



## Supplement of

## Measurement report: Aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China

Sarah E. Benish et al.

Correspondence to: Sarah Benish (sebenish@umd.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

## **Supplemental Material**

5

10

## 15 Text S1

We exclude two WAS canisters from this analysis due to evidence of contamination. The first sample was collected on May 21 at 399 m pressure altitude. This sample was heavily polluted with i-butane (25.8 ppbv), i-pentane (57.7 ppbv), as well as longer chain alkanes like 2,3-dimethylbutane (4.2 ppbv), 2-methylpentane (5.9 ppbv), cyclopentane (2.7 ppbv), 2-methylheptane (16.1 ppbv), and 3-methylpentane (3.5 ppbv) in addition to aromatics like

- 20 toluene (41.3 ppbv) and benzene (20.8 ppbv). Many of these compounds are typical of fuel evaporation or from petrochemical industries, indicating this canister may have directly sampled directly in the plume of one of these sources. Since this study is primarily focused with evaluating aloft VOCs away from their direct emission sources, the data from this canister were removed from this analysis.
- 25 The second contaminated sample was collected on May 28 at 3:36 UTC. This sample was filled to ambient pressure at 3000 m in relatively clean air, based on *in situ* observations at the time the canister was collected (CO=111 ppbv, CH<sub>4</sub>=1890 ppbv, CO<sub>2</sub>=406 ppmv, O<sub>3</sub>=84 ppbv). The concentrations of VOCs for this sample are outliers relative the associated abundances of the trace gases. This anomaly is indicative of valve leakage during transit or ambient air entering the WAS canister after the flight. The observed CO to acetylene ratio (ppbv/ppbv), often used as a tracer for
- 30 the age of an air mass, was much smaller in this sample (70 ppbv/ppbv) compared to other samples collected at a similar altitude (~400 ppbv/ppbv).

Table S1. Summary statistics of the 1-second measured concentrations for O<sub>3</sub>, NO<sub>2</sub>, and CO, flight path descriptions, and weather conditions for each flight during ARIAs. Negative values of NO<sub>2</sub> indicate when the instrument was measuring around the detection limit.

