., Boersma, K.F., Krotkov, N., Sioris, C.E., Veefkind, J.P.,
Yang, K., 2012. Air quality over the Canadian oil sands: a first assessment using
satellite observations. Geophysical Research Letters 39, L04804.

McMillan, W.W., Barnet, C., Strow, L., Chahine, M.T., McCourt, M.L., Warner, J.X.,
Novelli, P.C., Korontzi, S., Maddy, E.S., Datta, S., 2005. Daily global maps of
carbon monoxide from NASA’s Atmospheric Infrared Sounder. Geophysical
Research Letters 32, L11801.

Meirink, J.F., Bergamaschi, P., Krol, M.C., 2008. Four-dimensional variational data
assimilation for inverse modelling of atmospheric methane emissions: method
and comparison with synthesis inversion. Atmospheric Chemistry and Physics
8, 6341e6353.

D.G. Streets et al. / Atmospheric Environment 77 (2013) 1011e1042 1039

http://refhub.elsevier.com/S1352-2310(13)00400-7/sref155
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref155
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref155
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref156
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref156
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref156
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref156
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref157
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref157
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref157
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref157
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref158
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref158
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref158
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref159
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref159
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref159
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref159
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref160
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref160
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref160
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref160
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref160
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref160
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref161
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref161
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref161
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref161
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref161
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref161
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref162
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref162
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref162
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref162
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref162
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref163
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref163
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref163
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref163
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref163
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref164
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref164
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref164
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref164
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref164
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref165
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref165
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref165
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref165
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref166
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref166
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref166
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref166
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref166
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref166
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref167
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref167
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref167
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref167
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref167
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref168
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref168
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref168
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref168
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref169
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref169
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref169
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref169
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref170
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref170
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref170
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref170
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref170
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref171
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref171
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref171
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref171
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref171
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref172
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref172
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref172
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref172
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref172
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref173
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref173
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref173
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref173
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref174
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref174
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref174
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref174
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref175
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref175
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref175
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref176
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref176
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref176
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref176
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref177
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref177
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref177
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref177
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref177
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref178
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref178
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref178
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref178
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref179
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref179
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref179
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref179
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref179
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref180
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref180
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref180
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref180
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref180
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref181
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref181
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref181
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref181
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref182
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref182
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref182
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref182
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref183
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref183
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref183
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref183
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref184
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref184
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref184
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref184
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref184
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref185
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref185
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref185
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref185
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref185
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref186
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref186
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref186
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref186
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref186
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref187
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref187
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref187
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref188
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref188
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref188
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref188
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref189
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref189
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref189
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref189
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref189
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref190
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref190
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref190
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref190
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref190
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref190
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref191
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref191
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref191
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref191
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref191
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref192
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref192
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref192
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref192
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref192
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref193
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref193
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref193
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref194
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref194
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref194
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref194
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref195
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref195
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref195
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref195
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref196
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref196
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref196
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref197
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref197
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref197
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref198
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref198
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref198
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref198
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref198
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref199
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref199
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref199
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref200
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref200
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref200
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref200
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref200
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref201
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref201
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref201
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref202
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref202
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref202
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref202
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref203
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref203
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref203
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref203
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref203


Meirink, J.F., Eskes, H.J., Goede, A.P.H., 2006. Sensitivity analysis of methane emis-
sions derived from SCIAMACHY observations through inverse modelling. At-
mospheric Chemistry and Physics 6, 1275e1292.

Mijling, B., van der, A.,R.J., 2012. Using daily satellite observations to estimate
emissions of short-lived air pollutants on a mesoscopic scale. Journal of
Geophysical Research 117, D17302.

Mijling, B., van der, A.,R.J., Boersma, K.F., Van Roozendael, M., De Smedt, I.,
Kelder, H.M., 2009. Reductions of NO2 detected from space during the 2008
Beijing Olympic Games. Geophysical Research Letters 36, L13801.

Miller, C.E., Crisp, D., DeCola, P.L., Olsen, S.C., Randerson, J.T., Michalak, A.M.,
Alkhaled, A., Rayner, P., Jacob, D.J., Suntharalingam, P., Jones, D.B.A.,
Denning, A.S., Nicholls, M.E., Doney, S.C., Pawson, S., Boesch, H., Connor, B.J.,
Fung, I.Y., O’Brien, D., Salawitch, R.J., Sander, S.P., Sen, B., Tans, P., Toon, G.C.,
Wennberg, P.O., Wofsy, S.C., Yung, Y.L., Law, R.M., 2007. Precision requirements
for space-based XCO2 data. Journal of Geophysical Research 112, D10314.

Miller, S.M., Matross, D.M., Andrews, A.E., Millet, D.B., Longo, M., Gottlieb, E.W.,
Hirsch, A.I., Gerbig, C., Lin, J.C., Daube, B.C., Hudman, R.C., Dias, P.L.S., Chow, V.Y.,
Wofsy, S.C., 2008. Sources of carbon monoxide and formaldehyde in North
America determined from high-resolution atmospheric data. Atmospheric
Chemistry and Physics 8, 7673e7696.

Millet, D.B., Jacob, D.J., Boersma, K.F., Fu, T.-M., Kurosu, T.P., Chance, K., Heald, C.L.,
Guenther, A., 2008. Spatial distribution of isoprene emissions from North
America derived from formaldehyde column measurements by the OMI satel-
lite sensor. Journal of Geophysical Research 113, D02307.

Millet, D.B., Jacob, D.J., Turquety, S., Hudman, R.C., Wu, S., Fried, A., Walega, J.,
Heikes, B.G., Blake, D.R., Singh, H.B., Anderson, B.E., Clarke, A.D., 2006. Form-
aldehyde distribution over North America: implications for satellite retrievals of
formaldehyde columns and isoprene emission. Journal of Geophysical Research
111, D24S02.

Miyazaki, K., Eskes, H.J., Sudo, K., 2012a. Global NOx emission estimates derived
from an assimilation of OMI tropospheric NO2 columns. Atmospheric Chemistry
and Physics 12, 2263e2288.

Miyazaki, K., Eskes, H.J., Sudo, K., Takigawa, M., van Weele, M., Boersma, K.F., 2012b.
Simultaneous assimilation of satellite NO2, O3, CO, and HNO3 data for the
analysis of tropospheric chemical composition and emissions. Atmospheric
Chemistry and Physics 12, 9545e9579.

Molina, L.T., Madronich, S., Gaffney, J.S., Apel, E., de Foy, B., Fast, J., Ferrare, R.,
Herndon, S., Jimenez, J.L., Lamb, B., Osornio-Vargas, A.R., Russell, P., Schauer, J.J.,
Stevens, P.S., Volkamer, R., Zavala, M., 2010. An overview of the MILAGRO 2006
Campaign: Mexico City emissions and their transport and transformation. At-
mospheric Chemistry and Physics 10, 8697e8760.

Moore, D.P., Remedios, J.J., Waterfall, A.M., 2012. Global distributions of acetone in
the upper troposphere fromMIPAS spectra. Atmospheric Chemistry and Physics
12, 757e768.

Müller, J.-F., Stavrakou, T., 2005. Inversion of CO and NOx emissions using the
adjoint of the IMAGES model. Atmospheric Chemistry and Physics 5, 1157e1186.

Myriokefalitakis, S., Vrekoussis, M., Tsigaridis, K., Wittrock, F., Richter, A., Brühl, C.,
Volkamer, R., Burrows, J.P., Kanakidou, M., 2008. The influence of natural and
anthropogenic secondary sources on the glyoxal global distribution. Atmo-
spheric Chemistry and Physics 8, 4965e4981.

Napelenok, S.L., Pinder, R.W., Gilliland, A.B., Martin, R.V., 2008. A method for
evaluating spatially-resolved NOx emissions using Kalman filter inversion,
direct sensitivities, and space-based NO2 observations. Atmospheric Chemistry
and Physics 8, 5603e5614.

Nassar, R., Jones, D.B.A., Kulawik, S.S., Worden, J.R., Bowman, K.W., Andres, R.J.,
Suntharalingam, P., Chen, J.M., Brenninkmeijer, C.A.M., Schuck, T.J., Conway, T.J.,
Worthy, D.E., 2011. Inverse modeling of CO2 sources and sinks using satellite
observations of CO2 from TES and surface flask measurements. Atmospheric
Chemistry and Physics 11, 6029e6047.

National Aeronautics and Space Administration (NASA), 2013a. Air Quality Applied
Sciences Team (AQAST). Website. http://www.aqast.org (accessed March 2013.).

National Aeronautics and Space Administration (NASA), 2013b. TEMPO News
Release (accessed March 2013.). http://www.nasa.gov/home/hqnews/2012/nov/
HQ_12-390_TEMPO_Instrument.html.

Novotny, E.V., Bechle, M.J., Millet, D.B., Marshall, J.D., 2011. National satellite-based
land-use regression: NO2 in the United States. Environmental Science & Tech-
nology 45, 4407e4414.

Nowlan, C.R., Liu, X., Chance, K., Cai, Z., Kurosu, T.P., Lee, C., Martin, R.V., 2011. Re-
trievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2
(GOME-2) using an optimal estimation approach: algorithm and initial vali-
dation. Journal of Geophysical Research 116, D18301.

Oshchepkov, S., Bril, A., Yokota, T., Morino, I., Yoshida, Y., Matsunaga, T., Belikov, D.,
Wunch, D., Wennberg, P., Toon, G., O’Dell, C., Butz, A., Guerlet, S., Cogan, A.,
Boesch, H., Eguchi, N., Deutscher, N., Griffith, D., Macatangay, R., Notholt, J.,
Sussmann, R., Rettinger, M., Sherlock, V., Robinson, J., Kyrö, E., Heikkinen, P.,
Feist, D.G., Nagahama, T., Kadygrov, N., Maksyutov, S., Uchino, O., Watanabe, H.,
2012. Effects of atmospheric light scattering on spectroscopic observations of
greenhouse gases from space: validation of PPDF-based CO2 retrievals from
GOSAT. Journal of Geophysical Research 117, D12305.

Paciorek, C.J., Liu, Y., Moreno-Macias, H., Kondragunta, S., 2008. Spatiotemporal
associations between GOES aerosol optical depth retrievals and ground-level
PM2.5. Environmental Science & Technology 42, 5800e5806.

Palmer, P.I., 2008. Quantifying sources and sinks of trace gases using space-borne
measurements: current and future science. Philosophical Transactions of the
Royal Society A 366, 4509e4528.

Palmer, P.I., Abbot, D.S., Fu, T.-M., Jacob, D.J., Chance, K., Kurosu, T.P., Guenther, A.,
Wiedinmyer, C., Stanton, J.C., Pilling, M.J., Pressley, S.N., Lamb, B., Sumner, A.L.,
2006. Quantifying the seasonal and interannual variability of North American
isoprene emissions using satellite observations of the formaldehyde column.
Journal of Geophysical Research 111, D12315.

