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A B S T R A C T

Surface ozone (O3) is a critical ambient pollutant that poses significant risks to both human health and eco
systems. However, there is a scarcity of high-spatial-resolution hourly surface O3 data, which is crucial for un
derstanding its diurnal variations. In this study, we employed a best-performing spatiotemporal artificial 
intelligence (AI) model to estimate 24-hourly 1-km-resolution surface O3 concentrations across China, incor
porating key photochemical processes responsible for O3 formation. Our model effectively captured diurnal O3 
patterns, achieving average sample-based cross-validated coefficients of determination (root-mean-square errors) 
of 0.89 (16.35 μg/m3) for the full day (00:00–23:00 LT), 0.92 (15.72 μg/m3) during daytime (08:00–20:00 LT), 
and 0.82 (16.97 μg/m3) at nighttime (20:00–08:00 LT). Typically, surface O3 levels increase after sunrise, peak 
around 15:00 LT, and decrease overnight, with a diurnal variation magnitude of 62 % relative to the mean level. 
During the daytime, we found that solar radiation (in the ultraviolet and shortwave spectra) and surface tem
perature explained over 42 % of the diurnal variation, while nighttime O3 levels were mainly influenced by 
tropospheric nitrogen dioxide (16 %), temperature (13 %), and relative humidity (12 %). In 2019, approximately 
61 %, 98 %, and 100 % of populated areas in China experienced O3 exposure risks for at least one day, with 
maximum daily 8-h average (MDA8) O3 levels exceeding 160, 120, and 100 μg/m3, respectively. Additionally, 
around 70 %, 82 %, and 100 % of vegetated areas exceeded the three minimum critical thresholds for cumulative 
hourly O₃ exposure, as indicated by the SUM06, W126, and AOT40 indices, respectively. Notably, gross primary 
productivity (GPP) was the most sensitive indicator of O3 pollution across various vegetation types, showing a 
strong negative correlation with AOT0 (R = − 0.43 to − 0.59, p < 0.001).

1. Introduction

Ozone (O3) is a crucial trace gas in the atmosphere, primarily 
distributed in the stratosphere. It efficiently absorbs ultraviolet (UV) 
radiation, shielding virtually all Earth’s living organisms and ecosystems 

from harmful effects. However, O3 in the lower troposphere, particularly 
near the ground, damages human health and suppresses plant growth. 
As a greenhouse gas, it exerts radiative effects that lead to lower evap
oration rates and relative humidity, altered precipitation patterns, and 
changes in atmospheric circulation (Allen et al., 2012; Fu and Tian, 
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2019; Lu et al., 2019; Stevenson et al., 2013). Being a primary air 
pollutant, its damage to human health is linked to various respiratory 
and cardiovascular diseases, such as kidney disease, circulatory disease, 
respiratory disease, and stroke (Brauer et al., 2016; Cai et al., 2023; Chen 
et al., 2023a; Lin et al., 2018; Niu et al., 2022). Its harmful impacts on 
vegetation lead to reductions in carbon assimilation by most plants 
(Fares et al., 2013), gross primary productivity (GPP) (Yue and Unger, 
2014), crop yield (Lin et al., 2018), and thus the food supply (Wilkinson 
et al., 2012). When this highly reactive oxidant infiltrates leaves through 
stomata, the generation of additional reactive oxygen will trigger 
oxidative stress. Consequently, this hampers photosynthesis, impedes 
plant growth, and reduces yields (Ainsworth et al., 2012).

China, as one of the most populous countries with rapid development 
in the world, has suffered from significant air quality problems during 
the last four decades. In recent years, especially since 2013, China has 
enforced various strict air pollution control policies to significantly 
reduce anthropogenic pollutant emissions, leading to a notable 
improvement in air quality, with a large reduction (39 % during the 
period 2013–2020) in PM2.5 concentrations (Wei et al., 2021). On the 
contrary, surface O3 pollution has worsened seriously during the same 
period (Huang et al., 2019; Wang et al., 2020) at an average increasing 
rate of 2.49 μg/m3/yr (p < 0.001). The area surpassing the daily stan
dard [i.e., maximum daily average 8-h (MDA8) O3 = 160 μg/m3] has 
also expanded considerably (Wei et al., 2022a). Thus, more effective 
surface O3 control measures in the future are urgently needed.

To address the escalating problem of surface O3 pollution, continu
ously monitoring and ascertaining its mass concentration is imperative. 
Ground-based observations have high precision and reliability, enabling 
real-time monitoring of surface O3 concentrations at specific sites. 
However, due to the uneven distribution of sites, achieving full coverage 
of O3 monitoring remains a significant challenge. Chemical transport 
models, such as the Community Multiscale Air Quality (CMAQ) 
Modeling System, the Goddard Earth Observing System three- 
dimensional model of atmospheric chemistry (GEOS-Chem), and the 
Weather Research and Forecasting model coupled with chemistry (WRF- 
Chem), can simulate surface O3 at a high temporal resolution (every one 
or several hours), but their accuracies are highly uncertain, and spatial 
resolutions are typically coarse, often at the degrees’ level. As the res
olution increases, computational costs rise drastically. In particular, 
surface O3 from atmopspheric reanalysis products [e.g., Modern-Era 
Retrospective Analysis for Research and Applications, Version 2 
(MERRA-2) and the European Centre for Medium-Range Weather 
Forecasts Reanalysis, Version 5 (ERA5)] have very large uncertainties in 
China compared with ground measurements [e.g., coefficient of deter
mination (R2) < 0.1 and root-mean-square error (RMSE) > 47 μg/m3] 
(Hou et al., 2022; Hu et al., 2016; Qiao et al., 2019; Wang et al., 2015; 
Wei et al., 2022a). Satellite remote sensing can provide O3 retrievals of 
total column amount and vertical profiles from a series of instruments, 
such as the Tropospheric Monitoring Instrument (TROPOMI) and the 
Ozone Monitoring Instrument (OMI), enabling us to monitor spatially 
continuous O3 from space, together with other sources of data pertaining 
to surface O3 (Chen et al., 2022a; Kang et al., 2021; Zhu et al., 2023).

Trace amounts of O3 are affected by numerous other factors through 
complex relationships, making highly accurate retrievals using con
ventional statistical approaches challenging. In recent years, consider
able efforts have thus been undertaken to obtain surface O3 
concentrations using machine-learning (ML) approaches (Capilla, 2016; 
Li et al., 2022; Li and Cheng, 2021; Ma et al., 2021; Song et al., 2022; 
Wang et al., 2022c). We, for example, have used advanced ML to 
develop a long-term surface O3 dataset with high accuracy in China 
called ChinaHighO3 (Wei et al., 2022a) that has been widely adopted for 
tracking air pollution (Chen et al., 2022b; Xia et al., 2022) and used in 
many public health studies (Cai et al., 2023; Zhang et al., 2022). How
ever, most prior studies, including ours, have mainly concentrated on 
the daily (MDA8) scale, with only a handful delving into the diurnal 
hourly scale. Zhang et al. (2023) adopted a bagged-tree model to 

generate hourly (09:00–16:00 LT) ground-level O3 concentrations at a 5- 
km resolution over China by integrating the hourly Himawari-8 short
wave radiation product. Chen et al. (2023b) built a deep-learning (DL) 
model to acquire hourly (10:00–15:00 LT) 5-km surface O3 concentra
tions from Himawari-8 top-of-the-atmosphere radiation. Wang et al. 
(2022b) explored a self-adaptive geospatially local categorical boosting 
approach for estimating hourly (09:00–18:00 LT) 2-km surface O3 
concentrations across China using Himawari-8 AHI brightness temper
atures at multiple thermal infrared bands. However, these studies have 
only estimated hourly surface O3 during the daytime (usually less than 
10 h), failing to provide comprehensive 24-hourly coverage. 24-hourly 
data are of utmost importance for the calculation of not only air qual
ity metrics like MDA8 but also O3-exposure phytotoxicity indices, such 
as 12-h average surface O3 concentrations (M12), Accumulation of 
surface O3 concentrations without Threshold (AOT0), and SUM of sur
face O3 concentrations ≥ 60 ppb (SUM06). Retrievals from most pre
vious studies also have large data gaps due to the presence of clouds that 
handicaps optical satellite remote sensing, seriously limiting their 
applications.

