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Abstract. The urban heat island intensity (UHII) is the tem-
perature difference between urban areas and their rural sur-
roundings. It is commonly attributed to changes in the un-
derlying surface structure caused by urbanization. Air pollu-
tion caused by aerosol particles can affect the UHII through
changing (1) the surface energy balance by the aerosol ra-
diative effect (ARE) and (2) planetary-boundary-layer (PBL)
stability and airflow intensity by modifying thermodynamic
structure, which is referred to as the aerosol dynamic effect
(ADE). By analyzing satellite data and ground-based obser-
vations collected from 2001 to 2010 at 35 cities in China
and using the WRF-Chem model, we find that the impact
of aerosols on UHII differs considerably: reducing the UHII
in summer but increasing the UHII in winter. This seasonal
contrast is proposed to be caused by the different strengths
of the ARE and ADE between summer and winter. In sum-
mer, the ARE on UHII is dominant over the ADE, cooling
down surface temperature more strongly in urban areas than
in rural areas because of much higher aerosol loading, and
offsets the urban heating, therefore weakening UHII. In win-
ter, however, the ADE is more dominant, because aerosols
stabilize the PBL more in the polluted condition, weaken-
ing the near-surface heat transport over urban areas in both
vertical and horizontal directions. This means that the heat
accumulated in urban areas is dispersed less effectively, and
thus the UHII is enhanced. These findings shed new light on

the impact of the interaction between urbanization-induced
surface changes and air pollution on urban climate.

1 Introduction

The global population has been increasingly concentrated in
cities (Heilig, 2012). Urbanization in China has dramatically
increased from 26 % in 1990 to 60 % in 2018, resulting in a
marked change in the landscape. It has a significant impact
on the urban and rural climate and will continue to make an
impact as cities continue to develop (Han et al., 2014; Ren,
2015). Urbanization leads to a dramatic change in the under-
lying surface structure, properties, and spatial distribution of
a city, such as a reduction in green areas and a correspond-
ing increase in urban impervious areas. These changes in-
crease the temperature difference between urban and rural
areas, known as the urban heat island (UHI) intensity (UHII)
(e.g., Kalnay and Cai, 2003; Zhao et al., 2014, 2016; Zhou
et al., 2016; Yang et al., 2017). While the UHI mainly in-
volves surface and atmospheric UHIs, this study focuses on
surface UHI. The UHI also affects the structure and move-
ment of cloud systems (Changnon and Westcott, 2002; Kug
and Ahn, 2013; Pinto et al., 2013). Many factors affect the
diurnally and seasonally varying UHI, such as weather and
climatic regimes, urban impervious surfaces, anthropogenic
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Figure 1. Illustration of the relationship between urbanization, ur-
ban heat island, aerosols, local and regional weather, and climate.
Solid arrows denote the effect.

heat, air pollution, and urban 3-D structure (Oke, 1982; Mor-
ris and Simmonds, 2000; Kim and Baik, 2002; Gedzelman et
al., 2003; Ryu and Baik, 2012; Ding et al., 2016; Y. Yang et
al., 2019).

It is well established that cities are the largest sources
of anthropogenic heat emissions as by-products of indus-
trial and human activities. Human activities can also generate
large amounts of aerosols that can reduce air quality, change
the physical and chemical properties of the atmosphere, and
endanger human health (Sanap and Pandithurai, 2015; Cohen
et al., 2017; Wei et al., 2019a, b, 2020). Aerosols can also al-
ter the radiation balance of the climate system. Their thermo-
dynamic effect reduces the amount of radiation reaching the
ground, and their microphysical effect can influence cloud
properties and precipitation regimes through their impacts
on cloud microphysical and dynamic processes (Rosenfeld et
al., 2008; Li et al., 2011, 2016, 2019; Fan et al., 2013; Guo et
al., 2018; Liu et al., 2019). Aerosols can increase cloudiness
and cloud thickness and thus change the stability of the plan-
etary boundary layer (PBL). In humid regions, aerosols may
reduce the frequency of light rain but increase heavy rainfall,
while in dry areas, aerosols aggravate droughts. Aerosols can
also intensify convection by delaying the occurrence of con-
vection and enhancing gust fronts (Khain et al., 2005; Carrió
et al., 2010; Carrió and Cotton, 2011; Wang et al., 2011; Han
et al., 2012; Lee and Feingold, 2013; Guo et al., 2016a; Li et
al., 2017b). The effect of urbanization on clouds and precip-
itation has also been the focus of many studies (Changnon
et al., 1977; Ackerman et al., 1978; Changnon et al., 1991;
Shepherd et al., 2002; Shepherd and Burian, 2003). With in-
creasing urbanization in the future, cities are likely to influ-
ence local and regional weather and climate to greater and
greater degrees.

UHI, surface roughness, and higher aerosol concentrations
have been proposed to explain observed urban clouds and
precipitation anomalies. Increased urban surface roughness
likely does not play a major role in urban-area-induced pre-
cipitation. Rather, UHI and higher aerosol concentrations
may play more important roles (Han et al., 2014). The UHI
can alter the water vapor flux (accelerate evaporation), reduce
horizontal wind speeds and enhance vertical turbulence, re-
duce the temperature difference between daytime and night-

time, increase the absorption rate of solar radiation by land,
and change underlying surface characteristics (e.g., sensi-
ble heat dissipation, convection efficiency, evaporation and
cooling, sunlight reflection, and anthropogenic heat transfer)
(Jáuregui and Romales, 1996; Taha, 1997; Bornstein and Lin,
2000; Givati and Rosenfeld, 2004; Grimmond, 2007; Carrió
et al., 2010; Zhao et al., 2014; Skougaard Kaspersen et al.,
2015; B. Yang et al., 2019).

The UHI and aerosols may interact over cities. Aerosols
generally reflect and absorb solar radiation and reduce the
amount of shortwave radiation reaching the ground, i.e., the
cooling effect of aerosols on ground temperature. Some nu-
merical modeling studies have demonstrated that landscape
changes reduce near-surface concentrations of particulate
matter (PM2.5) and that the UHI effect can influence the
dispersion of air pollutants (Liu et al., 2009; Liao et al.,
2015; Tao et al., 2015; Zhong et al., 2017, 2018). Moreover,
aerosols can enhance the UHI at night in semi-arid cities (by
0.7± 0.3 K), and the UHI alters aerosol concentrations (Cao
et al., 2016; Fallmann et al., 2016; Lai, 2016). Heavy pollu-
tion can reduce UHII in China, especially during the day (Wu
et al., 2017; Zheng et al., 2018; Yang et al., 2020).

The Weather Research and Forecasting coupled with
Chemistry (WRF-Chem) model has been used extensively in
the simulation and prediction of air quality, the aerosol radia-
tion effect, aerosol–cloud interactions, and changes in meteo-
rological fields and regional climate (Grell et al., 2005; Chap-
man et al., 2009). Coupled with the urban-canopy model,
WRF-Chem can account for the influences of aerosols and
land surface changes on radiative processes if such param-
eters are fed to the model, e.g., aerosol loading and single-
scattering albedo, surface albedo, thermal emissivity, and
roughness, among others (Miao et al., 2009; Chen et al.,
2011). Many pertinent studies done to date focused on annual
effects without investigating any seasonal differences and the
underlying mechanism. This study aims to fill this gap by an-
alyzing the annual and seasonal effects of aerosols on UHII
and proposing mechanisms that may explain the seasonal dif-
ferences.

2 Data and methods

2.1 Data

Data used in this study include the Land Satellite The-
matic Mapper and Enhanced Thematic Mapper (Landsat
TM/ETM+) and Moderate Resolution Imaging Spectrora-
diometer (MODIS) products (including land surface temper-
ature – LST – and aerosol optical depth – AOD), ground-
based data from meteorological stations, PM2.5 concentra-
tions, and sounding data.

Landsat data are used to identify and outline urban areas
and urban contours. The spatial resolution is 30 m. Summer-
time (June, July, and August) images before or in 2000 and in
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2015 were examined to ensure the accuracy and consistency
of the results.

The MODIS LST product (MYD11A1/A2) at a 1 km spa-
tial resolution was used to calculate urban and rural UHIIs.
Since this study is mainly focused on the daytime UHI ef-
fect, only data (daily and 8 d clear-sky LST observations
with a 1 km spatial resolution) at 13:30 Beijing time (BJT)
for the period 2001–2015 were used. The MYD11A2 prod-
uct uses the MODIS cloud mask product (MYD35) to filter
out cloudy conditions. A generalized split-window algorithm
is applied using MODIS data from two longwave bands in
the atmospheric window to correct for atmospheric water va-
por, haze effects, and the sensitivity to errors in the surface
emissivity. Changes in surface emissivity have been taken
into account to obtain the LST from brightness temperatures
(Wan and Dozier, 1996; Snyder et al., 1998; Wang and Liang,
2009; Yu et al., 2011; Cao et al., 2016).

The MODIS Multi-Angle Implementation of Atmospheric
Correction (MAIAC) AOD product, with a 1 km spatial res-
olution and global coverage, is used. This product was re-
trieved by virtue of a time series analysis and a combination
of pixel- and image-based processing to improve the accu-
racies of cloud detection, aerosol retrievals, and atmospheric
correction (Lyapustin et al., 2011a, b, 2012).

A large volume of meteorological data are analyzed, in-
cluding visibility, surface wind speed, temperature, precipi-
tation, and other parameters every 3 h, together with hourly
PM2.5 data in urban and surrounding rural areas. Figure S1
in the Supplement shows the spatial distribution of the mete-
orological stations. For consistency with the satellite imag-
ing time (13:30 BJT), meteorological data and PM2.5 data
observed at 13:00 and 14:00 BJT were selected. Due to the
lack of long-term records of aerosol concentration, visibility
is frequently used as a proxy for aerosol loading (Wang et al.,
2009; Wu et al., 2012; Yang et al., 2013).

Validation using Aerosol Robotic Network AOD retrievals
shows that the MAIAC and MODIS aerosol retrieval algo-
rithms have similar accuracies over dark and vegetated sur-
faces and that the MAIAC algorithm generally improves the
accuracies of AOD retrievals over bright surfaces such as
deserts and urban surfaces (Lyapustin et al., 2011a, b, 2012;
Wei et al., 2019c; Zhang et al., 2019). Sounding data and
PM2.5 measurements were available from 2013 to 2015. MA-
IAC AOD retrievals for each area were averaged to obtain the
spatial distribution of AOD over each city; then the differ-
ence in AOD between urban and rural areas was calculated.

L-band sounding data were employed, acquired at the five
radiosonde stations in Beijing, Chengdu, Nanjing, Shenyang,
and Xi’an, operated by the China Meteorological Admin-
istration since 2006. They contain high-resolution profiles
of temperature, pressure, relative humidity (RH), and wind
speed and direction at 08:00 and 20:00 BJT (UTC+8)
(Zhang et al., 2018; Lou et al., 2019). The data quality of ra-
diosonde measurements has been well validated, making the
data suitable for studying the UHI effect (Guo et al., 2016b).

2.2 Extracting urban impervious surfaces and urban
contours

Indices commonly used to extract built-up areas include the
difference built-up index (DBI), the index-based built-up
index (IBI), and the normalized difference built-up index
(NDBI). Another index, the soil-adjusted vegetation index
(SAVI), is a modification of the normalized difference veg-
etation index that corrects for the influence of soil bright-
ness when the vegetative cover is low (Huete, 1988; Qi et
al., 1994; Rondeaux et al., 1996). After some tests, the dif-
ference NDBI−SAVI was used to extract urban impervious
surfaces because of its ability to differentiate urban impervi-
ous surfaces from other land-use types:

NDBI =
ρ5− ρ4

ρ5+ ρ4
, (1)

SAVI =
ρ4− ρ3

ρ4+ ρ3+L
(1+L), (2)

where L is the soil adjustment factor whose value is 0.5, and
ρn is the Landsat reflectance of band n. We then used dif-
ferent thresholds to extract urban impervious surfaces after
calculating NDBI−SAVI. Results were verified by Google
Earth and a land-use map with a 1 : 100 000 scale from the
Data Center for Resources and Environmental Sciences of
the Chinese Academy of Sciences.

Many previous studies have extracted urban areas from
nighttime stable-light data. However, the spatial resolution
of such data is low, so the extraction accuracy would be sig-
nificantly affected in urban areas with uneven zoning and in
regions with irregular urban development, as in most munic-
ipalities in China. The TM/ETM+ data were used to accu-
rately extract the physical boundaries of urban areas. The
difference in the underlying surfaces of urban and rural areas
forms the basis of the urban physical-boundary extraction.
Urban surfaces are generally covered by impervious materi-
als, and rural surfaces are mainly covered by natural surfaces.
The influence of the UHI is not only felt within the physical
boundaries of urban areas but also beyond it. In terms of area,
this influence can extend from 2 to 4 times the extent of an
urban area. In terms of distance, the influence of the UHI
can be felt as far as 3 to 6 km away from an urban physical
boundary (Zhou et al., 2015).

For each city, nine research windows (6 km× 6 km each)
were selected. The windows include one urban window, four
suburban windows, and four rural windows. For the study
period considered (2001–2015), the urban window repre-
sents an area that remained urban and developed during this
time. The suburban windows represent areas that were veg-
etated before the study period. As cities expanded, these ar-
eas were gradually replaced by urban impervious surfaces
from 2001 to 2015. The rural windows represent areas that
remained vegetated during the study period. These windows
were 10 km away from the urban physical boundary to en-
sure that these windows were not or were weakly affected by
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the UHI. The elevations of the areas covered by each win-
dow are within 100 m of each other for a given city based
on DEM (digital elevation model) data. Water bodies are ex-
cluded. Figure S2 shows the spatial distribution of the nine
research windows for a given city. The UHII is the tempera-
ture difference between the average temperature of the urban
core window and the average temperature of rural windows,
calculated as

UHII=1T = Tu− Tr, (3)

where Tu is the average temperature of an urban area, and Tr
is the average temperature of the neighboring rural area.

2.3 WRF-Chem model simulations

The model used in this study is WRF-Chem 3.9.1, cou-
pled with a single-layer urban-canopy model. As shown in
Fig. S7, the domain has a horizontal grid resolution of 3 km
and 50 vertical levels from the surface to 50 hPa. To better
characterize the PBL, 16 layers are set below 1 km, where the
first layer extends from the surface to ∼ 47 m over Beijing.
The National Centers for Environmental Prediction Final
Analysis (NCEP-FNL) data provided meteorological fields
with a 6 h temporal frequency and a 1◦× 1◦ spatial resolu-
tion. The Goddard Earth Observing System Chemical model
provided the chemical lateral boundary and initial condi-
tions. The IGBP-Modified MODIS 20-category land-use cat-
egory dataset derived the land cover. Monthly 0.25◦× 0.25◦

anthropogenic emissions of aerosols and precursors were
obtained from the Multi-resolution Emission Inventory for
China (MEIC, 2012) (http://www.meicmodel.org, last ac-
cess: 29 May 2020), providing monthly mean emission data
of SO2, NOx , CO, NMVOC, NH3, BC, OC, PM2.5, PM10,
and CO2. The Model of Emissions of Gases and Aerosols
from Nature provided biogenic emission data (Guenther et
al., 2006; Sakulyanontvittaya et al., 2008). The Fire IN-
ventory from NCAR model provided the biomass-burning
emission data (Wiedinmyer et al., 2011). The Carbon Bond
Mechanism version Z chemical mechanism and the Model
for Simulating Aerosol Interactions and Chemistry were
used in simulations (Zaveri and Peters, 1999; Zaveri et al.,
2008). Table S1 in the Supplement summarizes other de-
tails of schemes used in the simulations. The simulations
are initiated at 12:00 UTC on 30 June 2015 for summer and
12:00 UTC on 1 January 2015 for winter. The meteorological
fields are reinitialized every 48 h. We conducted four sets of
model experiments (Table S2) to investigate the aerosol ra-
diative impact for both summer and winter: (a) A1Summer
with the aerosol radiative effect turned on, (b) A0Summer
with the aerosol radiative effect turned off, (c) A1Winter with
the aerosol radiative effect turned on, and (d) A0Winter with
the aerosol radiative effect turned off. To be consistent with
the observation analysis, we select clear-day simulations as
the analysis time period by excluding the first 3 d simulation
for chemistry spin-up (Table S2).

3 The UHI effect

Selected for the study were 35 large cities evenly distributed
across China. Table S3 lists these cities of different sizes.
They represent major and well-developed metropolitan re-
gions in China. The population and urban areas of these cities
have increased faster and/or more dramatically than those of
other cities. We used the difference NDBI−SAVI to extract
urban impervious surfaces and then determined urban con-
tours based on the identification of impervious surfaces. Fig-
ure 2 shows the urban contours of all cities.

Figure S3 shows UHII and visibility trends. UHII and visi-
bility have similar trends in most cities before and after 2008.
The trends, however, differ pre- and post-2008. Figure 3
shows the relationships between UHII and visibility based
on their respective trends shown in Fig. S3. UHII and visibil-
ity are grossly positively correlated. Higher visibility means
a lower aerosol concentration, leading to a higher UHII, and
vice versa. On the other hand, the two may also change in op-
posite directions if the expansion of a city is more associated
with heavy industry with strong emissions. In such a case,
industrial expansion can produce both more aerosol parti-
cles, especially secondary aerosols converted from precursor
gases, and stronger UHI, but they have no causal relation.
This is likely a reason for the diverse relationships between
the trends of the two variables. The complication originates
from highly different pathways of city expansions among
these cities. The overall positive relationships revealed in
Fig. 3 attest to the causal relationship, implying that aerosol
loading influences the UHII to varying degrees. Also ana-
lyzed was the relationship between RH and UHII. Figure 3b
shows that there is a positive correlation between RH and
UHII, but it is less significant than the correlation between
UHII and visibility (p value of visibility>RH). Note that
not only these two factors affect UHII. Many other factors
affect UHII, but this study mainly focuses on the aerosol ef-
fect.

To better investigate the effect of aerosols on the UHII,
we calculated the UHII under severe air pollution conditions
(i.e., visibility less than 8 km) and compared it with the aver-
age UHII. On an annual basis (Fig. S4), the UHII under se-
vere air pollution conditions is lower than the average UHII,
suggesting that a high aerosol loading will reduce the UHII.
In summer (Fig. 4a), the UHI at 29 of the 35 cities is weaker
under polluted conditions. In winter (Fig. 4b), however, the
majority of cities (27 out of 35) have a stronger UHI un-
der polluted conditions, suggesting that aerosols enhance the
UHII in winter.
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Figure 2. Main urban contours of the 35 cities. Blue contours outline urban boundaries before or in 2000, and red contours outline urban
boundaries in 2015. The surface height (in meters above sea level) is indicated by colored shading. The short names of all cities were shown
in brackets.

4 Causes for the opposite impacts of aerosols on the
UHI in summer and winter

4.1 Mechanisms of the aerosol impact on the UHI

Aerosols alter the radiation budget by scattering and absorb-
ing solar radiation (Chýlek and Coakley, 1974; Chýlek and
Wong, 1995; Li, 1998). The aerosol radiative effect tends to
cool down the surface, warm up the atmosphere, stabilize the
PBL, and suppress the dispersion of pollutants in the PBL,
incurring positive feedback (Li et al., 2017a). As illustrated
in Fig. 5, the UHII may be influenced by both the aerosol
radiative effect (ARE) and the suppressed vertical exchange
of surface heat fluxes, denoted as the aerosol dynamic effect
(ADE) because it is related to turbulent dynamics.

The ARE. The increasing difference of aerosols between
the urban and rural areas will reduce more solar radiation to
urban ground than rural ground, which influences the rise of
the LST because of different aerosol loading and properties

between urban and rural areas. The above process reduces
the temperature difference between urban and rural areas and
thus reduces UHII. This process usually has a negative effect
on UHII, and it belongs to aerosol directly radiative effect.

The ADE. On the other hand, an aerosol-induced temper-
ature inversion (especially in winter) within the PBL (Zhang
et al., 2014; Li et al., 2015, 2017a) renders a very stable PBL
that inhibits vertical and horizontal airflows and surface heat
fluxes (latent or sensible heat) between urban areas and ru-
ral areas (Petäjä et al., 2016). In addition to a temperature-
inversion-induced stable PBL, air pollution is usually accom-
panied by low wind speeds (particularly< 2 m s−1), also fa-
vorable to both heat accumulation and storage. Urban sur-
faces can store more heat, which affects UHII. This process
usually has a positive effect on UHII, and it affects heat ex-
change mainly through turbulence mixing.

Compared with rural areas, urban impervious surfaces
have a low thermal capacity, so their temperatures are thus
more sensitive to heat changes. Note that the ARE and ADE
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Figure 3. (a) Clear-day visibility trend (unit: km yr−1) shown as
a function of the UHII trend (K yr−1), and (b) clear-day visibility
(unit: km) and relative humidity shown as a function of UHII (unit:
K). The period is 2001–2015. The black and green lines are the
linear best-fit line through the points. Sample numbers of (a) and
(b) are 68 and 510, respectively. The least-squares regression equa-
tion is given in each panel. The coefficient correlation (R) and p
value are also given, and all of them pass confidence test in 95 %.

are not independent and that there is an indirect effect be-
tween them due to potential urban–rural circulations.

4.2 Analyses of influential factors

4.2.1 Analyses for the ARE

Urban–rural differences in air quality. Urban–rural differ-
ences in air quality were analyzed by calculating the spatial
differences in PM2.5 and AOD under cloudless conditions
between urban and rural areas. Their spatial differences be-
tween summer and winter were also analyzed.

Measurements of urban PM2.5 concentrations were di-
vided into four categories, namely 0–50, 50–100, 100–150,
and > 150 µg m−3, based on urban pollution levels. Figure 6
shows mean urban–rural differences in each PM2.5 concen-
tration bin of all cities. On average, the spatial difference in
summer is larger than in winter across all PM2.5 concentra-
tion bins. Five zones were selected based on the distance to
the urban geometric center of all cities: Zone 1 – 0–10 km,
Zone 2 – 11–20 km, Zone 3 – 21–30 km, Zone 4 – 31–40 km,
and Zone 5 – 41–50 km. Then the average AOD for each
zone was calculated. Figure 7 shows the variation trends of
mean AOD as a function of distance from the urban geomet-
rical center of each city in winter and summer. As the dis-
tance from the urban geometrical center increases, summer-
time AODs decrease more rapidly than wintertime AODs.
Figures 6 and 7 indicate that the spatial difference in air

pollution between urban and rural areas in summer is larger
than that in winter. Moreover, in summer, urban pollution is
often more serious than rural pollution. In winter, pollution
in both urban and, in particular, rural areas is severe. Many
factors (e.g., PM2.5 emissions, transportation, and diffusion)
may cause the seasonal difference in urban–rural differences
(Jiang et al., 2019).

UHII response to variation in visibility. Figure S5 shows
the relationship between UHII and visibility difference. For
most cities, a higher visibility difference causes smaller UHII
in summer, while UHII barely changes as visibility differ-
ence changes in winter. This result indicates that UHII is
more sensitive for visibility difference in summer than win-
ter; namely, the ARE has an obvious effect in summer, but it
is very weak in winter.

The results of Sect. 4.2.1 indicate that the ARE is more
significant in summer than in winter.

4.2.2 Analyses for the ADE

Air stability within the PBL. Wind affects the heat exchange
between urban and rural areas. Regardless of wind direc-
tion, high wind speeds favor the urban–rural heat exchange
and reduce the UHII, while low wind speeds decrease the
urban–rural heat exchange and enhance UHII. Mean wind
speeds were computed in urban and rural areas in summer
and winter, under polluted and clean conditions (Fig. 8 based
on Fig. S6). As expected, the mean wind speed under pol-
luted conditions is lower than that under clean conditions,
especially in winter, when the difference is 1.1 m s−1, versus
summer, when the difference is 0.6 m s−1. This suggests that
the urban–rural exchange in summer is stronger than that in
winter.

Vertical temperature gradients affect the stability of the at-
mosphere, surface heat fluxes (especially sensible heat), and
vertical turbulence. Figure 9 shows the vertical temperature
profiles at five cities in different seasons under polluted and
clean conditions. Note that there are fewer sounding stations
than general surface meteorological stations in China. The
vertical temperature gradient is weaker under polluted con-
ditions than under clean conditions, so vertical mixing is
weaker. This phenomenon is also more pronounced in win-
ter than in summer. For Nanjing, both aerosols and meteo-
rological conditions may affect the temperature gradient in
winter because of the large difference of surface tempera-
ture between clean and polluted conditions. The temperature
gradient within the PBL under polluted conditions generally
decreases more sharply than under clean conditions, except
at Chengdu, located in the Sichuan Basin. The temperature
lapse rate is the smallest under polluted conditions in winter
(Fig. 10). These results suggest that vertical airflow and sur-
face heat release under polluted conditions are lessened more
significantly in winter than in summer.

Seasonal differences in air stability in urban and rural areas
may be summarized as follows. Under polluted conditions,
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Figure 4. The mean UHII (unit: K) at the 35 cities in (a) summer and (b) winter. Red and blue bars represent UHII calculated using data
from all days and from polluted days only, respectively. The overall mean UHII calculated using data from all days and from polluted days
only is shown as red and blue solid lines, respectively.

Figure 5. Diagram of the mechanisms behind aerosol effects on the UHII. The blue frame contains the processes and interactions between
aerosols and the PBL. Red frames contain the processes of the aerosol radiative effect (ARE) and the aerosol dynamic effect (ADE). Solid
arrows denote direct effects, while the dashed arrow indicates the indirect effect.
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Figure 6. Summertime (red curve) and wintertime (black curve) urban–rural PM2.5 concentration mean differences (unit: µg m−3) of all
cities across four PM2.5 concentration bins: 0–50, 50–100, 100–150, and > 150 µg m−3.

Figure 7. Mean AOD as a function of distance from the urban ge-
ometrical center of all cities in winter (red curve with open circles)
and summer (black curve with open circles). The distance ranges
are < 10, 11–20, 21–31, 31–40, and 41–50 km from the urban geo-
metrical center. Error bars are shown.

Figure 8. Comparison of average wind speeds (unit: m s−1) of
35 cities between urban and rural areas under heavy air pollution
(white bars) and clean conditions (hatched bars) in summer and
winter.

both horizontal and vertical exchanges decrease inside the
PBL, thus weakening the heat exchange and pollution disper-
sion. However, this effect is much stronger in winter than in
summer. In winter, the airflow significantly weakens with in-
creasing pollution, stabilizing the PBL and significantly de-
creasing heat exchanges within the PBL.

The results of Sect. 4.2.2 indicate that the ADE is more
significant in winter than in summer.

In summary, the above analyses suggest that the two mech-
anisms behave differently in summer and winter. In summer,
the ARE plays a more important role than the ADE in chang-
ing the UHII, while the importance of the two mechanisms is
opposite in winter.

4.3 Testing the mechanisms through modeling

We evaluate simulated aerosol and meteorological properties
with surface PM2.5 observations and sounding data (Figs. S7,
S8, and 11). Figure S7 shows that simulated near-surface
PM2.5 concentrations are highest in regions south and east
of Beijing, in general agreement with observations. The tem-
poral variations in simulated and observed PM2.5 concentra-
tions have consistent trends at most stations (Fig. S8). The
vertical profiles of temperature, RH, and wind speed also
agree with sounding observations (Fig. 11). In general, the
simulation results appear sound.

Figure 12 depicts the averaged diurnal variations in UHII
differences (1UHII) between UHII with the aerosol radia-
tion effect (ARE) and UHII without the ARE, with nega-
tive values showing the reduction of UHII by aerosols and
positive values showing the opposite. In summer (Fig. 12a),
aerosols reduce UHII throughout all day, but in winter
(Fig. 12b), aerosols enhance UHII in the afternoon. This
shows the effect of aerosols on UHII on a daily scale, sup-
porting Fig. 4. The averaged diurnal variation in downward
shortwave radiation at the surface (SWDOWN) between ur-
ban and rural areas shows that the SWDOWN difference is
larger than that in winter (Fig. S9). The results in Figs. S7 and
S9 indicate that the spatial difference of air pollution in sum-
mer is larger than that in winter, and the wintertime pollution
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Figure 9. Mean vertical temperature profiles (vertical curves; unit: ◦C) at five cities in different seasons under polluted (black) and clean
(green) conditions. Mean PBL heights under polluted and clean conditions are also shown (black and green horizontal lines, respectively).
Panels (a), (c), (e), (g), and (i) show summertime results, and panels (d), (f), (h), and (j) show wintertime results. Panels (k) and (l) show
temperature reductions below 1.5 km (unit: K (100 m)−1) under polluted (hatched bars) and clean (white bars) conditions in summer and
winter, respectively.

is more serious than summertime pollution, which is consis-
tent with observational results shown in Figs. 6–7. Figure 13
shows that the ARE is more significant on the temperature
lapse rate in winter than that in summer in both urban and
rural areas. Moreover, the temperature lapse rate in summer
is far larger than that in winter. This is also consistent with
the observational results shown in Fig. 10.

5 Conclusion and discussion

The urban heat island intensity (UHII) is investigated using
long-term satellite, ground-based, and sounding data under
different environmental conditions, from severely polluted to

clean conditions, at 35 cities in China, aiming at understand-
ing the impact of aerosols on the UHII. The impact is found
to be opposite between summer and winter. On an annual ba-
sis, aerosols reduce the UHII, consistent with previous stud-
ies (Wu et al., 2017). Aerosols lessen the UHII in summer
but strengthen it in winter. The opposite effects are explained
by two distinct roles of aerosols, namely, the aerosol radia-
tive effect (ARE) and aerosol dynamic effect (ADE) based
on our analyses of extensive observational data from satellite
and the ground, which is further reinforced by model simula-
tions. The ARE refers to the reduction of surface solar radi-
ation by aerosol which lowers surface temperature, whereas
the ADE is concerned with the dispersion of heat associated
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Figure 10. Average temperature reductions below 1.5 km (unit:
K (100 m)−1) from sounding observations at five cities under pol-
luted (hatched bars) and clean (white bars) conditions in summer
and winter. The red arrows show the change ranges from clean con-
ditions to polluted conditions; the blue arrow shows the change
range from polluted condition in summer to polluted condition in
winter.

Figure 11. Vertical profiles of temperature (unit: ◦C), RH (unit: %),
U -wind speed (U ; unit: m s−1), V -wind speed (V ; unit: m s−1), and
wind speed (WS; unit: m s−1) at (a) 12:00 UTC on 8 July 2015 and
(b) 12:00 UTC on 7 January 2015. Red lines are simulation results,
and black lines are observations.

with any change in airflow due to aerosol-induced changes in
atmospheric stability.

In summer, aerosols do not have much of an impact on
airflow within the PBL in urban areas. There is a strong heat
exchange between urban and rural areas in both polluted and
clean conditions. As such, the ADE is weak in summer, but
the ARE is strong because aerosol loadings are much higher
in urban areas than in rural areas. The reductions of surface
solar radiation and temperature are a lot more than those in
rural areas, which helps lessen the UHII. Figure 14a shows a
diagram of how aerosols influence the UHII in summer.

Figure 12. Average diurnal variations in UHII differences (1UHII;
unit: K) between UHII with and without including ARE for typical
days in (a) summer (averaged over 6–10 July 2015) and (b) winter
(averaged over 7–10 January 2015).

Figure 13. Temperature reductions from model simulations below
1.5 km (unit: K (100 m)−1) without ARE (white bars) and with
ARE (hatched bars) for typical days in summer (green) and win-
ter (black) in (a) urban areas and (b) rural areas.

In winter, the aerosol effects on PBL stability are domi-
nant over the ARE effect because the spatial difference in
air pollution between urban and rural areas is small (i.e., the
differences of ARE between urban and rural areas are similar
from clean to polluted conditions). This means that urban and
rural areas likely experience the same severe pollution, heat-
ing the atmosphere and reducing the solar radiation reaching
the surfaces of the urban and rural areas by a similar amount.
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Figure 14. The impact of the ARE and the ADE on UHII in summer (a) and winter (b) by altering radiation (yellow arrows) and heat
exchange (brown arrows) on thermal contrast between urban and rural areas. Note the difference in aerosol loading between summer and
winter and between urban and rural areas.

Whereas through the ADE, the PBL is more stabilized in pol-
luted conditions, airflow intensity and temperature gradients
significantly decrease, weakening the heat exchange in both
vertical and horizontal directions. Heat is thus accumulated
in urban areas, enhancing the UHII. Figure 14b illustrates
how aerosols influence the UHII in winter.

Although this study comprehensively investigates some
aerosol effects, other effects may exist, such as differences in
aerosol properties (e.g., absorbing versus scattering aerosols)
between urban and rural areas. This needs further exami-
nation but is infeasible at present due to a lack of observa-
tions between urban and rural regions. While the findings re-
ported here are generally true in the majority of the 35 cities,
they are not exclusively true for all cities due to their unique
characteristics regarding their location, terrain, and climatic
background, among other factors.

Data availability. Landsat, MODIS LST, and MAIAC AOD data
can be download from https://search.earthdata.nasa.gov/ (NASA,
2020). Hourly PM2.5 data are published in real time by the
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