Palmer, P.I., Jacob, D.J., Fiore, A.M., Martin, R.V., Chance, K., Kurosu, T.P., 2003.
Mapping isoprene emissions over North America using formaldehyde column
observations from space. Journal of Geophysical Research 108, 4180.

Parker, R., Boesch, H., Cogan, A., Fraser, A., Feng, L., Palmer, P.I., Messerschmidt, J.,
Deutscher, N., Griffith, D.W.T., Notholt, J., Wennberg, P.O., Wunch, D., 2011.
Methane observations from the Greenhouse Gases Observing SATellite: com-
parison to ground-based TCCON data and model calculations. Geophysical
Research Letters 38, L15807.

Parrish, D.D., 2006. Critical evaluation of US on-road vehicle emission inventories.
Atmospheric Environment 40, 2288e2300.

Pétron, G., Granier, C., Khattatov, B., Yudin, V., Lamarque, J.-F., Emmons, L., Gille, J.,
Edwards, D.P., 2004. Monthly CO surface sources inventory based on the 2000e
2001 MOPITT satellite data. Geophysical Research Letters 31, L21107.

Pickett-Heaps, C.A., Jacob, D.J., Wecht, K.J., Kort, E.A., Wofsy, S.C., Diskin, G.S.,
Worthy, D.E.J., Kaplan, J.O., Bey, I., Drevet, J., 2011. Magnitude and seasonality of
wetland methane emissions from the Hudson Bay Lowlands (Canada). Atmo-
spheric Chemistry and Physics 11, 3773e3779.

Pillai, D., Gerbig, C., Marshall, J., Ahmadov, R., Kretschmer, R., Koch, T., Karstens, U.,
2010. High resolution modeling of CO2 over Europe: implications for represen-
tation errors of satellite retrievals. Atmospheric Chemistry and Physics 10, 83e94.

Pinder, R.W., Walker, J.T., Bash, J.O., Cady-Pereira, K.E., Henze, D.K., Luo, M.,
Osterman, G.B., Shephard, M.W., 2011. Quantifying spatial and seasonal vari-
ability in atmospheric ammonia with in situ and space-based observations.
Geophysical Research Letters 38, L04802.

Prados, A.I., Kondragunta, S., Ciren, P., Knapp, K.R., 2007. GOES Aerosol/Smoke
product (GASP) over North America: comparisons to AERONET and MODIS
observations. Journal of Geophysical Research 112, D15201.

Prasad, A.K., Singh, R.P., Kafatos, M., 2012. Influence of coal-based thermal power
plants on the spatial-temporal variability of tropospheric NO2 column over
India. Environmental Monitoring and Assessment 184, 1891e1907.

Razavi, A., Clerbaux, C., Wespes, C., Clarisse, L., Hurtmans, D., Payan, S., Camy-
Peyret, C., Coheur, P.F., 2009. Characterization of methane retrievals from the
IASI space-borne sounder. Atmospheric Chemistry and Physics 9, 7889e7899.

Razavi, A., Karagulian, F., Clarisse, L., Hurtmans, D., Coheur, P.F., Clerbaux, C.,
Müller, J.F., Stavrakou, T., 2011. Global distributions of methanol and formic acid
retrieved for the first time from the IASI/MetOp thermal infrared sounder. At-
mospheric Chemistry and Physics 11, 857e872.

Remer, L.A., Kaufman, Y.J., Tanré, D., Mattoo, S., Chu, D.A., Martins, J.V., Li, R.-R.,
Ichoku, C., Levy, R.C., Kleidman, R.G., Eck, T.F., Vermote, E., Holben, B.N., 2005.
The MODIS aerosol algorithm, products, and validation. Journal of the Atmo-
spheric Sciences 62, 947e973.

Reuter, M., Bovensmann, H., Buchwitz, M., Burrows, J.P., Connor, B.J.,
Deutscher, N.M., Griffith, D.W.T., Heymann, J., Keppel-Aleks, G.,
Messerschmidt, J., Notholt, J., Petri, C., Robinson, J., Schneising, O., Sherlock, V.,
Velazco, V., Warneke, T., Wennberg, P.O., Wunch, D., 2011. Retrieval of atmo-
spheric CO2 with enhanced accuracy and precision from SCIAMACHY: valida-
tion with FTS measurements and comparison with model results. Journal of
Geophysical Research 116, D04301.

Richter, A., Burrows, J.P., Nüß, H., Granier, C., Niemeier, U., 2005. Increase in
tropospheric nitrogen dioxide over China observed from space. Nature 437,
129e132.

Richter, A., Eyring, V., Burrows, J.P., Bovensmann, H., Lauer, A., Sierk, B., Crutzen, P.J.,
2004. Satellite measurements of NO2 from international shipping emissions.
Geophysical Research Letters 31, L23110.

Rinsland, C.P., Boone, C.D., Bernath, P.F., Mahieu, E., Zander, R., Dufour, G.,
Clerbaux, C., Turquety, S., Chiou, L., McConnell, J.C., Neary, L., Kaminski, J.W.,
2006a. First space-based observations of formic acid (HCOOH): atmospheric
chemistry experiment austral spring 2004 and 2005 Southern Hemisphere
tropical-mid-latitude upper tropospheric measurements. Geophysical Research
Letters 33, L23804.

Rinsland, C.P., Luo, M., Logan, J.A., Beer, R., Worden, H., Kulawik, S.S., Rider, D.,
Osterman, G., Gunson, M., Eldering, A., Goldman, A., Shephard, M., Clough, S.A.,
Rodgers, C., Lampel, M., Chiou, L., 2006b. Nadir measurements of carbon
monoxide distributions by the Tropospheric Emission Spectrometer instrument
onboard the Aura Spacecraft: overview of analysis approach and examples of
initial results. Geophysical Research Letters 33, L22806.

