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Abstract: Urbanization and air pollution are major anthropogenic impacts on Earth’s environment,
weather, and climate. Each has been studied extensively, but their interactions have not. Urbanization
leads to a dramatic variation in the spatial distribution of air pollution (fine particles) by altering surface
properties and boundary-layer micrometeorology, but it remains unclear, especially between the centers
and suburbs of metropolitan regions. Here, we investigated the spatial variation, or inhomogeneity,
of air quality in urban and rural areas of 35 major metropolitan regions across China using four different
long-term observational datasets from both ground-based and space-borne observations during the
period 2001–2015. In general, air pollution in summer in urban areas is more serious than in rural areas.
However, it is more homogeneously polluted, and also more severely polluted in winter than that in
summer. Four factors are found to play roles in the spatial inhomogeneity of air pollution between urban
and rural areas and their seasonal differences: (1) the urban–rural difference in emissions in summer
is slightly larger than in winter; (2) urban structures have a more obvious association with the spatial
distribution of aerosols in summer; (3) the wind speed, topography, and different reductions in the
planetary boundary layer height from clean to polluted conditions have different effects on the density
of pollutants in different seasons; and (4) relative humidity can play an important role in affecting the
spatial inhomogeneity of air pollution despite the large uncertainties.
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1. Introduction

The worldwide trend in urbanization has been ongoing for decades, altering landscapes and
modifying the air quality. Urbanization is a key contributor to emissions of greenhouse gases and
aerosol particles and changes in land cover, which has a significant effect on regional and temporal
climate changes [1–4]. Although urbanization has brought about rapid economic growth, it has adverse
impacts on air quality and human health [5–9]. Rapid urbanization can lead to the destruction of
cultivated land, overcrowding, complex infrastructures, and extreme weather disasters [10].

Reduced vegetation in urban areas, urban construction materials and structures, and anthropogenic
heat emissions are among the major factors leading to the urban heat island (UHI) [11–13]. Urban
regions are generally warmer than their rural surroundings because of the surfaces changing from
permeable and moist to impermeable and dry. The effect is proportional to the urban size and varies
considerably due to the great differences in numerous influential factors [14,15]. The UHI can alter
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surface evaporation, atmospheric circulations, the surface absorption rate of solar radiation, and surface
properties. These factors can either delay or enhance urban precipitation and significantly change the
spatial pattern of precipitation between urban and rural areas [16,17].

Air pollution is closely tied to such factors as pollutant emissions, atmospheric transport, atmospheric
chemistry, and meteorological conditions. Aerosols reduce the amount of solar radiation reaching the
ground and influence horizontal visibility due to their scattering and absorption. A variety of aerosols
such as sulfates, nitrates, and ammonium are strong scattering aerosols, while black carbon and dust are
light-absorbing aerosols that can change the vertical temperature gradient and even generate inversion
layers [18,19]. Consequently, the atmospheric stability and planetary boundary layer (PBL) development
are affected [20–24]. Urban areas with abundant particulate pollutants, an important source of aerosol
emissions, have a significant effect on radiation and convection [25]. Severe air pollution episodes tend to
occur under stable meteorological conditions, which favor the accumulation of primary and secondary
pollutants in the atmosphere near the surface. The key player in this respect is the PBL, which is the
lowest atmospheric layer immediately affected by the land surface [21].

There are significant and intricate interactions between urbanization and air pollution. Besides
the strong cooling effect during the daytime, aerosols may increase longwave radiation at night due
to infrared emissions. The daytime cooling effect and nighttime heating effect combine to change
daytime and nighttime surface temperatures [26–28]. Urbanization has caused serious air pollution in
urbanized regions [29], where urban characteristics may impact emissions and the spatial distribution
of local-scale air pollution. For instance, numerical modeling studies have shown that increasing
the urban area reduces near-surface aerosol concentrations over urban regions and increases particle
concentrations at higher altitudes over the surrounding rural areas, mainly due to the urban-induced
enhancement of the instability of the PBL [30]. During the past 40 years, rapid urbanization in China has
generated intense anthropogenic emissions leading to severe air pollution, especially in metropolitan
areas. Many urban populations in China are exposed to poor air quality that does not meet national
standards, especially during wintertime [31].

Previous studies were mainly based on single data source to analyze the transfer of air pollution
between rural and urban areas in China [32,33]. Given that different data sources (e.g., ground-based
and space-borne observations) have different advantages and disadvantages, multiple datasets convey
richer information to gain further insight and enhance the credibility of a study. Few studies have
compared the spatial inhomogeneity of air pollution between urban and rural areas (SIAP) in different
seasons in China, which is important for analyzing the effect of air pollution on the UHI, precipitation,
clouds, among others for they all have strong seasonality. Moreover, the factors affecting the spatial
inhomogeneity of air pollution in different seasons are still not clear.

