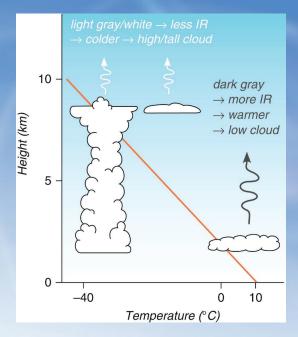
Atmospheric Composition AOSC 200 Tim Canty

Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200

Topics for today:

- Satellite Observations
- Early Atmosphere
- Current Atmosphere
 - Permanent Gases
 - Variable Gases


Lecture 05 Sep 10 2019

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

cold (white) **Satellite Imagery: Infrared (heat)** cool (light gray) warm (dark gray) hot (black)

This is a "false color" image. The lighter the color, the colder the temperature. What does this tell us about clouds?

Satellite Imagery: Infrared (heat)



This is a "false color" image. The lighter the color, the colder the temperature. What does this tell us about clouds? Can you think of a limitation of the infrared image?

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Fig 2-14 Weather: A Concise Introduction 3


Satellite Imagery: Water Vapor

This is a "false color" image. Water vapor absorbs and emits energy. You can tune an instrument to only "see" the wavelengths where water vapor absorbs and emits energy

Copyright © 2019 University of Maryland

Satellites: NOAA GOES16

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Atmospheric Composition (What are you breathing?)

TABLE 1.1 Composition of the Atmosphere near the Earth's Surface

- 1710-22 111	-	or the rumosphere he				
PERMANENT GASES			VARIABLE GASES			
Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)	Symbol	Percent (by Volume)	Parts per Million (ppm)
Nitrogen	$N_{_2}$	78.08	Water vapor	H_2O	0 to 4	
Oxygen	O_2	20.95	Carbon dioxide	CO_2	0.040	400*
Argon	Ar	0.93	Methane	CH_4	0.00018	1.8
Neon	Ne	0.0018	Nitrous oxide	N_2O	0.00003	0.3
Helium	Не	0.0005	Ozone	O_3	0.000004	0.04**
Hydrogen	H_2	0.00006	Particles (dust, soot, etc.)		0.000001	0.01-0.15
Xenon	Xe	0.000009	Chlorofluorocarbons (CFCs)		0.00000002	0.0002

^{*}For CO,, 400 parts per million means that out of every million air molecules, 400 are CO, molecules.

© Cengage Learning. All Rights Reserved.

5

^{**}Stratospheric values at altitudes between 11 km and 50 km are about 5 to 12 ppm.

Early Earth's Atmosphere

As Earth formed it was very hot. Any water would have evaporated. So, where did the water come from?

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

7

Early Earth's Atmosphere

After the oceans formed, CO_2 dissolved into the water, sea creatures used CO_2 , water, and sunlight to create carbohydrates. This lead to the creation of

Early Earth's Atmosphere

After the oceans formed, CO₂ dissolved into the water, sea creatures used CO₂, water, and sunlight to create carbohydrates. This lead to the creation of Oxygen!!!!

The increase in atmospheric oxygen led to one of the greatest environmental disasters ever!!! The "Oxygen Catastrophy"

Oxygen is toxic to cells (even ours). The build of atmospheric oxygen wiped out anaerobic bacteria ~4 billion years ago.

Endosymbiotic Theory - Lynn Margulis (1967)

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

9

Atmospheric Composition

	(What are you breathing
TARLE 11	Composition of the Atmosphere near the Earth's Surface

I IAULL I.I	Composition	or the Athlosphere her	ar the Larth's Juriace			
PERMANENT GASES			VARIABLE GASES			
Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)	Symbol	Percent (by Volume)	Parts per Million (ppm)
Nitrogen	$N_{_2}$	78.08	Water vapor	H_2O	0 to 4	
Oxygen	O_2	20.95	Carbon dioxide	CO_2	0.040	400*
Argon	Ar	0.93	Methane	CH_4	0.00018	1.8
Neon	Ne	0.0018	Nitrous oxide	N_2O	0.00003	0.3
Helium	He	0.0005	Ozone	O_3	0.000004	0.04**
Hydrogen	H_2	0.00006	Particles (dust, soot, etc.)		0.000001	0.01-0.15
Xenon	Xe	0.000009	Chlorofluorocarbons (CFCs)		0.00000002	0.0002

^{*}For CO₂, 400 parts per million means that out of every million air molecules, 400 are CO, molecules.

© Cengage Learning. All Rights Reserved.

99.96% of the atmosphere "permanent gases"

Table 1.1: Essentials of Meteorology

^{**}Stratospheric values at altitudes between 11 km and 50 km are about 5 to 12 ppm.

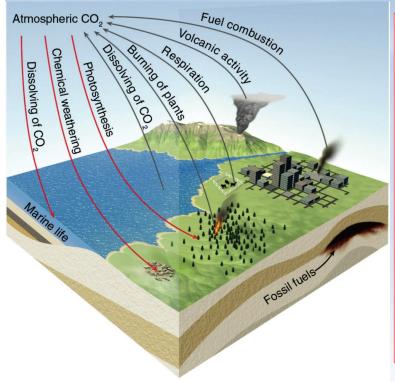
Atmospheric Composition (What are you breathing?)

TABLE 1.1 Composition of the Atmosphere near the Earth's Surface

PERMANENT GASES			VARIABLE GASES			
Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)	Symbol	Percent (by Volume)	Parts per Million (ppm)
Nitrogen	$N_{_2}$	78.08	Water vapor	H_2O	0 to 4	
Oxygen	O_2	20.95	Carbon dioxide	CO_2	0.040	400*
Argon	Ar	0.93	Methane	CH_4	0.00018	1.8
Neon	Ne	0.0018	Nitrous oxide	N_2O	0.00003	0.3
Helium	Не	0.0005	Ozone	O_3	0.000004	0.04**
Hydrogen	H_2	0.00006	Particles (dust, soot, etc.)		0.000001	0.01-0.15
Xenon	Xe	0.000009	Chlorofluorocarbons (CFCs)		0.00000002	0.0002

^{*}For CO₂, 400 parts per million means that out of every million air molecules, 400 are CO₂ molecules.

© Cengage Learning. All Rights Reserved.


These gases control the chemistry of the atmosphere "variable gases" or "trace gases"

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

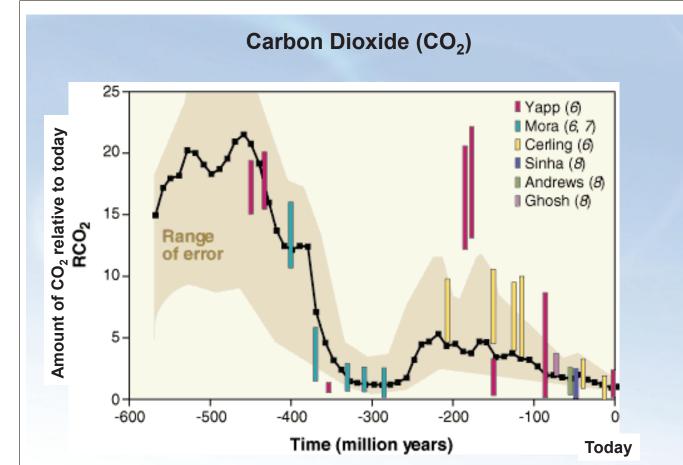
Table 1.1: Essentials of Meteorology

Carbon Dioxide (CO₂) Cycle

One of the most talked about Greenhouse Gases.

Some CO₂ is produced naturally

Some CO₂ produced by human activity (anthropogenic)


Once in the air, some CO₂:

stays there goes into ocean goes into land

CO₂ stays in the air for ~200yrs

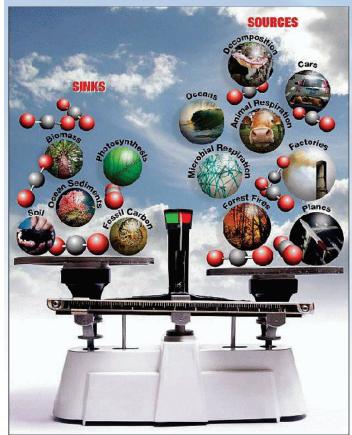
Cengage Learning. All Rights Reserved

^{**}Stratospheric values at altitudes between 11 km and 50 km are about 5 to 12 ppm.