Rinsland, C.P., Dufour, G., Boone, C.D., Bernath, P.F., Chiou, L., 2005. Atmospheric
Chemistry Experiment (ACE) measurements of elevated Southern Hemisphere
upper tropospheric CO, C2H6, HCN, and C2H2 mixing ratios from biomass
burning emissions and long-range transport. Geophysical Research Letters 32,
L20803.

Rinsland, C.P., Dufour, G., Boone, C.D., Bernath, P.F., Chiou, L., Coheur, P.-F.,
Turquety, S., Clerbaux, C., 2007. Satellite boreal measurements over Alaska and
Canada during JuneeJuly 2004: simultaneous measurements of upper tropo-
spheric CO, C2H6, HCN, CH3Cl, CH4, C2H2, CH3OH, HCOOH, OCS, and SF6 mixing
ratios. Global Biogeochemical Cycles 21, GB3008.

Rix, M., Valks, P., Hao, N., Loyola, D., Schlager, H., Huntrieser, H., Flemming, J.,
Koehler, U., Schumann, U., Inness, A., 2012. Volcanic SO2, BrO and plume height
estimations using GOME-2 satellite measurements during the eruption of
Eyjafjallajökull in May 2010. Journal of Geophysical Research 117, D00U19.

D.G. Streets et al. / Atmospheric Environment 77 (2013) 1011e10421040

http://refhub.elsevier.com/S1352-2310(13)00400-7/sref204
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref204
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref204
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref204
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref205
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref205
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref205
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref206
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref206
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref206
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref206
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref207
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref207
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref207
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref207
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref207
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref207
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref207
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref208
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref208
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref208
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref208
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref208
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref208
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref209
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref209
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref209
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref209
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref210
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref210
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref210
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref210
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref210
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref211
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref211
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref211
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref211
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref211
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref211
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref212
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref212
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref212
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref212
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref212
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref212
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref212
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref212
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref213
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref213
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref213
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref213
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref213
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref213
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref214
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref214
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref214
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref214
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref215
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref215
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref215
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref215
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref216
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref216
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref216
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref216
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref216
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref217
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref217
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref217
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref217
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref217
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref217
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref217
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref218
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref218
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref218
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref218
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref218
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref218
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref218
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref218
http://www.aqast.org
http://www.nasa.gov/home/hqnews/2012/nov/HQ_12-390_TEMPO_Instrument.html
http://www.nasa.gov/home/hqnews/2012/nov/HQ_12-390_TEMPO_Instrument.html
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref221
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref221
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref221
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref221
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref221
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref222
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref222
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref222
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref222
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref223
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref223
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref223
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref223
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref223
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref223
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref223
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref223
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref223
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref224
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref224
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref224
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref224
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref224
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref225
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref225
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref225
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref225
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref226
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref226
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref226
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref226
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref226
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref227
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref227
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref227
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref228
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref228
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref228
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref228
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref228
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref229
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref229
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref229
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref230
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref230
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref230
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref231
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref231
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref231
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref231
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref231
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref232
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref232
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref232
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref232
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref232
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref233
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref233
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref233
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref233
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref234
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref234
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref234
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref235
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref235
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref235
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref235
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref235
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref236
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref236
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref236
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref236
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref237
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref237
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref237
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref237
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref237
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref238
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref238
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref238
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref238
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref238
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref239
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref239
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref239
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref239
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref239
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref239
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref239
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref239
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref240
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref240
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref240
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref240
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref241
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref241
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref241
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref241
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref242
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref242
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref242
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref242
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref242
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref242
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref243
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref243
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref243
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref243
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref243
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref243
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref244
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref244
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref244
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref244
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref244
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref244
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref244
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref244
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref244
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref245
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref246
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref246
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref246
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref246
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref246


Rodgers, C.D., 2000. Inverse Methods for Atmospheric Sounding. World Scientific
Publishing Co., Hackensack, NJ.

Russell, A.R., Perring, A.E., Valin, L.C., Bucsela, E.J., Browne, E.C., Min, K.-E.,
Wooldridge, P.J., Cohen, R.C., 2011. A high spatial resolution retrieval of NO2
column densities from OMI: method and evaluation. Atmospheric Chemistry
and Physics 11, 8543e8554.

Russell, A.R., Valin, L.C., Bucsela, E.J., Wenig, M.O., Cohen, R.C., 2010. Space-based
constraints on spatial and temporal patterns of NOx emissions in California,
2005e2008. Environmental Science & Technology 44, 3608e3615.

Russell, A.R., Valin, L.C., Cohen, R.C., 2012. Trends in OMI NO2 observations over the
United States: effects of emission control technology and the economic reces-
sion. Atmospheric Chemistry and Physics 12, 12197e12209.

Sandu, A., Chai, T., 2011. Chemical data assimilationdan overview. Atmosphere 2,
426e463.

Schneider, P., van der, A.,R.J., 2012. A global single-sensor analysis of 2002e2011
tropospheric nitrogen dioxide trends observed from space. Journal of
Geophysical Research 117, D16309.

Schneising, O., Heymann, J., Buchwitz, M., Reuter, M., Bovensmann, H., Burrows, J.P.,
2013. Anthropogenic carbon dioxide source areas observed from space:
assessment of regional enhancements and trends. Atmospheric Chemistry and
Physics 13, 2445e2454.

Schumann, U., Huntrieser, H., 2007. The global lightning-induced nitrogen oxides
source. Atmospheric Chemistry and Physics 7, 3823e3907.