For the first time, we attempt to derive 24-hourly 1-km-resolution 
gapless surface O3 concentrations across China using a best-performing 
model that makes use of ample satellite, ground, and model datasets 
pertinent to O3, such as solar radiation and surface temperature re
trievals from geostationary satellites, and many other factors influencing 
surface O3 concentrations. The best-performing model was selected from 
15 different tree-based ML and DL models, considering both model ac
curacy and efficiency. After being cross-validated independently against 
ground measurements, the O3 products undergo a comprehensive 
analysis of spatial and temporal variations throughout both daytime and 
nighttime, with their driving factors identified and quantified by 
leveraging the eXplainable AI (XAI) - SHAP (SHapley Additive exPla
nations) method. Additionally, using the 24-hourly data, we compute 
both the MDA8 O3 and various O3-exposure phytotoxicity indices and 
assess the short-term health risks of exposure to surface O3 pollution, as 
well as the adverse impacts of O3 pollution on vegetation.

2. Materials and methods

2.1. Data sources

2.1.1. Surface O3 observations
This study employs ground-level hourly O3 observations (μg/m3) 

from the Ministry of Ecology and Environment (MEE) in China from a 
total of 1605 monitoring stations in 2019 (Fig. S1), which are measured 
under room conditions (i.e., 298 K, 1013 hPa) (MEE, 2018). Any flagged 
invalid data are excluded. The conversion factor from μg/m3 to ppb for 
O3 is 0.467.

2.1.2. Ancillary data for surface O3 retrievals
Surface O3, an important secondary pollutant in the atmosphere, is 

influenced by various factors during its formation and dissipation. 
Downward shortwave radiation (DSR) and land surface temperature 
(LST) play crucial roles in surface O3 generation when the necessary 
substances for photochemical reactions, such as nitrogen oxides (NOx) 
and volatile organic compounds (VOCs), are present. Here, hourly DSR 
and LST data from geostationary satellites are adopted by virtue of their 
high spatial and temporal variations. One-km-resolution DSR hourly 
data are obtained from the Geostationary-NASA Earth Exchange (Geo
NEX) Level 2 product. This data was generated using a physically based 
look-up-table approach from data collected from new-generation geo
stationary Advanced Baseline Imager (ABI) and Advanced Himawari 
Imager (AHI) data (Li et al., 2023bLi et al., 2023b). Hourly LST data are 
derived from the Global Hourly All-sky-LST (GHA-LST) product with a 
downscaled 1-km resolution, generated by combining geostationary 
Earth orbit LST retrievals from the Copernicus Global Land Service 
(CGLS) and Moderate Resolution Imaging Spectroradiometer (MODIS) 
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MxD21 LST products. All-sky hourly LSTs are obtained using spatio
temporal assimilation to address satellite gaps (Jia et al., 2023). In 
addition to shortwave radiation, hourly UV radiation, including UVA 
(315–400 nm) and UVB (280–315 nm) sourced from Himawari-8 Level 3 
photosynthetically active radiation (PAR) data (5-km resolution) with 
complete spatial coverage, has also been incorporated into our 
modeling, which plays a crucial role in impacting surface O3 concen
trations by catalyzing O3 cycle initiation and controlling the O3 gener
ating rate (Barnard et al., 2003; Seinfeld and Pandis, 2016).

Satellite O3 data and its precursor gases are highly correlated with 
surface O3, providing valuable insights into O3 formation sensitivity (Jin 
et al., 2017; Ren et al., 2022; Shah et al., 2020; Shen et al., 2019). 
Therefore, in the absence of geostationary satellite trace gas products, 
we include the TROPOMI tropospheric O3, nitrogen dioxide (NO2), and 
formaldehyde (HCHO) column products as important predictors into our 
model. In addition, we employ model-simulated spatially complete 
vertical columns from Copernicus Atmospheric Monitoring Service 
(CAMS) global reanalysis 4 (EAC4) multi-level data to fill the satellite 
gaps for each gas, utilizing the ML-based approach proposed in our 
previous study (Wei et al., 2022b). Key precursors for the formation of 
O3 through photochemical reactions are NOx, VOCs, and carbon mon
oxide (CO) (Wang et al., 2017a, 2022b). These anthropogenic emissions 
associated with human activities are obtained from the 1-km-resolution 
daily Air Benefit and Cost and Attainment Assessment System-Emission 
Inventory version 2.0 (ABaCAS-EI v2.0) dataset covering China (Li et al., 
2023c). Population distribution data collected from the 1-km annual 
LandScan™ product is also employed.

Meteorological variables have significant and diverse impacts on air 
pollutants. Employed in our model are the following most influential 
ones from hourly ERA5 global reanalysis data: boundary layer height 
(BLH), relative humidity (RH), total precipitation (TP), surface pressure 
(SP), wind speed (WS), and wind direction (WD) (calculated from the u- 
and v-components of winds). The following variables attributed to sur
face conditions are also included: Shuttle Radar Topography Mission 
(SRTM) 90-m digital elevation model (DEM) and MODIS 1-km normal
ized difference vegetation index (NDVI) products. Altogether, we have 
gathered and employed a total of 19 variables for daytime and 16 for 
nighttime, with details provided in Table 1. All ancillary data are 
resampled (or reaggregated) to a 1-km resolution (≈ 0.01◦ × 0.01◦) 
using the bilinear interpolation method (Wei et al., 2023).

2.2. AI model establishment and selection

Besides exploiting various pertinent data sources, it is equally 
imperative to find the best model that can most effectively and effi
ciently extract any useful information for which AI has been proven to be 
most competent. To find the best-performing model, we applied 15 
models, including nine tree-based ML and six DL models. For the tree- 
based ML ones, we chose the original Decision Tree (DT) and eight 
DT-derived ensemble-learning models consisting of multiple base 
models, falling into the two categories of bagging and boosting. Bagging 
models combine multiple independent base models through averaging 
or voting, including random forest (RF; Breiman, 2001) and extremely 
randomized trees (ET; Geurts et al., 2006). Boosting models entail iter
atively constructing base models, with each model refining its perfor
mance based on the feedback from the preceding model, including 
Adaptive Boosting (AdaBoost), Gradient Boosting Decision Tree (GBDT), 
eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine 
(LightGBM), and Categorical Boosting (CatBoost). AdaBoost is one of the 
earliest techniques within the realm of boosting and assigns a higher 
weight to misclassified samples from the previous base model in each 
iteration (Freund and Schapire, 1997). GBDT constructs base models by 
progressively improving the loss function (Friedman, 2001), and both 
XGBoost and LightGBM are optimizations of the GBDT framework. 
XGBoost introduces training loss (second-order Taylor expansion) and 
regularization, while LightGBM applies a histogram optimization and 
gradient-based one-side sampling method (Chen and Guestrin, 2016; Ke 
et al., 2017). CatBoost is specially tailored for handling categorical 
features (Sagi and Rokach, 2018). Deep Forest (DF) is a hybrid model 
combining various tree-based models, rather than neurons, in each 
middle layer to handle non-linear relationships, allowing for the capture 
of complex data structures (Zhou and Feng, 2019).

For DL, we selected among the Multilayer Perceptron (MLP), Con
volutional Neural Network (CNN), Long Short Term Memory (LSTM), 
Deep Belief Network (DBN), Deep Residual Network (ResNet), and Re
sidual Next (ResNeXt) models. The MLP model serves as the funda
mental neural network model capable of approximating complex 
nonlinear functions (Du et al., 2022). CNN is employed for grid-pattern 
data and relies on the core of the convolutional layer that involves a 
series of operations like convolution (Yamashita et al., 2018). We set the 
input channel of the first two-dimensional convolutional layer to 1 to 
input tabular data, and subsequently, each row of the table is introduced 
into the model for processing. LSTM is a special recurrent neural 

Table 1 
An overview of data sources employed in this study.