| Date<br>(DOY)   | Takeof<br>f<br>(LST) | Landin<br>g<br>(LST) | Mean O <sub>3</sub><br>(Range), ppbv          | Mean NO <sub>2</sub><br>(Range),<br>ppbv          | Mean NOy<br>(Range),<br>ppbv | Mean CO<br>(Range),<br>ppbv                              | Flight Description                                                                                                                                                                                    | Weather Conditions                                                                                                                                                                                                                                                                                                                    |
|-----------------|----------------------|----------------------|-----------------------------------------------|---------------------------------------------------|------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| May 8<br>(129)  | 10:30                | 14:32                | 76.6<br>(62.7-83.9)                           | No data                                           | 15.6<br>(9.0-29.4)           | No data                                                  | Spirals over Julu (400-3500 m)<br>at 10:58 LST, Quzhou (350-<br>3500 m) at 12:00 LST, Xingtai<br>(400-3000 m) at 12:23 LST, and<br>Shijiazhuang (100-3500 m) at<br>14:05.                             | A high over the region and<br>a weak low to the NE<br>moving to the E. Strong S<br>winds in daytime (surface<br>wind speed up to 10 m/s).<br>Cold front passed 2 days<br>prior.                                                                                                                                                       |
| May 15<br>(136) | 12:17                | 15:04                | 64.6<br>(54.4-85.8)                           | No data                                           | No data                      | No data                                                  | Spirals over Julu (400-3500 m)<br>at 12:43 LST and Quzhou at<br>13:41.                                                                                                                                | A high over the region and<br>an occluded front to the E<br>over the Yellow Sea.<br>Surface winds mostly from<br>the NE up to 10 m/s.                                                                                                                                                                                                 |
| May 16<br>(137) | 15:03                | 15:54                | 85.3<br>(70.5-96.0)                           | No data                                           | 22.8<br>(6.1-29.6)           | No data                                                  | Flight to the southeast to the W<br>of Julu. Flight altitude about 400<br>m.                                                                                                                          | A high over the region and<br>a cold front to the E of the<br>Korean Peninsula. Morning<br>surface winds from the W<br>(< 8 m/s) with a shift late-<br>morning from the SE (< 10<br>m/s).                                                                                                                                             |
| May 17<br>(138) | 8:21                 | 11:13                | 80.1<br>(45.0-99.1)                           | 8.8<br>(-0.1-<br>38.4)                            | 30.2<br>(0.2-89.7)           | 590.5<br>(114.3-<br>6053.6)                              | Low altitude transect to Julu,<br>with spirals at Julu (650-2800<br>m) at 9:47 LST and Quzhou<br>(400-3000 m) at 10:19 LST.                                                                           | Surface high pressure<br>conditions throughout the<br>region and low pressure to<br>the N and W. A 700 hPa<br>ridge is situated over North<br>Korea. Surface W winds in<br>the morning (< 5 m/s) with<br>a shift in late-morning from<br>the SE (< 10 m/s).                                                                           |
| May 19<br>(140) | 15:42                | 17:09                | 97.1<br>(75.4-130.2)                          | 1.4<br>(-0.1-6.8)                                 | 11.3<br>(3.6-29.1)           | 131.4<br>(90.8-<br>540.0)                                | Spirals over the airport.                                                                                                                                                                             | Weak surface high pressure<br>conditions over the region<br>and low pressure systems<br>over S Mongolia and Inner<br>Mongolia. Upper level 700<br>hPa trough from the<br>previous day moved E to<br>Sea of Okhotsk. Surface<br>winds from the W in the<br>morning (< 5 m/s) with a<br>shift in late-morning from<br>the SE (< 7 m/s). |
| May 21<br>(142) | 11:57                | 13:41                | 99.5<br>(67.1-145.6)                          | 1.9<br>(-0.1-<br>16.4)                            | No data                      | 238.5<br>(80.5-<br>564.5)                                | Flew to southeast at low altitude<br>(1000 m) to a point (114.9 °E,<br>37.6 °N). Spirals over Quzhou<br>(300-3000 m) at 12:40 LST and<br>Xingtai (300-2400 m) at 13:34<br>LST.                        | Weak surface high pressure<br>conditions over the region<br>with a Siberian anticyclone<br>to the N. Surface winds<br>from the W in the morning<br>with a shift in late-morning<br>from the E (< 6 m/s).                                                                                                                              |
| May 28<br>(149) | 10:16<br>16:29       | 13:26<br>18:24       | 86.3<br>(63.5-100.3);<br>88.9<br>(72.9-112.3) | 3.2<br>(-0.1-<br>27.0);<br>2.6<br>(0.01-<br>10.4) | No data                      | 332.2<br>(97.1-<br>1264.9);<br>215.2<br>(88.1-<br>963.3) | Morning flight flew spirals over<br>Xingtai (350-3000 m) at 11:02<br>LST and Julu (450-2500 m) at<br>12:29 LST.<br>During the afternoon flight,<br>spirals over Xingtai (350-3000<br>m) at 16:57 LST. | High pressure over the<br>region and a stationary<br>front ~1000 km to the S<br>near Shanghai. Surface<br>winds mostly from the SE<br>(< 5 m/s).                                                                                                                                                                                      |
| June 2<br>(154) | 13:47                | 14:53                | 94.9<br>(79.6-106.3)                          | 1.5<br>(-0.1-5.4)                                 | 24.3<br>(14.9-70.7)          | 256.7<br>(95.1-<br>487.5)                                | Spirals over the airport.                                                                                                                                                                             | High over the region with<br>low pressure over central<br>China and a stationary front<br>to the S near Shanghai.                                                                                                                                                                                                                     |