Shephard, M.W., Cady-Pereira, K.E., Luo, M., Henze, D.K., Pinder, R.W., Walker, J.T.,
Rinsland, C.P., Bash, J.O., Zhu, L., Payne, V.H., Clarisse, L., 2011. TES ammonia
retrieval strategy and global observations of the spatial and seasonal variability
of ammonia. Atmospheric Chemistry and Physics 11, 10743e10763.

Shim, C., Li, Q., Luo, M., Kulawik, S., Worden, H., Worden, J., Eldering, A., Diskin, G.,
Sachse, G., Weinheimer, A., Knapp, D., Montzca, D., Campos, T., 2009. Satellite
observations of Mexico City pollution outflow from the Tropospheric Emissions
Spectrometer (TES). Atmospheric Environment 43, 1540e1547.

Shim, C., Wang, Y., Choi, Y., Palmer, P.I., Abbot, D.S., Chance, K., 2005. Constraining
global isoprene emissions with Global Ozone Monitoring Experiment (GOME)
formaldehyde column measurements. Journal of Geophysical Research 110,
D24301.

Stavrakou, T., Guenther, A., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F.,
Hurtmans, D., Karagulian, F., De Mazière, M., Vigouroux, C., Amelynck, C.,
Schoon, N., Laffineur, Q., Heinesch, B., Aubinet, M., Rinsland, C., Müller, J.-F.,
2011a. First space-based derivation of the global atmospheric methanol emis-
sion fluxes. Atmospheric Chemistry and Physics 11, 4873e4898.

Stavrakou, T., Müller, J.-F., 2006. Grid-based versus big region approach for inverting
CO emissions using Measurement of Pollution in the Troposphere (MOPITT)
data. Journal of Geophysical Research 111, D15304.

Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., Kanakidou, M.,
Vrekoussis, M., Wittrock, F., Richter, A., Burrows, J.P., 2009a. The continental
source of glyoxal estimated by the synergistic use of spaceborne measurements
and inverse modelling. Atmospheric Chemistry and Physics 9, 8431e8446.

Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G.R.,
Giglio, L., Guenther, A., 2009b. Evaluating the performance of pyrogenic and
biogenic emission inventories against one decade of space-based formaldehyde
columns. Atmospheric Chemistry and Physics 9, 1037e1060.

Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G.R.,
Giglio, L., Guenther, A., 2009c. Global emissions of non-methane hydrocarbons
deduced from SCIAMACHY formaldehyde columns through 2003e2006. At-
mospheric Chemistry and Physics 9, 3663e3679.

Stavrakou, T., Müller, J.-F., Peeters, J., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F.,
Hurtmans, D., De Mazière, M., Vigouroux, C., Deutscher, N.M., Griffith, D.W.T.,
Jones, N., Paton-Welsh, C., 2011b. Satellite evidence for a large source of formic
acid from boreal and tropical forests. Nature Geoscience 5, 26e30.

Taubman, B.F., Hains, J.C., Thompson, A.M., Marufu, L.T., Doddridge, B.G., Stehr, J.W.,
Piety, C.A., Dickerson, R.R., 2006. Aircraft vertical profiles of trace gas and
aerosol pollution over the mid-Atlantic United States: statistics and meteoro-
logical cluster analysis. Journal of Geophysical Research 111, D10S07.

Thomas, H.E., Watson, I.M., 2010. Observations of volcanic emissions from space:
current and future perspectives. Natural Hazards 54, 323e354.

Toenges-Schuller, N., Stein, O., Rohrer, F., Wahner, A., Richter, A., Burrows, J.P.,
Beirle, S., Wagner, T., Platt, U., Elvidge, C.D., 2006. Global distribution pattern of
anthropogenic nitrogen oxide emissions: correlation analysis of satellite mea-
surements and model calculations. Journal of Geophysical Research 111,
D05312.

Turner, A.J., Henze, D.K., Martin, R.V., Hakami, A., 2012. The spatial extent of source
influences on modeled column concentrations of short-lived species.
Geophysical Research Letters 39, L12806.

Urbanski, S.P., Hao, W.M., Nordgren, B., 2011. The wildland fire emission inventory:
western United States emission estimates and an evaluation of uncertainty.
Atmospheric Chemistry and Physics 11, 12973e13000.

Valin, L.C., Russell, A.R., Hudman, R.C., Cohen, R.C., 2011. Effects of model resolution
on the interpretation of satellite NO2 observations. Atmospheric Chemistry and
Physics 11, 11647e11655.

Vandaele, A.C., Hermans, C., Simon, P.C., Carleer, M., Colin, R., Fally, S., Mérienne, M.F.,
Jenouvrier, A., Coquart, B., 1998. Measurements of the NO2 absorption cross-
section from 42 000 cm'1 to 10 000 cm'1 (238e1000 nm) at 220 K and
294 K. Journal of Quantitative Spectroscopy and Radiative Transfer 59, 171e184.

van den Oord, G.H.J., Rozemeijer, N.C., Schenkelaars, V., Levelt, P.F., Dobber, M.R.,
Voors, R.H.M., Claas, J., de Vries, J., ter Linden, M., De Haan, C., van de Berg, T.,

2006. OMI Level 0 to 1b processing and operational aspects. IEEE Transactions
on Geoscience and Remote Sensing 44, 1380e1397.

van der, A.,R.J., Eskes, H.J., Boersma, K.F., van Noije, T.P.C., Van Roozendael, M., De
Smedt, I., Peters, D.H.M.U., Meijer, E.W., 2008. Trends, seasonal variability and
dominant NOx source derived from a ten year record of NO2 measured from
space. Journal of Geophysical Research 113, D04302.

van der, A.,R.J., Peters, D.H.M.U., Eskes, H., Boersma, K.F., Van Roozendael, M., De
Smedt, I., Kelder, H.M., 2006. Detection of the trend and seasonal variation in
tropospheric NO2 over China. Journal of Geophysical Research 111, D12317.

