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Numerical Weather Prediction: Assimilation

Step 2: Data Assimilation

- Data does not cover the entire globe at all times
- Data is smoothed and interpolated to model grid
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Numerical Weather Prediction: Integration

Step 3: Model Integration

» Assimilated data is used to solve equations that
describe the atmosphere
* Determines state of atmosphere at next time step
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Numerical Weather Prediction: Integration

Step 3: Model Integration

- Assimilated data is used to solve equations that
describe the atmosphere
* Determines state of atmosphere at next time step
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Numerical Weather Prediction: Tweaking

Step 4: Tweaking and Broadcasting

» Analyze model output accounting for known
biases in models

« Combine model output with knowledge of local
weather (small scale winds that models can’t
predict) to create forecasts
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Forecasting (Surface Map)
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Forecasting (500 mb Map)

Miles
(statute) Knots
per hour

@ Cam Calm

12 || 2
38 37
914 812
15-20  13-17
21-25 18-22
26-31  23-27
32-37  28-32
3-43  33-37
44-49  38-42
50-54  43-47
55-60  48-52
61-66 53-57
67-71  58-62

72-77  83-67

& VR e e A

7883 68.72
Wy gygg 7377

[ — 119-123 103-107

© Cengage Learning. All Rights Reserved.

Copyright © 2019 University of Maryland Fig 9.15: Essentials of Meteorology 7
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Forecasting (Future Surface)
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Actual weather (+1 day)
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Forecast Range

Nowcasting

A description of current weather parameters
and 0-2 hours description of forecasted
weather parameters

Very short-range weather
forecasting

Up to 12 hours description of weather
parameters

Short-range weather forecasting

Beyond 12 hours and up to 72 hours
description of weather parameters

Medium-range weather forecasting

Beyond 72 hours and up to 240 hours
description of weather parameters

Extended-range weather
forecasting

Beyond 10 days and up to 30 days description
of weather parameters, usually averaged and
expressed as a departure from climate values
for that period.

Long-range forecasting

From 30 days up to two years

http://www.wmo.int/pages/prog/www/DPS/GDPS-Supplement5-Appl-4.html
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Ensemble Forecasts

Ensemble forecasts:

Run model numerous times for slightly different
initial conditions

Perform statistical analysis of all the model runs
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Ensemble Forecasts
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Why aren’t forecasts perfect?
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Climate

Climate: state of the atmosphere at a given place
over a specified time range

Location: can be global, regional, local, etc.
Time: long term (i.e. 30 year or more)

Can be precipitation, temperature, humidity, or other
meteorological variable

“Weather is what you’re wearing, Climate is what’s in
your closet”
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Climate

« Long-term behavior of global environmental system

 Have to understand the Sun, geology, oceans, ice,
atmosphere, life

« Climate system consists of the atmosphere,
hydrosphere, solid earth, biosphere and cryosphere

* Involves the exchange of energy and moisture
among these components

« Can be modified by natural events (volcanoes, El
Nino) and human activity (adding greenhouse
gases)
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“Climate would change even if there
weren’t people on the planet!”
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“Climate would change even if there
weren’t people on the planet!”

Very true!ll
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Past Climate

How do we know what the temperature
was 100,000 years ago??

Has the climate changed in the past
and, if so, how and why??
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Historical Climate

Can be as simple as a cave painting....
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Historical Climate
Or a more modern painting....
Ero—— g
The Thames River frozen in 1677
Copyright © 2019 University of Maryland 29
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.... or as detailed as a satellite map

Copyright © 2019 University of Maryland https://www.nnvl.noaa.gov/imageoftheday.php
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

23

Historical Climate
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Tree Rings

Dendrochronology: study of tree rings to
determine climate conditions

Trees generally grow one ring per year =<

« Width of ring depends on available
water, temperature, and solar
radiation.

* Tree species have different responses =~
to these factors — hence the factors
can be separated by looking at
different species

Fig 13-4 Essentials of Meteorology
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Pollen Records

Palynology: study of prehistoric pollen to determine climate
conditions

Each species has a different shape

« Can determine types of plants that were most abundant
when the pollen was deposited

« Can use carbon dating to determine age of pollen
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Ice Core Records

Air bubbles trapped in ice sheets provide record of
atmospheric composition

Dust trapped in ice provides a record of volcanic activity and
of dry, windy conditions

- Carbon dioxide (CO,), Methane (CH,), Water Vapor
(H,0), Sulfate (SO,%), aerosols, etc.

* Can be used to reconstruct temperature, atmospheric
circulation strength, precipitation, ocean volume,
atmospheric dust, volcanic eruptions, solar variability,
marine biological productivity, sea ice and desert
extent, and forest fires.
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Ice Core Records: Composition/Temperature
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Natural Influences on Climate

To try and predict future climate, we need to understand
past climate

Understanding past climate allows us to separate natural
changes in climate from human-made (anthropogenic)

Need to understand how changing climate can lead to
further changes (feedback mechanisms)

Copyright © 2019 University of Maryland
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Milankovitch Cycles

Milankovitch Cycles Drive Ice Age Cycles

E = Eccentricity
T = Tilt or Obliquity
P = Precession

Copyright © 2019 University of Maryland
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Milankovitch Cycles

Milankovitch Cycles Drive Ice Age Cycles

- 1 P I ]

The shape of the Earth’s orbit (Eccentricity) changes over a
100,000 year cycle

The tilt of the earth (Obliquity) changes between 22° and 24.5 °
over a 41,000 year cycle

The wobble of the Earth on its axis (Precession) occurs over a
27,000 year cycle (think of a spinning top)

T = Tilt or Obliquity
P = Precession
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Solar Variation
Solar output follows an 11 year cycle which, historically,
has been tracked through sunspot observations