|                 |       |       |                      |                    |             |                  |                                                               | Light surface winds (< 5 m/s) mostly from the W.     |
|-----------------|-------|-------|----------------------|--------------------|-------------|------------------|---------------------------------------------------------------|------------------------------------------------------|
| June 6<br>(158) | 10:08 | 12:01 | 99.9<br>(67.5-134.7) | 0.7 (-0.1-<br>4.9) | No data     | 296.2<br>(105.1- | Low altitude (< 2000 m) spirals<br>to the SE of Shijiazhuang. | Several weak low pressure systems over the region. A |
| , ,             |       |       |                      | ,                  |             | 573.2)           | Spirals over Julu at 10:44 LST.                               | stationary front is over the                         |
|                 |       |       |                      |                    |             |                  |                                                               | East China Sea. Variable                             |
|                 |       |       |                      |                    |             |                  |                                                               | winds less than 5 m/s.                               |
| June 11         | 11:02 | 13:45 | 76.7                 | 2.3                | 16.9        | 187.4            | Low altitude transect (2000 m)                                | Low pressure over region                             |
| (163)           |       |       | (57.2-90.8)          | (-0.1-6.7)         | (11.1-23.8) | (88.2-           | to NE Julu. Spirals over Xingtai                              | with a Siberian anticyclone                          |
|                 |       |       |                      |                    |             | 412.9)           | (600-3000 m) at 11:54 LST and                                 | over Mongolia. A                                     |
|                 |       |       |                      |                    |             |                  | Shijiazhuang (600-3000 m) at                                  | stationary front is located to                       |
|                 |       |       |                      |                    |             |                  | 13:12 LST.                                                    | the S near Taiwan. Variable                          |
|                 |       |       |                      |                    |             |                  |                                                               | surface winds, with the                              |
|                 |       |       |                      |                    |             |                  |                                                               | strongest winds (12 m/s)                             |
|                 |       |       |                      |                    |             |                  |                                                               | from the N in the morning.                           |

Table S2. Summary statistics of alkanes, alkenes/alkynes, and aromatics quantified for all WAS canisters (pptv), as well as the method detection limit (MDL, in pptv), rate constants with OH (kOH), maximum incremental reactivity (MIR) value, and ratio to CO (pptv/ppbv) for compounds with R>0.50. Values less than 1 pptv are not shown.