This study employs multiple datasets generated from multiple satellite sensors and ground-based
observations to analyze seasonal changes in the SIAP in 35 cities across China and the underlying
factors in an attempt to understand the mechanism driving temperature differences between rural and
urban areas. Section 2 introduces the study areas, datasets, and the methods for selecting the research
windows and calculating the planetary boundary layer height (PBLH). Section 3 presents the different
urbanization effects on the spatial inhomogeneity of air pollution in summer and winter, followed by a
discussion on the causes. The key findings are summarized in Section 5.

2. Materials and Methods

2.1. Study Areas and Data

The study areas comprise 35 medium to large cities located across China (Figure 1). Landsat data
were first used to identify urban areas. Different data sources were then used to analyze the urban–rural
inhomogeneity of air pollution. Finally examined were four potential factors accounting for the spatial
inhomogeneity of air pollution. Emission data, urban contours data, building density data, sounding
data, land use data, wind speed, topography, and relative humidity (RH) data were used.
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Figure 1. Locations of the 35 cities selected as study areas.

Satellite datasets used in this study include those from the Land Satellite Thematic Mapper/
Enhanced Thematic Mapper (Landsat), the Moderate Resolution Imaging Spectroradiometer [MODIS;
aerosol optical depth (AOD)], and the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) satellite [34]. Ground-based observation data include meteorological stations,
hourly fine-particulate matter (PM2.5) concentration measurements, and daily sounding data.

The spatial resolution of Landsat data is 30m, only summertime (June, July, and August) images
before 2000 or in 2000, in 2010, and in 2015 are used to extract urban impervious surfaces and outline
urban contours.

Only satellite-based AOD was used here. The MODIS Multi-Angle Implementation of Atmospheric
Correction (MAIAC) algorithm is an advanced algorithm which uses time series analyses and a
combination of pixel- and image-based processing to improve the accuracies of cloud detection, aerosol
retrievals, and atmospheric correction [35,36]. Its spatial and temporal resolutions are 1 km and 1 day,
respectively. Linear interpolation is used to fill the missing values based on existing values when the
data coverage is greater than 30%. For each city, five zones were selected based on the distance to the
urban geometric center: Zone 1: 0–10 km, Zone 2: 11–20 km, Zone 3: 21–30 km, Zone 4: 31–40 km, and
Zone 5: 41–50 km. The average AOD for each zone was then calculated.

The Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) is a two-wavelength
polarization lidar that performs global profiling of aerosols and clouds in the troposphere and
lower stratosphere. CALIOP is the primary instrument onboard the CALIPSO satellite, which has
flown with the NASA A-train constellation of satellites since May 2006 [34].

The global emission inventory dataset called PKU-FUEL produced by Peking University was
used to study emission differences between urban and rural areas. The inventory includes CO2, CO,
PM2.5, PM10, BC, OC, SO2, NOx, NH3, total suspended particles, and polycyclic aromatic hydrocarbons.
This global emission inventory has been developed using a bottom-up approach with a 0.1◦ × 0.1◦

(about 10 km) spatial resolution and a monthly temporal resolution, covering the period from 1960 to
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2014 [37]. For each city, one urban window (0.1◦ × 0.1◦) inside urban contour in 2000 and four rural
windows (0.1◦ × 0.1◦) that are not affected by urban expansion and outside urban contour in 2015.

Two sets of meteorological stations and PM2.5 stations were selected in each city: one set located
in the urban area of the city and the other set located in the rural area near the city. Meteorological
parameters such as visibility, surface wind speed, temperature, and precipitation were observed at
three-hourly intervals at each meteorological station. Hourly PM2.5 concentrations were measured at
each PM2.5 measurement site (shown in Figure S1) from the Chinese national monitoring network.
Hourly PM2.5 data are published in real time by the Ministry of Ecology and Environment of China
(http://106.37.208.233:20035). The PM2.5 concentration is measured by tapered element oscillating
microbalance (TEOM) or beta attenuation monitor. High correlation between the satellite-based
AOD and ground-based PM2.5 observations were reported in previous studies [38–40]. One urban
and one rural meteorological station was selected for each city. Meteorological (1100 and 1400 BJT)
and PM2.5 concentration (1300 and 1400 BJT) observed at near 1330 Beijing time (BJT) were linearly
interpolated to the MODIS imaging time (1330 BJT) for matching purposes. According to the evaluation
standard of the Ministry of Ecology and Environment of China, urban PM2.5 concentration are
classified into three levels of air quality: light pollution (PM2.5 < 50 µg/m3), moderate pollution
(100 µg/m3 < PM2.5 < 150 µg/m3), and heavy pollution (200 µg/m3 < PM2.5). The classification is
based on 2-hour means of PM2.5 concentration, different from other standards using annual mean or
24-hour mean (e.g., the standards of WHO, US, EU).