Sun spots have been observed directly by telescope since
the 1600’s

Prior to this, Chinese astronomers recorded observations
as early as 364 BC
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Volcanoes
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Volcanoes
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Plate Tectonics

The slow movement of the Earth’s land masses can affect
climate on long time scales

As land moves to the poles, the amount of solar radiation
absorbed by the planet at these latitudes decreases

Currently, majority of land is in the Northern hemisphere

300 million years ago, all land masses joined together as
on supercontinent called Pangea

As continents separated and collided together forming
mountain ranges
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Plate Tectonics

Geologic record indicates prior location of land masses

Coal from Appalachians contain fossil remains of ferns

Ferns requires a warm moist climate, such as at the
equator

So, Appalachian mountains had to have been closer to the
equator when the organic material (i.e. ferns) that became
the coal was deposited
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Plate Tectonics
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Human Influences on Climate

To try and predict future climate, we need to understand
past climate

Understanding past climate allows us to separate natural
changes in climate from human-made (anthropogenic)

Need to understand how changing climate can lead to
further changes (feedback mechanisms)
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Carbon Dioxide (CO,)

December 01, 2019
Ice-core data before 1958. Mauna Loa data after 1958.
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Total Radiative Forcing

Radiative Forcing of Climate, 1750 to 2011
ARF Terms
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Radiative Forcing: the change in the Earth’s energy budget due to

changes in these variables
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Natural Processes

Land use change

Converting forests to land for agriculture may decrease radiative
forcing (cooling). Albedo increases as snow on the ground is more
reflective than snow on trees.
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http://esd.lbl.gov/radiative-forcing-albedo-in-land-use-scenarios/
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Aerosol: Direct Climate Effect

Aerosols are often brighter than the surface and reflect incoming
solar radiation. This leads to cooling.
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Aerosol: Direct Climate Effect

Some aerosols are darker and lead to regional warming. May
explain retreat of Himalayan glaciers.

Copyright © 2019 University of Murylang http://www.nature.com/climate/2007/0709/full/climate.2007.41.html
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Aerosol: Direct Climate Effect

Dark aerosols on snow will decrease albedo and lead to increased
absorption of solar energy and snow melit.

http://earthobservatory.nasa.gov/Features/Aerosols/page3.php
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Aerosol: Indirect Climate Effect
Aerosols = cloud condensation nuclei
F‘ . ‘ — F " S
e -_' 3 |
Clean air: clouds made of fewer, Dirty air: clouds made of many
larger drops. Cloud is darker smaller drops. Cloud is brighter
Copyright © 2019 University of Maryland 50

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty




Influences on Climate

To try and predict future climate, we need to understand
past climate

Understanding past climate allows us to separate natural
changes in climate from human-made (anthropogenic)

Need to understand how changing climate can lead to
further changes (feedback mechanisms)
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Climate Feedback

A climate feedback mechanism is a climate response to an
initial change

Positive Feedback: amplifies the initial change

Negative Feedback: diminishes the initial change

Feedback mechanisms are one of the big “unknowns” in
climate research

Understanding climate feedbacks vital to predicting
climate trends.
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Ice-Albedo Feedback

A rise in temperature, caused by increasing greenhouse
gases like CO,, will cause a further increase in
temperature

How will this affect ice?
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Ice-Albedo Feedback
Initial Action: Initial Response:
Humans Release CO, Tsureace and Tocean Rise
2. Albedos of selected surfaces on Earth
surface albedo
snow 07 = 02 Secondary Response:
sand 0.25 = 0.05
grasslands 0.23 + 0.03 Ice Melts
bare soil 0.2 = 0.05
forest 0.15 = 0.1
water (highly dependent on surface roughness and in- 0.2 + 0.6
cident angle of sunlight) -02
Harte, Consider a Spherical Cow: A Course Consequence:
in Environmental Problem Solving, 1988. Albedo Falls
0.6 —
.g planetary albedo A/
2 o4l a Response to Consequence:
< y | = Tsurrace INCreases
Sl P S T S S S S N S S S T
80 60 40 20 0 20 40 60 80
°S Latitude °N
Houghton, The Physics of Atmospheres, 1991.
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Water Vapor Feedback

A rise in temperature caused by increasing greenhouse
gases, like CO,, will cause an increase in temperature

How will this affect H,O vapor?

Vapor Pressure (mb)

(%) Aupiuny eniejey

Temperature (°C)
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Initial Action: Initial Response:
Humans Release CO, Tsureace rises
Secondary Response:
POSITIVE FEEDBACK LOOP
Adding carbon dioxideto @ The warm atmosphere @ Since water vapor is a S u rface wate r eva po rates
the atmosphere tends to auses surface water to greenhouse gas, the atmosphere
warm the armosph ere, evaporate and become tends to warm even more as
causing global warming, water vapor,
Consequence:
Increased water vapor
Increased
water vapor
Response to Consequence:
© 2009 Pearson Education, Inc. E> TSURFACE Increases
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CO, Feedback: Plants

Initial Action: Initial Response:
Humans Release CO, Tsureace rises

CO, uptake

Secondary Response:
Increased plant growth due
- to more CO,

|

Consequence:
CO, decreases

Response to Consequence:

Ambient +CO. +CO +CO
comnd:::i:ns ’ + nitrogzen + nitrogzen I:> TSURFACE decreases

+ tropospheric O,

This is a negative feedback

http://www.nature.com/nclimate/journal/v3/n3/full/nclimate1841.html
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Cloud Feedback

Increased temperatures can increase the amount of water
vapor which, in turn, can lead to an increase in clouds

How will clouds affect temperatures?
This one’s tricky?
Clouds can either lead to more warming or more cooling

Cloud feedback is one of the largest uncertainties in
climate science

Copyright © 2019 University of Maryland 58
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty




