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Atmospheric Composition
(What are you breathing?)

TABLE 1.1 Composition of the Atmosphere near the Earth’s Surface
PERMANENT GASES VARIABLE GASES

Percent (by Volume) Gas Percent Parts per
Gas Symbol Dry Air (and Particles) Symbol (by Volume) Million (ppm)
Nitrogen N, 78.08 Water vapor H,0 0to4
Oxygen o, 20.95 Carbon dioxide CO, 0.040 400*
Argon Ar 0.93 Methane CH, 0.00018 1.8
Neon Ne 0.0018 Nitrous oxide N,0 0.00003 0.3
Helium He 0.0005 Ozone O, 0.000004 0.04**
Hydrogen H, 0.00006 Particles (dust, soot, etc.) 0.000001 0.01-0.15
Xenon Xe 0.000009 Chlorofluorocarbons (CFCs) 0.00000002 0.0002

*For CO,, 400 parts per million means that out of every million air molecules, 400 are CO, molecules.
**Stratospheric values at altitudes between 11 km and 50 km are about 5 to 12 ppm.
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NASA Orbiting Carbon Observatory (2)

Averaged Carbon Dioxide Concentration Oct 1 - Nov 11, 2014 from OCO-2

https://www.nasa.gov/jpl/oco2/nasas-spaceborne-carbon-counter-maps-new-details
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“Steady State or Equilibruim”

If the sources and sinks are equal, the system is in equilibrium
or steady state. Just like a bucket with a hole in it.

If the amount of water flowing into the bucket is the same as

what’s leaking out, the water level in the bucket doesn’t change.

If someone closes the faucet, then the water level will
start to fall.

If someone opens the faucet more then the water
level will increase.

You can apply this analogy to the atmosphere and
oceans
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Carbon Dioxide (CO,) Cycle

. SOURGCES
oMPos,

Currently, there are more sources
than sinks.

As a consequence, CO, in the air is
rising.

This rise is correlated with the rise in
temperatures...

... but more on that in future lectures

Currently, few ways to reduce CO,

https://directory.eoportal.org/web/eoportal/satell
ite-missions/o/oco-2
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The Future of CO,?
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The Future of CO,?
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The Future of CO,?
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Methane (CH,)
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Methane Sources and Sinks
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http://www.giss.nasa.gov/research/features/200409 methane/
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Methane Sources and Sinks

Methane is mainly lost by chemical reactions in the atmosphere

The carbon in methane eventually becomes CO,

METHANE
HYDRATE

ST1114aNV’1

http://www.giss.nasa.gov/research/features/200409 methane/
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Nitrous Oxide (N,O)
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Nitrous Oxide (N,O)
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http://rstb.royalsocietypublishing.org/content/367/1593/1157
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Nitrous Oxide (N,0O)
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Aerosols (really tiny!!!
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Fig 1-10 Meteorology: Understanding the Atmosphere
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Aerosol Observations
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Aerosol Observations — Satellite

Cloud-Aerosol Lidar and Infrared Pathfinder Sa
(CALIPSO)

.~ Great
Britain

tellite Observation

April 17, 2010, CALIPSO
captured this image of
the Eyjafjallajokull ash
cloud.

http://eosweb.larc.nasa.gov/PRODOCS/calipso/featured imagery/iceland volcano _ash_cloud.html
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Ozone

Good Ozone, Bad Ozone
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trapping heat.
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Atmospheric Composition
(What are you breathing?)

ETABLE 1.1 Composition of the Atmosphere near the Earth's Surface

Nitrogen N, 78.08 Water vapor H,0 Oto4

Oxygen o, 20.95 Carbon dioxide CO, 0.040 400*

Argon Ar 0.93 Methane CH, 0.00018 1.8

Neon Ne 0.0018 Nitrous oxide N,0 0.00003 0.3
Helium He 0.0005 Ozone 0, 0.000004 0.04**
Hydrogen 151, 0.00006 Particles (dust, soot, etc.) 0.000001 0.01-0.15
Xenon Xe 0.000009 Chlorofluorocarbons (CFCs) 0.00000002 0.0002

*For CO,, 400 parts per million means that out of every million air molecules, 400 are CO, molecules.

**Stratospheric values at altitudes between 11 km and 50 km are about 5 to 12 ppm.
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These gases control the
chemistry of the atmosphere
“variable gases” or “trace gases”
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Atmospheric temperature
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Atmospheric temperature

42.5°

Temperatre, F
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The rate that temperature decreases with height is called the Lapse Rate
(6.5°C per km —or— 3.5°F for every 1000 ft)

Fig 1.10: Essentials of Meteorology
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Energy Transfer
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