|                            | Mean<br>(STD) | Min  | 5 <sup>th</sup> | 25 <sup>th</sup> | 50 <sup>th</sup> | 75 <sup>th</sup> | 95 <sup>th</sup> | Max  | MDL* | kOH‡                                                                                      | MIR <sup>†</sup> | Ratio<br>to CO<br>(pptv/p<br>nby) |
|----------------------------|---------------|------|-----------------|------------------|------------------|------------------|------------------|------|------|-------------------------------------------------------------------------------------------|------------------|-----------------------------------|
|                            | l             |      |                 |                  |                  | Alkanes          |                  |      |      |                                                                                           | I                | pov)                              |
| Ethane                     | 2648<br>(710) | 1804 | 1902            | 203              | 2525             | 2998             | 4066             | 4154 | 50   | $6.90 \times 10^{-12} \times e^{-1000/T}$                                                 | 0.28             | 2.5                               |
| Propane                    | 1391<br>(231) | 978  | 1044            | 119<br>6         | 1356             | 1509             | 1769             | 1887 | 21   | $7.60 \times 10^{-12} \times e^{-585/T}$                                                  | 0.49             | -                                 |
| n-Butane                   | 363<br>(278)  | 83   | 92              | 207              | 259              | 480              | 1131             | 1210 | 30   | $9.80 \times 10^{-12} \times e^{-425/T}$                                                  | 1.15             | -                                 |
| 2,2-Dimethylbutane         | 13 (14)       | 2    | 3               | 5                | 9                | 17               | 42               | 64   | 7    | $3.22 \times 10^{-11} \times e^{-781/T}$                                                  | 1.17             | -                                 |
| 2,3-Dimethylbutane         | 44 (93)       | 2    | 2               | 5                | 11               | 27               | 293              | 400  | 5    | $1.24 \times 10^{-17} \ 	imes T^2 	imes e^{-585/T}$                                       | 0.97             | -                                 |
| i-Butane                   | 624<br>(997)  | 56   | 70              | 109              | 246              | 673              | 3546             | 3963 | 29   | $\begin{array}{c} 1.16 \times 10^{-17} \times \\ \times T^2 \times e^{225/T} \end{array}$ | 1.23             | -                                 |
| n-Pentane                  | 119<br>(113)  | 19   | 26              | 54               | 71               | 155              | 400              | 479  | 5    | $\begin{array}{c} 2.44\times10^{-17}\times\\ \timesT^2\times e^{183/T} \end{array}$       | 1.31             | -                                 |
| i-Pentane                  | 674<br>(1255) | 32   | 48              | 118              | 168              | 413              | 3785             | 5444 | 12   | $3.70 \times 10^{-12}$                                                                    | 1.45             | -                                 |
| Cyclopentane               | 34 (64)       | 2    | 2               | 5                | 12               | 25               | 168              | 296  | 26   | $2.67 \times 10^{-11} \times e^{-590/T}$                                                  | 2.39             | -                                 |
| Methylcyclopentane         | 26 (29)       | 2    | 3               | 7                | 15               | 28               | 91               | 115  | 8    | $7.66 \times 10^{-12}$                                                                    | 2.19             | -                                 |
| 2-Methylpentane            | 111<br>(144)  | 8    | 11              | 39               | 61               | 103              | 363              | 667  | 5    | $5.30 \times 10^{-12}$                                                                    | 1.5              | -                                 |
| 3-Methylpentane            | 53 (88)       | 3    | 3               | 9                | 26               | 55               | 224              | 395  | 7    | $5.40 \times 10^{-12}$                                                                    | 1.8              | -                                 |
| 2,3-<br>Dimethylpentane    | 27 (33)       | 4    | 4               | 9                | 19               | 26               | 86               | 152  | 4    | $1.95 \times 10^{-11} \times e^{-330/T}$                                                  | 1.34             | -                                 |
| 2,4-<br>Dimethylpentane    | 31 (53)       | 3    | 3               | 6                | 11               | 25               | 137              | 228  | 5    | $2.49 \times 10^{-11} \times e^{-443/T}$                                                  | 1.55             | -                                 |
| 2,2,4-<br>Trimethylpentane | 433<br>(1117) | 9    | 11              | 28               | 57               | 236              | 2120             | 5422 | 3    | $2.09 \times 10^{-12} \\ \times (\frac{T}{298})^{2.00} \times e^{140/T}$                  | 1.26             | -                                 |
| 2,3,4-<br>Trimethylpentane | 232<br>(652)  | 9    | 9               | 15               | 33               | 96               | 987              | 3253 | 8    | $9.85 \times 10^{-12} \times e^{-124/T}$                                                  | 1.03             | -                                 |
| n-Hexane                   | 123<br>(180)  | 6    | 8               | 24               | 46               | 130              | 541              | 699  | 16   | $1.53 \times 10^{-17} \ \times T^2 \times e^{414/T}$                                      | 1.24             | -                                 |
| Cyclohexane                | 15 (13)       | 1    | 2               | 5                | 9                | 27               | 44               | 44   | 16   | $ 2.88 \times 10^{-17}  \times T^2 \times e^{-309/T} $                                    | 1.25             | -                                 |
| Methylcyclohexane          | 17 (23)       | 3    | 5               | 6                | 10               | 14               | 54               | 114  | 8    | $1.18 \times 10^{-11}$                                                                    | 1.70             | -                                 |
| 2-Methylhexane             | 39 (72)       | 6    | 8               | 13               | 18               | 27               | 147              | 362  | 8    | $6.86 \times 10^{-12}$                                                                    | 1.19             | -                                 |
| 3-Methylhexane             | 44 (88)       | 7    | 7               | 12               | 16               | 33               | 178              | 438  | 6    | $7.15 \times 10^{-12}$                                                                    | 1.61             | -                                 |