Data Full name of the variable Abbreviation Unit Temporal resolution Spatial resolution Source

Ground truth Ground-level O3 measurements – μg/m3 1 h In situ CNEMC
Solar radiation Downward shortwave radiation DSR W/m2 1 h 1 km GeoNEX

Ultraviolet radiation A UVA W/m2 1 h 5 km Himawari-8
Ultraviolet radiation B UVB W/m2 1 h 5 km

Meteorological factors Land surface temperature LST K 1 h 1 km GHA-LST
Boundary layer height BLH m 1 h 0.25◦ ERA5
Relative humidity RH % 1 h 0.25◦

Total precipitation TP mm 1 h 0.1◦ ERA5-Land
Surface pressure SP hPa 1 h 0.1◦

Wind direction WD ◦ 1 h 0.1◦

Wind speed WS m/s 1 h 0.1◦

Satellite gases Tropospheric O3 column TO3 1e15 molec/cm2 1 day 5 × 3.5 km2 TROPOMI
Tropospheric NO2 column TNO2 1e15 molec/cm2 1 day 5 × 3.5 km2

Tropospheric HCHO column THCHO 1e15 molec/cm2 1 day 5 × 3.5 km2

Model gases Tropospheric O3 column MTO3 kg kg− 1 3 h 0.75◦ CAMS EAC4
Tropospheric NO2 column MTNO2 kg kg− 1 3 h 0.75◦

Tropospheric HCHO column MTHCHO kg kg− 1 3 h 0.75◦

Emission inventory Nitrogen oxides NOx t 1 day 1 km ABaCAS-EI
Volatile organic compounds VOCs t 1 day 1 km
Carbon monoxide CO t 1 day 1 km

Other factors Digital elevation model DEM m – 90 m SRTM
Population POP people 1 year 1 km LandScan™
Normalized difference vegetation index NDVI – 16 day 1 km MOD13A2
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network that effectively handles dependencies over long periods by 
using gate functions in its cell structure (Yu et al., 2019). In the current 
study, we adjust the sequence length to 1 to make the model compatible 
with tabular data, which does not incorporate time series information 
(Lei et al., 2022; Wang et al., 2022a; Zhang et al., 2024). DBN is a multi- 
layered neural network containing multiple restricted Boltzmann ma
chines (Hinton et al., 2006). ResNet is designed to address network 
degradation issues in deeper neural networks by using shortcut con
nections to learn the residual between desired and current outputs of a 
specific layer, alleviating problems like gradient disappearance and 
network degradation (He et al., 2015). ResNeXt is an upgraded version 
of ResNet that introduces a novel building block called “cardinality 
bottleneck” (Xie et al., 2017). The abovementioned total of 15 AI 
models, each run separately, are adopted here to identify a best- 
performing model for retrieving hourly surface O3 by comparing their 
accuracies and efficiencies using the same hourly training and validation 
datasets. Tables S1 and S2 provide details about all main parameters set 
in our selected AI models, including input data, number of layers, 
training parameterizations, batch size, and learning rate. In this study, 
we trained the models separately for different hours to address specific 
biases at certain times.

Previous studies have indicated that incorporating spatiotemporal 
factors can enhance the accuracy of a model in predicting air pollutants, 
considering their significant spatiotemporal continuity (Li et al., 2017; 
Wei et al., 2021). Consequently, here, a novel technique that assigns 
weighted effects based on polar coordinates with multidimensions is 
employed to compute the spatiotemporal factors (Sun et al., 2022; Wei 
et al., 2023), leading to the new extended 4-Dimensional Space-Time AI 
(4D-STAI) model. Spatial information is described within Euclidean 
space utilizing spherical coordinates (Eqs. 1–3), and temporal informa
tion is represented using three helix-shaped trigonometric vectors (Eqs. 
4–6), encompassing both diurnal variations and seasonal cycles of air 
pollution. 

S1 = sin
(

2π Lon
360

)

(1) 

S2 = cos
(

2π Lon
360

)

sin
(

2π Lat
180

)

(2) 

S3 = cos
(

2π Lon
360

)

cos
(

2π Lat
180

)

(3) 

T1 =
DOY

N
(4) 

T2 = cos
(

2π DOY
N

)

(5) 

T3 = sin
(

2π DOY
N

)

(6) 

where Lon signifies the longitude of each grid, and Lat signifies the 
latitude; N indicates a year’s number of days in total (365 for the year 
2019); and DOY refers to the day of the year.

2.3. Validation and analysis methods

Similar to many previous studies (Di et al., 2017; Kang et al., 2021; 
Wang et al., 2021; Zhan et al., 2018), the 10-fold cross-validation (10- 
CV) method is utilized for assessing and comparing the performance of 
the model, performed at the sample-based (out-of-sample), station- 
based (out-of-station), and block-based (out-of-block) levels. Sample 
CV is segregated according to all training data samples to evaluate the 
model’s overall accuracy, while station CV is divided based on ground- 
based monitors to measure the spatial prediction accuracy (Li et al., 
2017; Wei et al., 2022a). Block CV follows a procedure similar to the 

station CV but utilizes grid cells of 0.1◦ × 0.1◦, comprising a total of 974 
blocks covering China. This approach enables us to evaluate the model 
accuracy in predicting air pollutant concentrations in new spatial re
gions lacking ground-based observations (Yu et al., 2023). These three 
methods involve randomly dividing the entire dataset into 10 subsets. In 
each iteration, the model is trained on nine data subsets, with the rest for 
testing. This process runs in turn for 10 iterations, ensuring that all data 
participate in the model validation process (Rodriguez et al., 2010).

Surface O3 concentrations are affected by diverse factors, as stated 
before, all of which exhibit variations across time and space. To 
comprehend the factors driving diurnal fluctuations in surface O3 levels, 
we employed the XAI methodology. The game-theoretic SHAP approach 
is applied to explain the model output. Specifically, SHAP quantifies the 
significance of a feature by contrasting the predictions of the model 
when including and excluding that particular feature (Lundberg et al., 
2020; Wei et al., 2024). We thus assess the importance of all variables for 
each hour using SHAP’s TreeExplainer. Fig. 1 shows the flowchart of 
retrieving 24-hourly gapless surface O3 concentrations in our study.

2.4. O3 phytotoxicity indices

Many studies have shown that surface O3 is a notable stressor in 
natural ecosystems, mainly affecting soil, biota, and ecological processes 
(Ainsworth et al., 2012; Kangasjarvi et al., 2005; Super et al., 2015). We 
have chosen various O3 phytotoxicity indices to investigate how vege
tation responds to damage caused by surface O3 exposure. MX refers to 
the hourly average value of O3 (HO3 ) within the specified period X, 
where M7 refers to the mean 7-h O3 concentration between 09:00–16:00 
LT, and M12 refers to the mean 12-h O3 concentration between 
08:00–20:00 LT, which mainly reflects the effects of O3 levels on vege
tation growth (Tong et al., 2009). This is expressed as 

M7 =
1
n
∑n

i=1

[
HO3

]

i (9 ≤ i < 16) (7) 

M12 =
1
n
∑n

i=1

[
HO3

]

i (8 ≤ i < 20) (8) 

where the i represents the hour in local time, ranging from 0 to 23.
Fuhrer et al. (1997) and Grünhage et al. (1999) proposed the AOTX 

index representing the sum of hourly O3 mixing ratios exceeding a 
threshold value (X ppb) between 06:00–21:00 LT. AOT0 refers to AOTX 
when no threshold value is set (Eq. 9), and AOT40 represents AOTX 
when the threshold value is set to 40 ppb (Eq. 10). AOT0 and AOT40 are 
usually used to measure the severity of vegetation damage caused by 
surface O3 exposure. Generally, AOT40 is effective for assessing O3 
damage in highly polluted areas but may be less useful in regions with 
lower pollution levels. By contrast, AOT0 is more effective across a 
broader range of pollution levels due to the retention of lower O3 levels. 
To assess the extent of O3 phytotoxicity, we use the maximum values of 
AOT0 and AOT40 over three consecutive months from April to 
September as annual results (Hayes and Bangor, 2017). Additionally, 
AOT40 causes damage to vegetation when it exceeds the thresholds of 3 
ppm for agricultural crops and semi-natural vegetation, 5 ppm for forest 
trees, and 6 ppm for horticultural crops (Hayes and Bangor, 2017). 