Berner, Science, 276, 544, 1997

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

13


Recent Science

"There has been a 30% increase in the acidity of the ocean since 1700, and we now expect that by 2100, it will have become a 100% increase. This constitutes a rate of change in ocean chemistry that is 10 times anything scientists can document over the last 50 million years."

http://newswatch.nationalgeographic.com/2014/09/02/ocean-acidification-from-domestic-to-international/

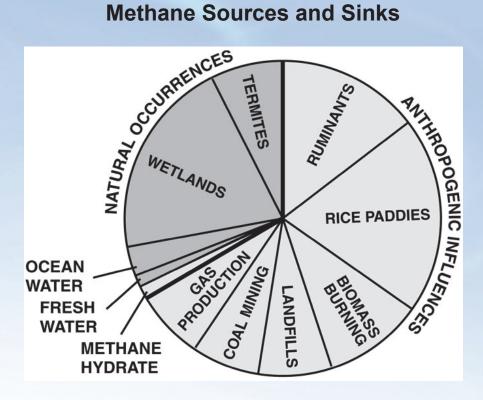
Carbon Dioxide (CO₂) Cycle

Currently, there are more sources than sinks.

As a consequence, CO₂ in the air is rising.

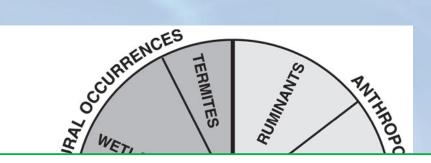
This rise is correlated with the rise in temperatures...

... but more on that in future lectures


Currently, few ways to reduce CO₂

https://directory.eoportal.org/web/eoportal/satell ite-missions/o/oco-2

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

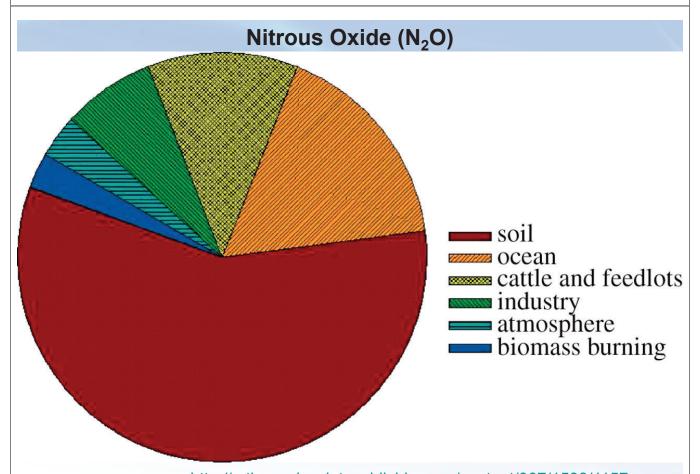

15

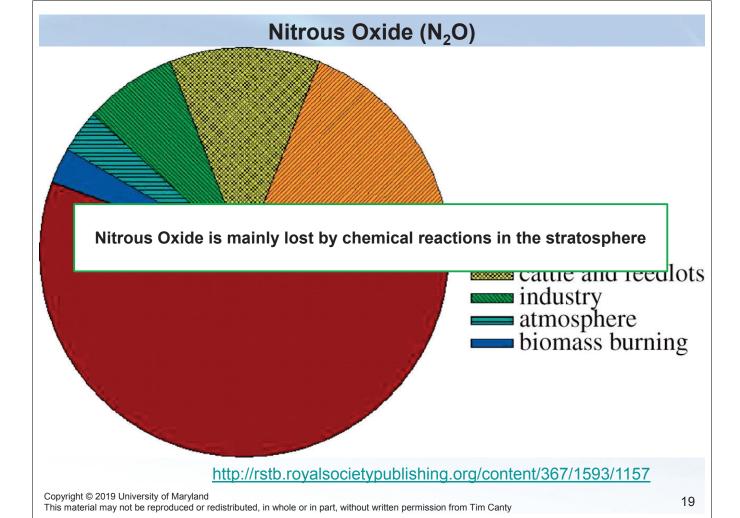
Methane Sources and Sinks

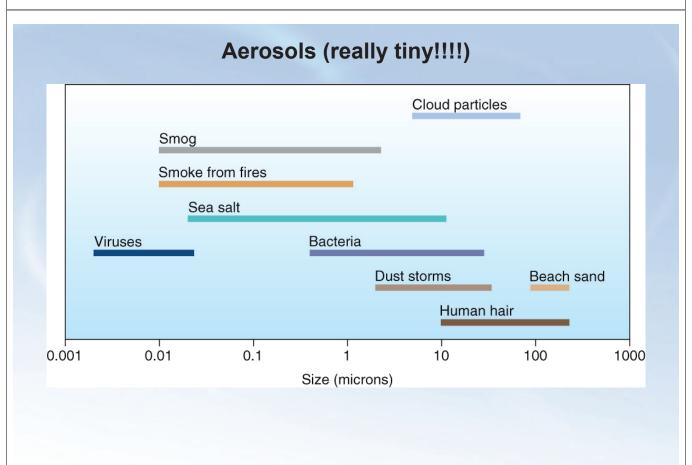
http://www.giss.nasa.gov/research/features/200409 methane/

Methane Sources and Sinks

Methane is mainly lost by chemical reactions in the atmosphere


The carbon in methane eventually becomes CO₂


http://www.giss.nasa.gov/research/features/200409 methane/


Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

17

http://rstb.royalsocietypublishing.org/content/367/1593/1157

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Fig 1-10 Meteorology: Understanding the Atmosphere

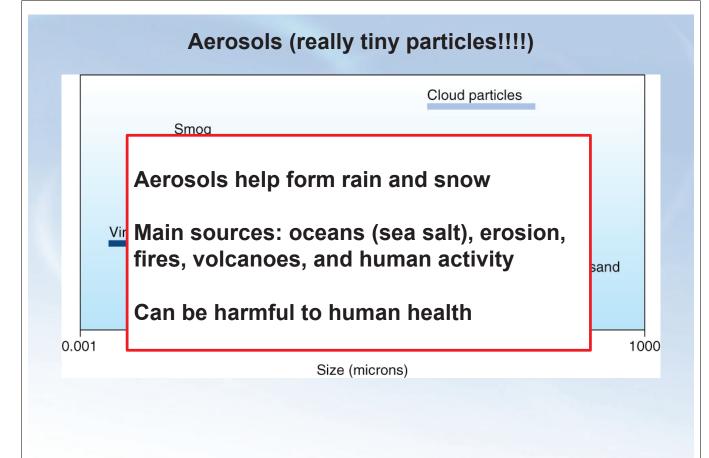
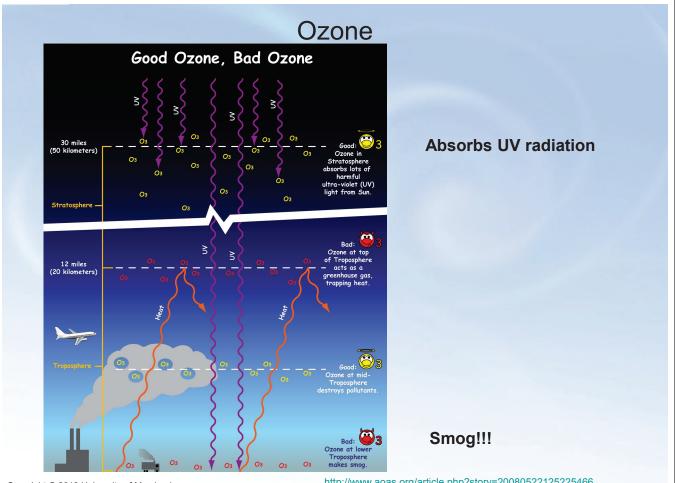



Fig 1-10 Meteorology: Understanding the Atmosphere

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

21