| n-Heptane                  | 41 (52)  | 9   | 12  | 16  | 22  | 39       | 142  | 255  | 7  | $1.59 \times 10^{-17}$                   | 1.07  | -    |
|----------------------------|----------|-----|-----|-----|-----|----------|------|------|----|------------------------------------------|-------|------|
|                            |          |     |     |     |     |          |      |      |    | $\times T^2 \times e^{478/T}$            |       |      |
| 2-Methylheptane            | 399      | 11  | 13  | 32  | 63  | 172      | 1718 | 5515 | 8  | $2.51 \times 10^{-17}$                   | 1.07  | -    |
|                            | (1106)   |     |     |     |     |          |      |      |    | $\times T^2 \times e^{447/T}$            |       |      |
| 3-Methylheptane            | 15 (13)  | 7   | 7   | 8   | 11  | 14       | 56   | 59   | 9  | $2.51 \times 10^{-17}$                   | 1.24  | -    |
|                            |          |     |     |     |     |          |      |      |    | $\times T^2 \times e^{447/T}$            |       |      |
| Octane                     | 26 (19)  | 10  | 10  | 15  | 23  | 29       | 59   | 102  | 12 | $2.76 \times 10^{-17}$                   | 0.90  | -    |
|                            |          |     |     |     |     |          |      |      |    | $\times T^2 \times e^{378/T}$            |       |      |
| n-Nonane                   | 22 (12)  | 13  | 14  | 15  | 17  | 25       | 39   | 72   | 21 | $2.51 \times 10^{-17}$                   | 0.78  | -    |
|                            |          |     |     |     |     |          |      |      |    | $\times T^2 \times e^{447/T}$            |       |      |
| n-Decane                   | 58 (57)  | 14  | 14  | 24  | 38  | 76       | 155  | 288  | 10 |                                          | 0.68  |      |
|                            |          |     | -   |     | Alk | enes/Alk | ynes | -    | -  |                                          |       |      |
| Acetylene                  | 803      | 234 | 284 | 454 | 578 | 1175     | 1506 | 1934 | 48 | $1.69 \times 10^{-12} \times e^{-233/T}$ | 0.95  | 1.4  |
|                            | (465)    |     |     |     |     |          |      |      |    |                                          |       |      |
| Ethylene                   | 884      | 185 | 191 | 281 | 405 | 1093     | 2941 | 3536 | 30 | $2.14 \times 10^{-12} \times e^{411/T}$  | 9.00  | 2.9  |
|                            | (923)    |     |     |     |     |          |      |      |    |                                          |       |      |
| Propylene                  | 168 (44) | 102 | 104 | 143 | 164 | 199      | 223  | 308  | 25 |                                          | 11.66 | -    |
| 1-Butene                   | 23 (10)  | 10  | 11  | 17  | 19  | 25       | 43   | 46   | 30 | $6.60 \times 10^{-12} \times e^{465/T}$  | 9.73  | -    |
| cis-2-Butene               | 3 (6)    | -   | -   | 1   | 1   | 2        | 7    | 31   | 23 | $1.10 \times 10^{-11} \times e^{487/T}$  | 14.24 | -    |
| trans-2-Butene             | 3 (3)    | -   | -   | 1   | 2   | 4        | 9    | 16   | 31 | $1.01 \times 10^{-11} \times e^{550/T}$  | 15.16 | -    |
| Isoprene                   | 35 (39)  | 2   | 5   | 8   | 20  | 37       | 117  | 138  | 15 | $2.70 \times 10^{-11} \times e^{390/T}$  | 10.61 | -    |
| 1-Pentene                  | 8 (3)    | 4   | 4   | 6   | 7   | 9        | 14   | 18   | 9  | $5.86 \times 10^{-12} \times e^{500/T}$  | 7.21  | -    |
| cis-2-Pentene              | 2 (3)    | -   | -   | 1   | 1   | 2        | 4    | 16   | 8  | $6.54 \times 10^{-11}$                   | 10.38 | -    |
| trans-2-Pentene            | 2 (3)    | -   | -   | 1   | 1   | 2        | 12   | 14   | 8  | $6.69 \times 10^{-11}$                   | 10.56 | -    |
| 1-Hexene                   | 6 (5)    | 3   | 3   | 4   | 5   | 6        | 9    | 27   | 11 | $3.70 \times 10^{-11}$                   | 5.49  | -    |
|                            |          |     |     |     | A   | Aromatic | es.  |      |    |                                          |       |      |
| Benzene                    | 510      | 63  | 96  | 188 | 330 | 570      | 1819 | 2183 | 7  | $2.30 \times 10^{-12} \times e^{-190/T}$ | 0.72  | 1.8  |
|                            | (521)    |     |     |     |     |          |      |      |    |                                          |       |      |
| Toluene                    | 757      | 31  | 43  | 159 | 300 | 627      | 4064 | 4402 | 5  | $1.80 \times 10^{-12} \times e^{340/T}$  | 4.00  | -    |
|                            | (1188)   |     |     |     |     |          |      |      |    | 14                                       |       |      |
| Styrene                    | 14 (12)  | 4   | 4   | 6   | 8   | 18       | 43   | 45   | 13 | $5.80 \times 10^{-11}$                   | 1.73  | -    |
| m/p-Xylene                 | 108      | 16  | 22  | 43  | 62  | 117      | 345  | 789  | 2  | $1.87 \times 10^{-11}$                   | 7.80  | -    |
| 37.1                       | (155)    | 0   | 11  | 17  | 20  | 4.4      | 110  | 2(2  | 2  | 1.0.0                                    | 7.64  |      |
| o-Xylene                   | 43 (51)  | 8   | 11  | 17  | 28  | 44       | 119  | 263  | 3  | $1.36 \times 10^{-11}$                   | 7.64  | -    |
| Ethylbenzene               | /3 (85)  | 12  | 15  | 27  | 45  | 83       | 198  | 423  | 3  | $7.00 \times 10^{-12}$                   | 3.04  | -    |
| Isopropylbenzene           | 15 (8)   | /   | /   | 10  | 13  | 18       | 28   | 48   | 20 | $6.61 \times 10^{-12}$                   | 2.52  | 0.02 |
| n-Propylbenzene            | 15 (20)  | 4   | 4   | /   | 10  | 15       | 37   | 104  | 16 | $5.80 \times 10^{-12}$                   | 2.03  | 0.06 |
| 2-Ethyltoluene             | 14 (17)  | 5   | 5   | 7   | 9   | 13       | 35   | 89   | 10 | $1.86 \times 10^{-11}$                   | 5.59  | 0.05 |
| 3-Ethyltoluene             | 19 (18)  | 4   | 5   | 9   | 13  | 18       | 59   | 88   | 20 | $1.18 \times 10^{-11}$                   | /.39  | 0.05 |
| 4-Ethyltoluene             | 19 (26)  | 4   | 4   |     | 11  | 18       | 60   | 132  | 20 | $1.19 \times 10^{-11}$                   | 4.44  | 0.07 |
| 1,3-Diethylbenzene         | 20 (28)  | 4   | 4   | 6   | 8   | 12       | 64   | 248  | 10 | $1.86 \times 10^{-11}$                   | /.10  | 0.15 |
| 1,4-Diethylbenzene         | 27 (40)  | 8   | 8   | 11  | 18  | 22       | 53   | 218  | 10 | $1.18 \times 10^{-11}$                   | 4.43  | 0.12 |
| 1,2,3-<br>Trimothulbergens | 18 (24)  | /   | /   | 9   | 13  | 16       | 43   | 130  | 2  | $3.27 \times 10^{-11}$                   | 11.97 | 0.07 |
|                            | 20 (20)  | 0   | 0   | 15  | 22  | 21       | 65   | 160  | 2  | 2 2F × 10 <sup>-11</sup>                 | 0.07  | 0.08 |
| 1,2,4-<br>Trimethylbenzene | 30 (30)  | 0   | 7   | 1.5 | 23  | 31       | 05   | 100  | 5  | 5.25 × 10                                | 0.0/  | 0.08 |
|                            | 10(11)   | 3   | 2   | Δ   | 6   | 8        | 28   | 54   | Δ  | $5.67 \times 10^{-11}$                   | 11.76 |      |
| Trimethylbenzene           | 10(11)   | 5   | 5   |     | 0   | 0        | 20   | 57   | Ť  | 5.07 / 10                                | 11.70 | -    |

\* TO-15 method, where the standard deviation of seven replicates near the detection limit are multiplied by 3.14 (Student's t value with 99% confidence).
\* Reaction rate coefficient with OH.
† Maximum Incremental Reactivity (MIR, units=g O<sub>3</sub>/g VOC), from Carter, (2010).

Figure S1. Left: Picture of the gas (alt-facing) and aerosol inlet (forward facing) on top of the Y-12 aircraft. Right: Picture of the Cloud Water Inertial Probe (CWIP) on the Y-12 aircraft installed under the port wing.





Figure S2. Scatter plot of 1-minute average  $O_x$  ( $O_3$ + $NO_2$ ) as a function of  $NO_z$  ( $NO_y$ - $NO_x$ ) less than 30 ppbv below 1500 m. The color shows the local hour of collection. The line is the linear regression with the slope (k) and Pearson R correlation coefficient.



Figure S3. Vertical profiles (N=19) of 1-second O<sub>3</sub> concentrations (ppbv) from the Y-12 (circles) compared to concurrent
 average concentrations measured at the A<sup>2</sup>BC site in Xingtai (diamonds). The average surface O<sub>3</sub> concentration was computed by averaging the 5-minute data interval starting 30 minutes before the spiral until 30 minutes after the spiral was completed.





Figure S4. Scatter plot of 1-second CO (ppbv) and CO<sub>2</sub> (ppmv) (left) and SO<sub>2</sub> (ppbv) and CO<sub>2</sub> (right) sampled during a plume over Julu on June 6.