van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S.,
Morton, D.C., DeFries, R.S., Jin, Y., van Leeuwen, T.T., 2010. Global fire emissions
and the contribution of deforestation, savanna, forest, agricultural, and peat
fires (1997e2009). Atmospheric Chemistry and Physics 10, 11707e11735.

van Donkelaar, A., Martin, R.V., Brauer, M., Kahn, R., Levy, R., Verduzco, C.,
Villeneuve, P.J., 2010. Global estimates of ambient fine particulate matter con-
centrations from satellite-based aerosol optical depth: development and
application. Environmental Health Perspectives 118, 847e855.

von Bobrutzki, K., Braban, C.F., Famulari, D., Jones, S.K., Blackall, T., Smith, T.E.L.,
Blom, M., Coe, H., Gallagher, M., Ghalaieny, M., McGillen, M.R., Percival, C.J.,
Whitehead, J.D., Ellis, R., Murphy, J., Mohacsi, A., Pogany, A., Junninen, H.,
Rantanen, S., Sutton, M.A., Nemitz, E., 2010. Field inter-comparison of eleven
atmospheric ammonia measurement techniques. Atmospheric Measurement
Techniques 3, 91e112.

Vrekoussis, M., Wittrock, F., Richter, A., Burrows, J.P., 2009. Temporal and spatial
variability of glyoxal as observed from space. Atmospheric Chemistry and
Physics 9, 4485e4504.

Vrekoussis, M., Wittrock, F., Richter, A., Burrows, J.P., 2010. GOME-2 observations of
oxygenated VOCs: what can we learn from the ratio glyoxal to formaldehyde on
a global scale? Atmospheric Chemistry and Physics 10, 10145e10160.

Vrekoussis, M., Richter, A., Hilboll, A., Burrows, J.P., Gerasopoulos, E., Lelieveld, J.,
Barrie, L., Zerefos, C., Mihalopoulos, N., 2013. Economic crisis detected from
space: air quality observations over Athens/Greece. Geophysical Research Let-
ters 40, 458e463.

Walter, D., Heue, K.-P., Rauthe-Schöch, A., Brenninkmeijer, C.A.M., Lamsal, L.N.,
Krotkov, N.A., Platt, U., 2012. Flux calculation using CARIBIC DOAS air craft mea-
surements: SO2 emission of Norilsk. Journal of Geophysical Research 117, D11305.

Wang, J., Christopher, S.A., 2003. Intercomparison between satellite-derived aerosol
optical thickness and PM2.5 mass: implications for air quality studies.
Geophysical Research Letters 30, 2095.

Wang, S., Streets, D.G., Zhang, Q., He, K., Chen, D., Kang, S., Lu, Z., Wang, Y., 2010.
Satellite detection and model verification of NOx emissions from power plants
in northern China. Environmental Research Letters 5, 044007.

Wang, S., Zhang, Q., Streets, D.G., He, K.B., Martin, R.V., Lamsal, L.N., Chen, D., Lei, Y.,
Lu, Z., 2012. Growth in NOx emissions from power plants in China: bottom-up
estimates and satellite observations. Atmospheric Chemistry and Physics 12,
4429e4447.

Wang, Y., McElroy, M.B., Boersma, K.F., Eskes, H.J., Veefkind, J.P., 2007. Traffic re-
strictions associated with the Sino-African summit: reductions of NOx detected
from space. Geophysical Research Letters 34, L08814.

Wecht, K.J., Jacob, D.J., Wofsy, S.C., Kort, E.A., Worden, J.R., Kulawik, S.S., Henze, D.K.,
Kopacz, M., Payne, V.H., 2012. Validation of TES methane with HIPPO aircraft
observations: implications for inverse modeling of methane sources. Atmo-
spheric Chemistry and Physics 12, 1823e1832.

Wells, K.C., Millet, D.B., Hu, L., Cady-Pereira, K.E., Xiao, Y., Shephard, M.W.,
Clerbaux, C.L., Clarisse, L., Coheur, P.-F., Apel, E.C., de Gouw, J., Warneke, C.,
Singh, H.B., Goldstein, A.H., Sive, B.C., 2012. Tropospheric methanol observa-
tions from space: retrieval evaluation and constraints on the seasonality of
biogenic emissions. Atmospheric Chemistry and Physics 12, 5897e5912.

Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, J.J.,
Soja, A.J., 2011. The Fire INventory from NCAR (FINN): a high resolution global
model to estimate the emissions from open burning. Geoscientific Model
Development 4, 625e641.

Wiegele, A., Glatthor, N., Höpfner, M., Grabowski, U., Kellmann, S., Linden, A.,
Stiller, G., von Clarmann, T., 2012. Global distributions of C2H6, C2H2, HCN, and
PAN retrieved from MIPAS reduced spectral resolution measurements. Atmo-
spheric Measurement Techniques 5, 723e734.

Winker, D.M., Hunt, W.H., McGill, M.J., 2007. Initial performance assessment of
CALIOP. Geophysical Research Letters 34, L19803.

Witte, J.C., Schoeberl, M.R., Douglass, A.R., Gleason, J.F., Krotkov, N.A., Gille, J.C.,
Pickering, K.E., Livesey, N., 2009. Satellite observations of changes in air quality
during the 2008 Beijing Olympics and Paralympics. Geophysical Research Let-
ters 36, L17803.

Wittrock, F., Richter, A., Oetjen, H., Burrows, J.P., Kanakidou, M., Myriokefalitakis, S.,
Volkamer, R., Beirle, S., Platt, U., Wagner, T., 2006. Simultaneous global obser-
vations of glyoxal and formaldehyde from space. Geophysical Research Letters
33, L16804.

Worden, H.M., Chang, Y., Pfister, G., Carmichael, G.R., Zhang, Q., Streets, D.G.,
Deeter, M., Edwards, D.P., Gille, J.C., Worden, J.R., 2012a. Satellite-based esti-
mates of reduced CO and CO2 emissions due to traffic restrictions during the
2008 Beijing Olympics. Geophysical Research Letters 39, L14802.

Worden, H.M., Deeter, M.N., Edwards, D.P., Gille, J.C., Drummond, J.R., Nédélec, P.,
2010. Observations of near-surface carbon monoxide from space using MOPITT
multispectral retrievals. Journal of Geophysical Research 115, D18314.

Worden, H.M., Deeter, M.N., Frankenberg, C., George, M., Nichitiu, F., Worden, J.,
Aben, I., Bowman, K.W., Clerbaux, C., Coheur, P.F., de Laat, A.T.J., Detweiler, R.,

D.G. Streets et al. / Atmospheric Environment 77 (2013) 1011e1042 1041

http://refhub.elsevier.com/S1352-2310(13)00400-7/sref247
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref247
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref248
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref248
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref248
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref248
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref248
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref249
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref249
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref249
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref249
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref249
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref249
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref250
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref250
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref250
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref250
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref250
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref251
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref251
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref251
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref251
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref252
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref252
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref252
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref252
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref253
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref253
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref253
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref253
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref253
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref254
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref254
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref254
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref255
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref255
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref255
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref255
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref255
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref256
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref256
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref256
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref256
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref256
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref257
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref257
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref257
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref257
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref258
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref258
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref258
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref258
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref258
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref258
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref259
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref259
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref259
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref260
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref260
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref260
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref260
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref260
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref261
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref261
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref261
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref261
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref261
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref262
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref262
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref262
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref262
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref262
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref262
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref263
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref263
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref263
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref263
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref263
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref264
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref264
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref264
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref264
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref265
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref265
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref265
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref266
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref266
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref266
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref266
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref266
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref267
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref267
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref267
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref268
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref268
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref268
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref268
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref269
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref269
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref269
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref269
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref269
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref270
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref270
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref270
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref270
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref270
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref270
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref270
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref270
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref270
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref270
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref270
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref271
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref271
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref271
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref271
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref271
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref272
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref272
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref272
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref272
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref272
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref272
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref273
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref273
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref273
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref273
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref274
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref274
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref274
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref274
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref274
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref274
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref275
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref275
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref275
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref275
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref275
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref276
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref276
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref276
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref276
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref276
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref276
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref276
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref277
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref277
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref277
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref277
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref278
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref278
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref278
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref278
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref279
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref279
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref279
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref279
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref279
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref280
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref280
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref280
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref280
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref281
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref281
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref281
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref281
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref282
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref282
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref282
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref282
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref283
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref283
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref283
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref283
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref283
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref283
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref284
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref284
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref284
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref284
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref285
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref285
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref285
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref285
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref285
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref286
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref286
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref286
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref286
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref286
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref286
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref287
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref287
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref287
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref287
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref287
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref288
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref288
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref288
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref288
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref288
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref288
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref288
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref288
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref288
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref289
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref289
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref290
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref290
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref290
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref290
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref291
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref291
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref291
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref291
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref292
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref292
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref292
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref292
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref292
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref293
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref293
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref293
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref294
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref294


Drummond, J.R., Edwards, D.P., Gille, J.C., Hurtmans, D., Luo, M., Martínez-
Alonso, S., Massie, S., Pfister, G., Warner, J.X., 2013. Decadal record of satellite
carbon monoxide observations. Atmospheric Chemistry and Physics 13, 837e850.

Worden, J., Kulawik, S., Frankenberg, C., Payne, V., Bowman, K., Cady-Peirara, K.,
Wecht, K., Lee, J.-E., Noone, D., 2012b. Profiles of CH4, HDO, H2O, and N2O with
improved lower tropospheric vertical resolution from Aura TES radiances. At-
mospheric Measurement Techniques 5, 397e411.

Xia, X., Eck, T.F., Holben, B.N., Phillippe, G., Chen, H., 2008. Analysis of the weekly
cycle of aerosol optical depth using AERONET and MODIS data. Journal of
Geophysical Research 113, D14217.

Xiong, X., Barnet, C., Maddy, E., Wei, J., Liu, X., Pagano, T.S., 2010. Seven years’
observation of mid-upper tropospheric methane from Atmospheric Infrared
Sounder. Remote Sensing 2, 2509e2530.

Xiong, X., Houweling, S., Wei, J., Maddy, E., Sun, F., Barnet, C., 2009. Methane plume
over south Asia during the monsoon season: satellite observation and model
simulation. Atmospheric Chemistry and Physics 9, 783e794.

Yang, K., Krotkov, N.A., Krueger, A.J., Carn, S.A., Bhartia, P.K., Levelt, P.F., 2007.
Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring In-
strument: Comparison and limitations. Journal of Geophysical Research 112,
D24S43.

Yang, K., Liu, X., Bhartia, P.K., Krotkov, N.A., Carn, S.A., Hughes, E.J., Krueger, A.J.,
Spurr, R.J.D., Trahan, S.G., 2010. Direct retrieval of sulfur dioxide amount and
altitude from spaceborne hyperspectral UV measurements: theory and appli-
cation. Journal of Geophysical Research 115, D00L09.

Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., Maksyutov, S.,
2009. Global concentrations of CO2 and CH4 retrieved from GOSAT: first pre-
liminary results. Scientific Online Letters on the Atmosphere 5, 160e163.

Yoshida, Y., Duncan, B.N., Retscher, C., Pickering, K.E., Celarier, E.A., Joiner, J.,
Boersma, K.F., Veefkind, J.P., 2010. The impact of the 2005 Gulf hurricanes on
pollution emissions as inferred from Ozone Monitoring Instrument (OMI) ni-
trogen dioxide. Atmospheric Environment 44, 1443e1448.

Zellweger, C., Hüglin, C., Klausen, J., Steinbacher, M., Vollmer, M., Buchmann, B.,
2009. Inter-comparison of four different carbon monoxide measurement

techniques and evaluation of the long-term carbon monoxide time series of
Jungfraujoch. Atmospheric Chemistry and Physics 9, 3491e3503.

Zhang, L., Constantinescu, E.M., Sandu, A., Tang, Y., Chai, T., Carmichael, G.R., Byun, D.,
Olaguer, E., 2008. An adjoint sensitivity analysis and 4D-Var data assimilation
study of Texas air quality. Atmospheric Environment 42, 5787e5804.

Zhang, Q., Geng, G., Wang, S., Richter, A., He, K., 2012. Satellite remote sensing of
changes in NOx emissions over China during 1996e2010. Chinese Science
Bulletin 57, 2857e2864.

Zhang, Q., Streets, D.G., He, K., 2009a. Satellite observations of recent power plant
construction in Inner Mongolia, China. Geophysical Research Letters 36, L15809.

Zhang, Q., Streets, D.G., He, K., Wang, Y., Richter, A., Burrows, J.P., Uno, I., Jang, C.J.,
Chen, D., Yao, Z., Lei, Y., 2007. NOx emission trends for China, 1995e2004: the
view from the ground and the view from space. Journal of Geophysical Research
112, D22306.

Zhang, X.Y., Wang, Y.Q., Lin, W.L., Zhang, Y.M., Zhang, X.C., Gong, S., Zhao, P.,
Yang, Y.Q., Wang, J.Z., Hou, Q., Zhang, X.L., Che, H.Z., Guo, J.P., Li, Y., 2009b.
Changes of atmospheric composition and optical properties over Beijingd2008
Olympic monitoring campaign. Bulletin of the American Meteorological Society
90, 1633e1651.

Zhao, C., Wang, Y., 2009. Assimilated inversion of NOx emissions over east Asia
using OMI NO2 column measurements. Geophysical Research Letters 36,
L06805.

Zhou, Y., Brunner, D., Hueglin, C., Henne, S., Staehelin, J., 2012. Changes in OMI
tropospheric NO2 columns over Europe from 2004 to 2009 and the influence of
meteorological variability. Atmospheric Environment 46, 482e495.

Zhu, L., Henze, D.K., Cady-Pereira, K.E., Shephard, M.W., Luo, M., Pinder, R.W.,
Bash, J.O., Jeong, G.-R., 2013. Constraining U.S. ammonia emissions using TES
remote sensing observations and the GEOS-Chem adjoint model. Journal of
Geophysical Research 118, 3355e3368.

Zyrichidou, I., Koukouli, M.E., Balis, D.S., Katragkou, E., Melas, D., Poupkou, A.,
Kioutsioukis, I., van der, A.,R., Boersma, F.K., van Roozendael, M., Richter, A., 2009.
Satellite observations and model simulations of tropospheric NO2 columns over
south-eastern Europe. Atmospheric Chemistry and Physics 9, 6119e6134.

D.G. Streets et al. / Atmospheric Environment 77 (2013) 1011e10421042

http://refhub.elsevier.com/S1352-2310(13)00400-7/sref294
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref294
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref294
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref294
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref295
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref295
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref295
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref295
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref295
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref295
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref295
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref295
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref296
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref296
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref296
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref297
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref297
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref297
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref297
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref298
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref298
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref298
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref298
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref313
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref313
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref313
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref313
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref313
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref299
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref299
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref299
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref299
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref300
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref300
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref300
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref300
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref300
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref300
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref301
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref301
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref301
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref301
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref301
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref302
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref302
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref302
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref302
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref302
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref303
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref303
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref303
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref303
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref304
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref304
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref304
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref304
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref304
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref304
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref305
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref305
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref306
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref306
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref306
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref306
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref306
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref306
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref307
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref307
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref307
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref307
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref307
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref307
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref307
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref308
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref308
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref308
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref308
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref308
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref309
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref309
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref309
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref309
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref309
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref310
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref310
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref310
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref310
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref310
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref311
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref311
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref311
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref311
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref311
http://refhub.elsevier.com/S1352-2310(13)00400-7/sref311

	Emissions estimation from satellite retrievals: A review of current capability
	1 Introduction
	2 Satellites: platforms, instruments, and their characteristics
	3 Species observations
	3.1 Nitrogen dioxide
	3.2 Sulfur dioxide
	3.3 Carbon monoxide
	3.4 Methane
	3.5 Nonmethane volatile organic compounds
	3.6 Ammonia
	3.7 Particulate matter
	3.8 Carbon dioxide

	4 Methods for emissions estimation and examples of applications
	4.1 Inverse modeling techniques
	4.2 Oversampling/spatial smoothing
	4.3 Timely updates to emission trends and other temporal variations
	4.4 Anthropogenic point sources
	4.5 Anthropogenic area sources
	4.6 Natural point sources
	4.7 Natural area sources
	4.8 Field campaigns: observing transport and transformation

	5 The National Emissions Inventory (NEI)
	6 Promising applications and future needs
	Acknowledgments
	References