AOT0 =
∑n

i=1

[
HO3

]

i (6 ≤ i ≤ 20) (9) 

AOT40 =
∑n

i=1

[
HO3 − 40

]

i for
[
HO3

]
> 40 ppb (6 ≤ i ≤ 20) (10) 

Heck and Cowling (1997) and Kohut (2007) introduced a SUM06 
index representing the maximum cumulative value of hourly O3 mixing 
ratios above 60 ppb during 8:00–20:00 LT over three consecutive 
months from April to October (Eq. 11). SUM06 is detrimental to vege
tation when it exceeds the thresholds of 8–12 ppm for natural ecosys
tems, 10–16 ppm for tree seedings, and 15–20 ppm for crops (Heck and 
Cowling, 1997).
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The W126 index is a sigmoidally weighted hourly concentration 
(Lefohn and Runeckles, 1987), calculated from the maximum of 
weighted cumulative values of hourly O3 mixing ratios during 
8:00–20:00 LT over three consecutive months from April to October (Eq. 
12). It has a stronger response to elevated O3 concentrations (Lefohn and 
Runeckles, 1987). W126 denotes damage to vegetation when it exceeds 
the specific thresholds of 5.9 ppm, 23.8 ppm, and 66.6 ppm for highly 
sensitive, moderately sensitive, and less sensitive species, respectively 
(Hayes and Bangor, 2017). 

SUM06 =
∑n

i=1

[
HO3

]

i for
[
HO3

]
> 60 ppb (8 ≤ i < 20) (11) 

W126 =
∑n

i=1

[
HO3

1 + 4403e(− 0.126×HO3 )

]

i
(8 ≤ i < 20) (12) 

To analyze the O3 phytotoxicity of different vegetation types, MODIS 
Land Use and Cover data were used to divide the land surface into three 
primary categories: forest, grassland, and cropland. We also assess and 
quantify the impacts of O3 phytotoxicity on vegetation photosynthetic 
rate, growth situation, and yield by comparing six O3 phytotoxicity 
indices (i.e., M7, M12, AOT0, AOT40, SUM06, and W126) with four 

vegetation abundance indices. The first, near-infrared reflectance of 
vegetation (NIRv), is calculated using the MOD13A2 16-day NDVI (1 
km) and MCD43A4 1-day nadir reflectance (500 m) products (Badgley 
et al., 2017). The leaf area index (LAI) and fraction of PAR (FPAR) data 
(500 m) are collected from the MOD15A2H 8-day product. Gross pri
mary production (GPP) data (0.072727◦ × 0.072727◦) is generated from 
the Boreal Ecosystem Productivity Simulator model (He et al., 2021; 
Wang et al., 2017b).

3. Results and discussion

3.1. Model comparison and validation

3.1.1. Optimal model
Table 2 compares the model performance and efficiency among the 

15 AI models in estimating hourly surface O3 concentrations in China, 
utilizing data samples from the same hour (i.e., 17:00 LT, number of 
samples, N = 476,039). Most tree-based ML models have fast training 
speeds and consume relatively small amounts of memory, of which the 
AdaBoost model shows the poorest performance. The two original GBDT 

Fig. 1. Flowchart of how satellite-derived 24-hourly gapless 1-km-resolution surface O3 levels are retrieved across China in this study using AI.
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and DT models have similar proficiencies in predicting hourly surface 
O3, while the accuracies for their derived ensemble-learning models are 
improved, e.g., Catboost, XGBoost, RF, and LightGBM (e.g., CV-R2 =

0.799, 0.841, 0.877, and 0.905, respectively). The ET model operates 
swiftly (78 s) and performs second only to DF (e.g., CV-R2 = 0.908 
versus 0.911). However, the ET model is faster than the DF model by 
~192 times and uses about half as much memory. Among the six DL 
models, the MLP model performs the worst despite its fast training 
speed. The DBN model works better, with improved accuracy and 
minimal memory, but takes a significant amount of time (608 s). The 
ResNet model exhibits enhanced performance by incorporating residual 

structures to address issues such as gradient vanishing or explosion, thus 
delivering results efficiently. With continuous optimization in both 
model architectures and loss functions, the accuracy of surface O3 esti
mates consistently increases, e.g., CV-R2 = 0.813 and 0.845 for the CNN 
and ResNeXt models, respectively. However, their training speeds and 
memory requirements continue to increase. The traditional LSTM model 
(CV-R2 = 0.822) is also not expected to be superior because it is sus
ceptible to overfitting on training data (Yu et al., 2019). This model also 
encounters varnishing or exploding gradients when confronted with 
training data containing longer-term dependencies (Pascanu et al., 
2013). Interestingly, most DL models perform not as accurately as and 

Table 2 
Performance and efficiency comparison of different 4-dimensional space-time (4D-ST) tree-based ML and DL models for estimating surface O3 concentrations at 17:00 
LT in China based on the out-of-sample CV approach.

Category Core model R2 Slope RMSE MAE Speed (s) Memory (GB)

Tree-based machine learning AdaBoost 0.493 0.457 39.38 30.89 457.26 0.0015
DT 0.745 0.867 28.85 19.16 11.80 0.0477
GBDT 0.765 0.751 26.66 19.95 680.25 0.0008
CatBoost 0.799 0.782 24.65 18.46 18.41 0.0456
XGBoost 0.841 0.826 21.95 16.33 253.76 0.0240
RF 0.877 0.838 19.45 13.71 332.14 5.9100
LightGBM 0.905 0.887 17.00 12.27 29.95 0.0445
ET 0.908 0.871 16.86 11.69 77.97 9.7143
DF 0.911 0.903 16.41 11.45 14,945.32 17.4400

Deep learning MLP 0.735 0.753 28.45 21.47 340.06 0.0911
DBN 0.739 0.740 28.23 21.36 607.71 2.1617
ResNet 0.808 0.771 24.32 18.06 2536.73 1.6808
CNN 0.813 0.840 27.72 17.76 3627.53 1.8900
LSTM 0.822 0.829 23.12 17.28 5776.59 0.0918
ResNeXt 0.845 0.836 21.52 15.81 6819.31 1.9300

AdaBoost: Adaptive Boosting; DT: Decision Trees; GBDT: Gradient Boosting Decision Tree; CatBoost: Categorical Boosting; XGBoost: eXtreme Gradient Boosting; RF: 
Random Forest; LightGBM: Light Gradient Boosting Machine; ET: ExtraTrees; DF: Deep Forest; MLP: Multilayer Perceptron; DBN: Deep Belief Network; ResNet: Deep 
Residual Network; CNN: Convolutional Neural Network; LSTM: Long Short Term Memory; ResNeXt: ResNet Next.

Fig. 2. Out-of-sample cross-validation results of hourly O3 estimates (μg/m3) from 00:00 to 23:00 LT for 2019 in China using the 4D-STET model. Black dashed lines 
denote 1:1 lines, and red solid lines denote best-fit lines from linear regression. The sample size (N), linear-regression relation, coefficient of determination (R2), root- 
mean-square error (RMSE, μg/m3), mean absolute error (MAE, μg/m3), and mean relative error (MRE, %) are also given. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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less efficiently than tree-based ML models in addressing regression 
problems (Grinsztajn et al., 2024) because DL is predominantly designed 
for handling more intricate computer vision tasks (e.g., object recogni
tion and detection), requiring a vast amount of data samples (Shinde and 
Shah, 2018). Similar comparison results in model accuracy are also 
obtained from the station-CV and block-CV methods (see Tables S3 and 
S4) but with a slight decrease compared to the sample-CV results. By 
comprehensively considering both the model performance and effi
ciency, the core ET model is thus chosen to estimate surface O3 at the 
hourly scale in our study. Furthermore, we compared model perfor
mance using both traditional and improved spatial and temporal indices. 
The results indicate that compared with the traditional method (Liu 
et al., 2020; Wei et al., 2022a), model performance is enhanced, with a 
5–6 % reduction in estimated uncertainties (Fig. S2).

3.1.2. Model performance
Figure 2 shows the sample-based overall accuracy of surface O3 es

timates at each hour from 0:00 to 23:00 LT using the 4-Dimensional 
Space-Time Extra-Trees (4D-STET) model. The model accuracy varies 
for different hours. At 00:00 LT, O3 estimates generally align closely 
with ground measurements, with a CV-R2 of 0.80 and an RMSE of 17.66 
μg/m3. The model performance slightly improves with comparable CV- 
R2 (0.77–0.79) and lower RMSE values (15–17 μg/m3) until 07:00 LT. 
During the daytime, the model shows significant improvements, with 
increasing CV-R2 (slopes closer to 1) and decreasing RMSE values. At 
17:00 LT, the performance reaches its peak with a CV-R2 of 0.91, a slope 
of 0.87, and a RMSE of 16.86 μg/m3. Subsequently, the performance of 
the model deteriorates gradually. Overall, the model performs well 
across all hours, with CV-R2 values above 0.77 and RMSE (mean abso
lute error, MAE) values below 18 (13) μg/m3. Similar trends can be 
found in the spatial-CV results: The model accuracy of station-CV (block- 
CV) gradually increases from midnight (0:00 LT) to the afternoon, with 
increasing CV-R2 and reduced RMSE values, reaching a peak at 17:00 LT, 
e.g., CV-R2 = 0.90 (0.87) and RMSE = 17.79 (20.08) μg/m3, followed by 
a gradual decrease thereafter (Figs. S3 and S4).

Overall, on the national scale, the model achieves a high overall 
(predictive) accuracy in retrieving hourly surface O3 concentrations 
throughout the day, with average sample (station and block) CV-R2 and 
RMSE values of 0.89 (0.88 and 0.84) and 16.35 (17.69 and 19.74) μg/ 
m3. The superior performance of the model is also maintained during 
both daytime (e.g., CV-R2 = 0.92, 0.90 and 0.88, and RMSE = 15.72, 
16.72 and 18.75 μg/m3) and nighttime (e.g., CV-R2 = 0.82, 0.78, and 
0.73, and RMSE = 16.97, 18.61, and 20.69 μg/m3) (Table 3). The model 
also performs well in estimating and predicting all-day, daytime, and 
nighttime hourly surface O3 concentrations at regional scales, especially 
in the Beijing-Tianjin-Hebei (BTH) region (e.g., sample-CV R2 =

0.87–0.94, station-CV R2 = 0.87–0.94, and block-CV R2 = 0.85–0.93).

Figure 3 shows the model’s accuracy of all hourly retrievals in 2019 
across China at individual sites. Overall, our model demonstrates strong 
performance and adaptability in estimating surface hourly O3 levels at 
most sites without weak spatial patterns. At ~88 % of the sites, sample- 
based CV-R2 values exceed 0.8, and 76 % (75 %) of the sites have RMSE 
(MAE) values below 18 (13) μg/m3, particularly in locations within 
eastern and central China (CV-R2 > 0.9) where the ground observation 
network is denser (Fig. 3a-c). Spatial patterns for the station-CV and 
block-CV results are similar, but the model exhibits an overall reduced 
accuracy in its predictive capability, with decreasing CV-R2 values and 
increasing uncertainties for most sites across China (Fig. 3d-i). Never
theless, more than 84 % (74 %), 80 % (63 %), and 74 % (54 %) of the 
sites still maintain reliability, with high CV-R2 > 0.8, low RMSE < 20 
μg/m3, and low MAE < 14 μg/m3 for station-CV (block-CV) results, 
respectively. Poor performance is primarily located at a few sites in 
western and northwestern China, as well as some nearby sites like in 
central China. This variance in the model’s predictive ability is mainly 
caused by large differences in meteorological conditions and pollutant 
types and the small number of sites in western China. In addition, some 
input auxiliary variables used for model training, such as BLH and RH, 
may fail to accurately capture these differences among these sites due to 
their original coarse resolution (~10 km), resulting in varying levels of 
accuracy with considerable discrepancies. In general, surface O3 re
trievals are highly consistent across national, regional, and site scales, 
reaffirming the model’s robust performance.

3.2. Diurnal variations in surface O3 and driving factors

Figures 4 and S5 show satellite-derived gapless and ground- 
measured surface O3 concentrations at a 1-km resolution for each 
hour throughout the day in China during the year 2019. In this study, we 
adopt the China Meteorological Administration’s division standards to 
delineate daytime and nighttime periods, i.e., daytime refers to the 12-h 
period from 08:00 to 20:00 LT, while the nighttime refers to the 12-h 
period from 20:00 to 08:00 LT (CMA, 2015). As expected, surface O3 
has strong diurnal variations. At 08:00 LT, it is at its lowest level 
(average = 53.94 ± 10.95 μg/m3), gradually increasing as the sun 
continues to rise. The increasing rate of surface O3 concentrations is 
faster in northern China than in southern China, followed by a wide
spread growing trend in central and eastern China from 10:00 to 12:00 
LT. It continues to rise notably over most regions in the domain, with a 
majority of values surpassing 100 μg/m3, reaching a peak at 15:00 LT 
(average = 102.56 ± 11.41 μg/m3). After that, areas with high O3 
pollution shrink rapidly, with average values dropping from 102.44 ±
11.75 μg/m3 at 16:00 LT to 54.63 ± 12.13 μg/m3 by 07:00 LT the 
following day. The decreasing rate in southern China outpaces that in 
northern China, with the fastest decline observed in southeast China. 

Table 3 
Cross-validation (CV) statistics of hourly O3 estimates (μg/m3) for all-day, daytime, and nighttime periods in China and each typical region, using the 4D-STET model. 
All day represents 00:00–23:00 LT, daytime represents 08:00–20:00 LT, and nighttime represents the other hours.

Region Period Sample-CV Station-CV Block-CV

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

China All day 0.89 16.35 11.53 0.88 17.69 12.46 0.84 19.74 14.27
Daytime 0.92 15.72 10.93 0.90 16.72 11.66 0.88 18.75 13.39
Nighttime 0.82 16.97 12.12 0.78 18.61 13.26 0.73 20.69 15.15

BTH All day 0.93 17.24 11.58 0.92 17.62 11.87 0.92 18.23 12.39
Daytime 0.94 17.38 11.25 0.94 17.78 11.54 0.93 18.24 11.92
Nighttime 0.87 17.09 11.92 0.87 17.46 12.22 0.85 18.23 12.88

YRD All day 0.89 16.98 11.97 0.88 17.59 12.41 0.86 19.22 13.82
Daytime 0.91 17.36 12.12 0.90 17.85 12.46 0.88 19.44 13.83
Nighttime 0.81 16.58 11.83 0.79 17.33 12.36 0.75 19.00 13.81

PRD All day 0.89 18.50 12.76 0.87 19.97 13.78 0.83 22.45 16.01
Daytime 0.90 19.55 13.35 0.89 20.60 14.12 0.85 23.63 16.60
Nighttime 0.79 17.39 12.18 0.73 19.32 13.45 0.68 21.20 15.42

BTH: Beijing-Tianjin-Hebei; YRD: Yangtze River Delta; PRD: Pearl River Delta.
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During the daytime, surface O3 concentrations in most areas exceed 80 
μg/m3, with particularly high levels observed in the North China Plain 
and northwest China. By contrast, during the nighttime, surface O3 
levels consistently fall below 60 μg/m3, except in a few western and 

central regions. In general, surface O3 concentrations during the day
time (average = 85.88 ± 9.15 μg/m3) are notably higher (~1.4 times) 
than that at the nighttime (average = 63.78 ± 10.91 μg/m3). This dif
ference is primarily ascribed to the complex interplay of various 

Fig. 3. Individual-site-scale (a-c) out-of-sample (top row), (d-f) out-of-station (middle row), and (g-i) out-of-block (bottom row) cross-validation (CV) results for 
surface O3 retrievals (μg/m3) collected from all hours in 2019 in China using the 4D-STET model.

Fig. 4. Satellite-derived 1-km-resolution surface O3 concentrations for each hour throughout the day (00:00–23:00 LT, surrounding subplots), along with average 
maps during the (a) daytime (08:00–20:00 LT) and (b) nighttime (20:00–08:00 LT) in 2019 across China.
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atmospheric processes, emissions, and photochemical reactions, e.g., 
higher oxidant OX (O3 and NO2) levels during the daytime (Han et al., 
2011) and lower nighttime BLH facilitating nitric oxide (NO) titration 
reactions that deplete nighttime O3 (Liao et al., 2023). Similar diurnal 
variations in surface O3 are observed at regional scales, with the highest 
values typically occurring around 15:00–16:00 LT (Fig. S6). However, 
the BTH region seems to show more significant changes, with substantial 
fluctuations in hourly surface O3 variations. Across different regions, O3 
concentrations have relatively consistent diurnal variation patterns 
throughout all four seasons (Fig. S7). Minimum levels are reached in the 
early morning (06:00–07:00 LT), gradually increasing thereafter, 
peaking around 15:00–16:00 LT, and then slowly decreasing. While the 
general trends are similar across regions, differences exist in the mag
nitudes of maximum and minimum O3 values (Strode et al., 2019; Xu 
et al., 2021). In winter, O3 concentrations show minimal diurnal fluc
tuations, whereas in summer and autumn, the variations are more sig
nificant. In general, the diurnal variations in surface O3 concentration 
from our retrievals are consistent with results obtained from 
ground-based measurements in China, as well as three typical regions 
(Figs. 5, and S5-S7).

To gain a deeper insight into the driving factors affecting diurnal 
variations in surface O3, we utilized XAI technology to compute the 
SHAP value for each of the variables and investigated their contributions 
at different hours throughout the day (Fig. 5). In the morning hours 
(08:00–10:00 LT), the influencing factors are more intricate, with BLH, 
wind, solar radiation (UV + shortwave), and tropospheric NO2 column 
(TNO2) emerging as more significant contributors (SHAP = 8–30 %). 
This can be explained by sunlight elevating solar radiant energy and 
near-surface temperatures, facilitating the photochemical reaction pro
cess (David and Nair, 2011; Han et al., 2011). Additionally, the inter
mittent vertical turbulent motion associated with BLH and wind 
transport contributes to a residual O3 layer moving nearer to the surface, 
consequently elevating surface O3 concentrations (Hu et al., 2012; 
Morris et al., 2010; Xu et al., 2020). During 11:00–16:00 LT, radiation 
(14–33 %), LST (11–20 %), RH (8–17 %), and BLH (7–12 %) consistently 
stand out as the four most influential factors. The primary cause lies in 
heightened radiation and elevated temperatures substantially 

stimulating the production of atomic oxygen and oxidants and 
increasing photochemical reactions (Bloomer et al., 2009; Wei et al., 
2022a; Zhang et al., 2023; Zhao et al., 2016). As the day progresses, the 
contribution of radiation gradually weakens while the roles of temper
ature and RH undergo significant upswing trends. TNO2 remains a stable 
and large influence (6 %), primarily driven by continuous human ac
tivities and traffic emissions. After solar radiation disappears towards 
evening, temperature becomes the most critical variable, but its 
contribution gradually decreases from ~26 % at 19:00 LT to ~3 % at 
07:00 LT. In addition, RH also exhibits an overall decreasing trend but 
still has large impacts (average = 12 %) on surface O3 concentrations, 
while the contribution of TNO2 exhibits an upward trend, increasing 
from ~6 % to ~20 % over time. The possible reason is that RH is closely 
correlated with the dry deposition of O3 and can influence its removal 
because high RH levels can enhance the O3 deposition rate through the 
uptake of O3 by water droplets or aerosol particles (Kavassalis and 
Murphy, 2017). In addition, there are still some chemical reactions in 
the atmosphere that are related to surface O3, such as those involving 
HCHO (Stutz et al., 2004) and NOx (Valuntaitė et al., 2012). Other 
meteorological (e.g., WS = 13 %) and surface-related (e.g., DEM = 11 % 
and NDVI = 9 %) factors become increasingly more important in 
influencing surface O3 variations during nighttime.

In general, during the daytime, over 42 % of the diurnal variation in 
surface O3 can be attributed to solar radiation (28 %) and surface tem
perature (14 %). Other meteorological factors contribute ~31 %, with 
RH (~13 %), BLH (~9 %), and WS (~4 %) having relatively larger in
fluences. However, during the nighttime, TNO2 contributes the most 
(~16 %), 9 % higher than in the daytime (7 %), followed by LST (13 %). 
Other meteorological factors comprise ~35 % of the influence, with the 
three primary variables, i.e., RH, WS, and BLH, contributing at 12 %, 8 
%, and 6 %, respectively. In addition, surface-related factors become 
more important during the nighttime compared to the daytime (13 % 
versus 10 %). Importantly, our results illustrate the crucial roles of 
satellite tropospheric O3, NO2, and HCHO, contributing about 3 %, 7 %, 
and 5 % during the daytime, respectively. Their significance amplifies 
notably during nighttime, where contributions rise to 27 % versus 15 %, 
particularly pronounced for NO2 (~16 %). The reason is that during 

Fig. 5. Time series of hourly surface O3 variations (boxplots) and top-four driving factors (colored dots) throughout the day in 2019 in China. The black dashed line 
represents the diurnal variation observed from ground measurements. The two pie charts illustrate the contributions of driving-factor categories during the daytime 
(08:00–20:00 LT) and nighttime (20:00–08:00 LT). Solar radiation includes DSR, UVA, and UVB. Other meteorological variables include BLH, RH, TP, SP, WD, and 
WS. TROPOMI gases include TO3, TNO2, and THCHO. The emission inventory includes NOx, VOCs, and CO.
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nighttime, the NO titration effect consumes nocturnal O3, consequently 
elevating NO2 concentrations (NO + O3 → NO2 + O2), thereby further 
depleting O3 to produce NO3 (NO2 + O3 → NO3 + O2) (He et al., 2018; Li 
et al., 2023a). However, tropospheric O3 is generally less important than 
the other two gases, perhaps due to the larger uncertainties encountered 
during the conversion process from total column amount to tropospheric 
column amount using O3 profile data. Nevertheless, differences exist at 
the regional scale (Fig. S6). In the BTH and Yangtze River Delta (YRD) 
regions, LST (37 % and 32 %) and radiation (25 % and 16 %) contribute 
the most during the daytime, while RH, wind, TP, and SP are more 
important meteorological factors during the nighttime. TNO2 remains 
relatively impactful (11 % and 9 %) throughout the day. By contrast, in 
the Pearl River Delta (PRD) region, RH contributes the most during the 
daytime and nighttime (23 % and 18 %, respectively), and meteoro
logical factors contribute more significantly to surface O3 variations 
compared to other regions. This region is closer to the sea, with south
west and southeast monsoons prevailing in the summer, and is affected 
by more weather systems (e.g., southwesterly wind, typhoons, and weak 
cyclones) (Han et al., 2020; Jiang et al., 2015).

3.3. MDA8 O3 levels and exposure risk

Using 24-hourly data, we first calculate MDA8 O3 concentrations 
across China and evaluate the population risk exposure to short-term O3 

pollution using World Health Organization (WHO) air quality standards 
updated in 2021 (WHO, 2021) (Fig. 6). MDA8 O3 concentrations mostly 
fall within the range of 81 to 115 μg/m3 (95th percentile), with a 
population-weighted average of 101.7 μg/m3 in 2019 (Fig. 6a). Serious 
pollution situations are mainly distributed in the North China Plain 
(especially in major parts of Shandong, Hebei, and Henan provinces: 
MDA8 O3 > 120 μg/m3) and north-central regions. By contrast, the 
remaining areas generally experience low levels, especially in northeast 
and southwest China (MDA8 O3 < 90 μg/m3). Concerning the daily 
population risk of O3 exposure, we found that ~43 % (61 %) of all 
(populated) areas in China encounter severe O3 pollution, with at least 
one day surpassing the WHO’s recommended short-term interim target 1 
(i.e., daily MDA8 O3 = 160 μg/m3). However, the exposure risk is usu
ally low (less than 20 % of days) in most regions (Fig. 6b). Regarding the 
short-term interim target 2 (i.e., daily MDA8 O3 = 120 μg/m3), areas 
exposed to a one-day risk expand significantly, reaching 97 % in all areas 
and 98 % in populated areas. The frequency also increases rapidly, with 
some eastern areas experiencing pollution for up to half of the year 
(Fig. 6c). Most notably, when looking at the expected short-term air 
quality guidance (AQG) level (i.e., daily MDA8 O3 = 100 μg/m3), 100 % 
of areas and the entire population are exposed to unhealthy air for at 
least one day, with a substantial risk intensity ranging from 20 % to 90 % 
across the domain (Fig. 6d). These findings signify a serious risk of short- 
term O3 exposure, underscoring the urgent requirement for 

Fig. 6. Spatial distributions of (a) MDA8 O3 concentration (μg/m3) and the percentage (%) of days exceeding the WHO-recommended short-term (b) interim target 1 
(daily MDA8 O3 = 160 μg/m3), (c) interim target 2 (daily MDA8 O3 = 120 μg/m3), and (d) air quality guideline level (daily MDA8 O3 = 100 μg/m3) for 2019 in 
China. The inserted lower-left plots show probability density curves. The number in (a) is the annual average of MDA8 O3 in China, and the numbers in (b-d) indicate 
the percentages of pollution days for all regions, respectively.
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environmental protection measures to control surface O3 pollution, 
improve air quality, and promote future health benefits, especially in 
densely populated regions.

3.4. Surface O3 phytotoxicity indices and impacts

Figure 7 illustrates the spatial distribution of six main surface O3 
phytotoxicity indices calculated from 24-hourly data in China for the 
year 2019. Specifically, M7 and M12 have similar spatial patterns, 
ranging between 32 to 45 ppb and 33 to 47 ppb (95th percentile), with 
an average of 39.3 and 40.1 ppb, respectively. Elevated values are 
predominantly concentrated in the western regions of Shandong prov
ince and scattered areas in northern China (Fig. 7a-b). Conversely, most 
other areas maintain low levels, especially in western, southwest, and 
northeastern China (M7 and M12 < 35 ppb). There is a substantial 
disparity between AOT0 and AOT40, where the former ranges from 52 
to 84 ppm (95th percentile), with an average of 66.9 ppm, and the latter 
is mostly within the 6–32 ppm range (average = 15.9 ppm). This 
distinction is attributed to AOT40 incorporating a threshold for hourly 
O3 accumulation, while there is no criterion for AOT0. Nevertheless, 
extremely high AOT0 values are present in the North China Plain 
(particularly in Shandong and Tianjin), as well as in the western and 
central regions of Inner Mongolia and certain areas in northeastern 
China like Liaoning (Fig. 7c). Similar spatial patterns are observed for 
AOT40, albeit with significantly lower levels. Note that ~95 %, 98 %, 
and 100 % of vegetated areas in China exceed the defined critical levels 
of AOT40 at 6 ppm, 5 ppm, and 3 ppm, respectively. The spatial patterns 
of SUM06 (ranging from 0.12 to 54, average = 21.9 ppm) and W126 
(ranging from 4 to 44, average = 16.9 ppm) are generally in close 
alignment with that of AOT40 but with higher levels in the North China 
Plain (Fig. 7e-f). However, about 55 %, 65 %, and 70 % of vegetated 
areas in China surpass the SUM06 critical levels of 15 ppm, 10 ppm, and 
8 ppm, respectively. Furthermore, ~23 % and 82 % of vegetated areas in 
China are above the W126 critical levels of 23.8 ppm and 5.9 ppm, 
respectively. In general, the majority of vegetated areas in China in 2019 
experienced surface O3 phytotoxicity, with the North China Plain being 
the most severely impacted region.

We also quantitatively investigated the influence of surface O3 

pollution on various types of vegetation (Fig. 8), observing predomi
nantly negative correlations between six O3 phytotoxicity indices and 
four vegetation abundance indices. It is clear that vegetation growth and 
development are susceptible to exposure to surface O3 pollution through 
phytotoxicity, with the extent of damage depending on the plant species, 
as implied by the varying strengths of the correlations. For croplands, 
AOT0, AOT40, and SUM06 are more associated with various vegetation 
abundance indices, particularly GPP, with R values of − 0.43 (p <
0.001), − 0.41 (p < 0.001), and − 0.41 (p < 0.001), respectively. Forests 
also have stronger responses to O3 pollution, showing heightened sen
sitivities, especially with AOT0 (R = − 0.35 to − 0.53, p < 0.001), AOT40 
(R = − 0.21 to − 0.45, p < 0.001), and W126 (R = − 0.15 to − 0.29, p <
0.001). For grasslands, the correlations between phytotoxicity indices 
and abundance indices continuously strengthen, particularly with AOT0 
(R = − 0.42 to − 0.59, p < 0.001), M12 (R = − 0.42 to − 0.58, p < 0.001), 
and M7 (R = − 0.34 to − 0.54, p < 0.001). Among all types of vegetation, 
AOT0 exhibits the most pronounced response to variations in vegetation 
growth, displaying the highest correlations with various abundance 
indices (R = − 0.19 to − 0.59, p < 0.001), followed by M12 (R = − 0.11 to 
− 0.58, p < 0.001), and M7 (R = − 0.11 to − 0.54, p < 0.001). In general, 
GPP has the strongest sensitivity to surface O3 exposure, particularly in 
conjunction with AOT0, with the strongest correlation across all vege
tated areas (R = − 0.53, p < 0.001), as well as in croplands (R = − 0.43, p 
< 0.001), forests (R = − 0.46, p < 0.001), and grasslands (R = − 0.59, p 
< 0.001), consistent with findings from a previous study (Zhu et al., 
2022). This is further supported by its consistently strongest correlations 
with other O3-exposure phytotoxicity indices. This can be attributed to 
ambient O3’s ability to enter leaves through stomata, causing damage to 
biological macromolecules and cell death (Kangasjarvi et al., 2005). 
This, in turn, reduces leaf stomatal conductance and photosynthetic 
rates (Ainsworth et al., 2012), ultimately leading to declines in primary 
metabolism, leaf area, biomass, and further reductions in GPP (Jin et al., 
2023; Proietti et al., 2016).

3.5. Comparison with related studies

Last, we compared our results with related research focusing on 
surface O3 retrievals across China (Table 4). Most previous studies were 

Fig. 7. Spatial distributions of estimated (a) M7 (ppb), (b) M12 (ppb), (c) AOT0 (ppm), (d) AOT40 (ppm), (e) SUM06 (ppm), and (f) W126 (ppm) across China in 
2019. The inserted lower-left plots show cumulative area percentages for vegetated areas in China. The black dotted lines in (d-f) show the lowest critical levels (i.e., 
3, 8, and 5.9 ppm, respectively). The numbers in (d-f) indicate cumulative percentages exceeding the specific critical level.
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Fig. 8. Correlation analysis between vegetation abundance indices (i.e., NIRv, LAI, FPAR, and GPP) and O3-exposure phytotoxicity indices (i.e., AOT0, AOT40, M12, 
M7, SUM06, and W126) for various vegetated types, i.e., all vegetated areas (sample size, N = 9,109,181), forest (N = 1,746,937), grassland (N = 5,281,879), and 
cropland (N = 2,080,365) in China in 2019. All correlations are statistically significant at the 99.9 % (p < 0.001) confidence level.

Table 4 
Model performance comparison in estimating hourly surface O3 concentrations in China from previous studies.

Model Duration Spatial resolution Overall accuracy Missing values Literature

CV-R2 RMSE MAE

LSTM All day (00:00–23:00 LT) 10 km 0.72 22.98 – No Zhang et al. (2024)
DF All day (00:00–23:00 LT) 10 km 0.80 18.56 13.60 No Zhu et al. (2023)
BT Daytime (09:00–16:00 LT) 5 km 0.87 18.30 13.30 No Zhang et al. (2023)
DF Daytime (10:00–15:00 LT) 5 km 0.91 12.74 8.25 Yes Chen et al. (2023b)
SGLboost Daytime (09:00–18:00 LT) 2 km 0.85 19.04 – Yes Wang et al. (2022c)

4D-STET

Daytime (09:00–16:00 LT)

1 km

0.92 15.43 10.71

No This study

Daytime (10:00–15:00 LT) 0.91 15.48 10.78
Daytime (09:00–18:00 LT) 0.92 15.74 10.93
Daytime (08:00–20:00 LT) 0.92 15.72 10.93
Nighttime (20:00–08:00 LT) 0.82 16.97 12.12
All day (00:00–23:00 LT) 0.89 16.35 11.53

LSTM: Long Short-Term Memory; DF: Deep Forest; BT: Bagged-Tree; SGLboost: Self-adaptive Geospatially Local categorical boosting; 4D-STET: 4-Dimensional Space- 
Time Extra-Trees.
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concerned with the daily level, using MDA8 O3 measurements calcu
lated from hourly data as the baseline for model training (Liu et al., 
2020; Song et al., 2022; Wei et al., 2022a; Xue et al., 2020). In fact, 
MDA8 is not a straightforward multi-hour average but an iterative daily 
maximum 8-h average, which can lead to substantial deviations in 
modeling interpolated results, particularly in remote areas lacking 
measurements. Accurate MDA8 calculations require 24-h of retrievals, 
but few studies have addressed this issue (Chen et al., 2023b; Wang 
et al., 2022c; Xue et al., 2022; Zhang et al., 2023). All of these studies 
have also exclusively focused on retrieving daytime surface O3 con
centrations, with durations (< 10 h) falling significantly short of the 
requirements to calculate air quality and O3-exposure phytotoxicity 
indices. In addition, their retrieved hourly surface O3 concentrations 
often have sparse spatial resolutions (2–10 km), significantly con
straining their applicability in small-scale areas such as urban environ
ments. This is evidenced by the strong O3 heterogeneity observed when 
analyzing surface O3 differences at multiple closely located sites in 
typical regions across China (Text S1, and Figs. S8 and S9). Furthermore, 
previous estimates suffer from severe spatial discontinuities due to large 
gaps of missing values in critical satellite optical input variables (e.g., 
Himawari-8 top-of-the-atmosphere radiation and brightness tempera
tures) caused by cloud contaminations (Chen et al., 2023b; Wang et al., 
2022c). Importantly, our model exhibits superior overall accuracy 
compared to the performance of AI models in previous studies using data 
from the same period, including LSTM (e.g., CV-R2 = 0.72; Zhang et al., 
2024), BT (e.g., CV-R2 = 0.87; Zhang et al., 2023), DF (e.g., CV-R2 =

0.91 and 0.80; Chen et al., 2023b; Zhu et al., 2023), and SGLboost (e.g., 
CV-R2 = 0.85, Wang et al., 2022c). The improvements result from the 
use of a more competent ML model and more variables affecting O3, such 
as satellite tropospheric NO2 and HCHO, along with major O3 pre
cursors. This approach allows for a more comprehensive capture of the 
impact of photochemical reactions on surface O3 generation. Addition
ally, we address the obvious heterogeneities of surface O3 by incorpo
rating novel spatiotemporal information during the modeling process. 
Our study presents unique information by first offering a spatially (100 
% coverage) continuous dataset of 24-hourly surface O3 concentrations 
across China, encompassing the full temporal range (0:00–23:00 LT) at a 
high spatial resolution of 1 km.

3.6. Summary and conclusions

Surface O3 is a critical atmospheric pollutant gas influencing air 
quality, posing a major human health risk, as well as plant well-being 
risk. To overcome limitations encountered in previous studies, e.g., 
low temporal resolution (mostly daily, with only a few hourly obser
vations during the daytime), sparse spatial resolution, and substantial 
spatial gaps in data retrievals, we refined a total of 15 AI models by 
introducing multidimensional spatiotemporal information to enhance 
their capabilities. The best-performing model (i.e., the 4D-STET model) 
was then selected to derive for the first time gapless surface O3 con
centrations in China at 24-hourly temporal and 1-km spatial resolutions 
from the geostationary-satellite-derived solar radiation and surface 
tempuratureproducts and many other ancillary data for the year 2019. 
Cross-validations demonstrate the robustness of our model in capturing 
the diurnal variations of surface O3 concentrations, with overall sample- 
based (station-based and block-based) CV-R2 values of 0.89 (0.88 and 
0.84), 0.92 (0.90 and 0.88), and 0.82 (0.78 and 0.73), with corre
sponding RMSE values of 16.35 (17.69 and 19.74) μg/m3, 15.72 (16.72 
and 18.75) μg/m3, and 16.97 (18.61 and 20.69) μg/m3 during all times 
(00:00–23:00 LT), daytime (08:00–20:00 LT), and nighttime 
(20:00–08:00 LT), respectively. The availability of temporally contin
uous surface O3 data facilitates our capacity to analyze diurnal varia
tions, daily exposure risks, and phytotoxicity impacts at different 
spatiotemporal scales throughout China.

Surface O3 levels showed strong diurnal variations, steadily rising 
from sunrise, peaking around 15:00 LT, and continuously decreasing 

thereafter. XAI-SHAP analysis results revealed that shortwave and UV 
radiation, along with LST, explain about 42 % of the surface O3 varia
tions during the daytime, while tropospheric NO2 plays the most sig
nificant role during the nighttime, contributing approximately 16 %. In 
2019, approximately 61 % (43 %), 98 % (97 %), and 100 % (100 %) of 
populated areas (entire areas) faced short-term surface O3 exposure risk 
for at least one day, with daily MDA8 O3 surpassing the WHO’s air 
quality standards of 160 μg/m3, 120 μg/m3, and 100 μg/m3, respec
tively. Furthermore, ~100 %, 98 %, and 95 % of vegetated areas in 
China exceeded the critical levels of AOT40 at 3 ppm, 5 ppm, and 6 ppm, 
respectively. For SUM06, ~70 %, 65 %, and 55 % of vegetated areas 
surpassed the critical levels of 8 ppm, 10 ppm, and 15 ppm, respectively. 
As for W126, ~82 % and 23 % of vegetated areas exceeded the critical 
levels of W126 at 5.9 ppm and 23.8 ppm, respectively. These findings 
highlight the urgent need for environmental protection measures to 
mitigate surface O3 pollution and promote the health of both the public 
and vegetation in the future. Despite the consistent negative correla
tions, GPP demonstrates the strongest response to surface O3 pollution 
among all vegetation (ozone-exposure) phytotoxicity indices, encom
passing various vegetated types, especially when combined with AOT0 
(R = − 0.43 to − 0.59, p < 0.001). In a future study, we will explore more 
powerful AI methods with improved capabilities in handling time-series 
data, such as Transformer (Vaswani et al., 2017; Wei et al., 2024), and 
integrate relevant gas data from GEO satellites such as GEMS and 
TEMPO to further refine the estimation of hourly surface O3 concen
trations. We also intend to apply our methodology to generate a long- 
term hourly surface O3 dataset to provide more detailed insights into 
air quality and phytotoxic damage caused by surface O3 pollution.
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Chinese O3 measurements are available at http://www.cnemc.cn. 
The Himawari-8 Downward Shortwave Radiation and Photosyntheti
cally Available Radiation products are available at https://data.nas. 
nasa.gov/geonex/geonexdata/HIMAWARI8/GEONEX-L2/DSR-PAR/ 
and https://www.eorc.jaxa.jp/ptree/. The GHA Land Surface Temper
ature product is available at http://glass.umd.edu/allsky_LST/GHA- 
LST/2019/. The TROPOMI tropospheric O3, NO2, and HCHO columns 
products are available at https://browser.dataspace.copernicus.eu/. 
The ERA5 reanalysis is available at https://cds.climate.copernicus.eu/. 
The CAMS global reanalysis is available at https://ads.atmosphere. 
copernicus.eu/. The ABaCAS-EI v2.0 emission inventory is available at 
doi:10.6084/m9.figshare.21777005.v1. The SRTM DEM data is avail
able at https://www2.jpl.nasa.gov/srtm/. LandScan™ population data 
is available at https://landscan.ornl.gov/. The MODIS series products, 
including NDVI (MOD13A2), nadir reflectance (MCD43A4), LAI and 
FPAR (MOD15A2H), and Land Cover Type (MCD12Q1) products are 
available at https://www.earthdata.nasa.gov/. GPP data is available at 
http://www.nesdc.org.cn/sdo/detail? 
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id=612f42ee7e28172cbed3d809. The generated 24-hourly 1-km sur
face O3 datasets and codes can be found at doi:10.5281/ 
zenodo.10035857.
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Super, I., Vilà-Guerau de Arellano, J., Krol, M.C., 2015. Cumulative ozone effect on 
canopy stomatal resistance and the impact on boundary layer dynamics and CO2 
assimilation at the diurnal scale: a case study for grassland in the Netherlands. 
J. Geophys. Res. Biogeosci. 120, 1348–1365. https://doi.org/10.1002/ 
2015JG002996.

Tong, D.Q., Mathur, R., Kang, D., Yu, S., Schere, K.L., Pouliot, G., 2009. Vegetation 
exposure to ozone over the continental United States: assessment of exposure indices 
by the eta-CMAQ air quality forecast model. Atmos. Environ. 43, 724–733. https:// 
doi.org/10.1016/j.atmosenv.2008.09.084.
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