Four sounding stations, representative of their respective regions, were selected, i.e., Shenyang,
Beijing, Xi’an, and Nanjing. The high-resolution radiosonde network of the L-band sounding
system, developed by the China Meteorological Administration in 2011, provides fine-resolution
profiles of temperature, pressure, RH, wind speed, and wind direction twice a day at 0800 BJT and
2000 BJT. The sounding quality was strictly controlled and adequate to characterize PBL features in
China [41,42]. Unless noted otherwise, 2000 BJT soundings were used in this study, given our focus on
the daytime effect.

2.2. Urban Impervious Surfaces and Urban Contours

Many previous studies have used nighttime stable-light data to extract urban areas, but their low
spatial resolution limits the extraction accuracy. So here, the Landsat data were used to accurately
identify urban impervious surfaces and outline urban contours. The difference between the normalized
difference build-up index (NDBI) and the soil-adjusted vegetation index (SAVI), i.e., NDBI − SAVI, is
used to extract urban impervious surfaces because this difference can effectively differentiate urban
impervious surfaces from other land-use types [43]:

NDBI =
ρ5 − ρ4

ρ5 + ρ4
, (1)

SAVI =
ρ4 − ρ3

ρ4 + ρ2 + L
(1 + L), (2)

where L is the soil adjustment factor whose value is 0.5, and ρn is the nth Landsat reflectance band.
Urban impervious surfaces were extracted using different thresholds ranging from 0.1 to 0.3, then urban
boundaries were determined based on the urban impervious surfaces. Google Earth and a land-use
map with a 1:100,000 scale from the Resource and Environment Science Data Center of the Chinese
Academy of Sciences verified the results. The physical contours of urban areas were extracted based
on the difference in the underlying surfaces of urban and rural areas. Urban contours in three periods
were outlined at each city, which were used to distinguish urban and rural areas. Figure 2 shows an
example diagram of Nanjing.

http://106.37.208.233:20035
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Figure 2. Urban area of Nanjing in 2010. The red contour outlines the urban boundary. Green areas are
other surfaces, for instance, water, vegetation, or soil. Gray areas are impervious surfaces.

2.3. Urban Shape

The Boyce-Clark shape index (SBC) has been used to reveal the urban morphology through
comparisons with a standard shape [44]. The principle behind this index is to compare the urban shape
with a standard circle, then calculate a relative shape index. This is also called the radius shape index
on account of radii being involved in the algorithm, expressed as follows:

SBC =
∑n

i=1

∣∣∣∣∣[(ri/
∑n

i=1
ri

)
× 100−

100
n

]∣∣∣∣∣, (3)

where ri is the length from the vantage point to the boundary, and n is the number of radii with an
equal-angle difference. The vantage point of urban areas can be the central business district or the
centroid of the urban contour. For example, when n is equal to 16, the angle between adjacent radii is
22.5◦, and when n is equal to 32, the angle between adjacent radii is 11.25◦. The minimum SBC is 0,
which is the SBC of a standard circle. It represents the highest land-use efficiency and the most compact
urban area. Larger SBC values generally mean lower land-use efficiencies and less compact urban
areas. Urban contours of 35 cities extracted from Landsat in 2015 were used to calculate SBC here.

2.4. Research Windows for Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)

CALIPSO data can provide vertical variation information, unlike MODIS data. Two metropolitan
clusters were selected as research areas for CALIPSO: the Greater Beijing Metropolitan Area (GBMA)
and the Yangtze River Delta (YRD). Both GBMA and YRD have experienced dramatic economic
development and rapid urbanization over the past three decades. The GBMA includes Beijing, Tianjin,
and some industrial cities in Hebei province, and the YRD region includes Shanghai, Suzhou, Wuxi,
Changzhou, Zhenjiang, Yangzhou, Nanjing, and five other prosperous cities [45,46]. Each research
area has one urban research window and one rural research window.

2.5. Calculation of the Planetary Boundary Layer Height

Five cities with sounding stations that are part of the China Meteorological Administration’s
radiosonde network of L-band sounding systems were selected: Beijing, Shenyang, Chengdu, Xi’an,
and Nanjing. Radiosonde profiles from 1 January 2013 to 31 December 2015 were analyzed. The bulk
Richardson number (Ri) has been used to estimate the PBLH [41,47,48], which is also done here. The
Ri is defined as the ratio of turbulence associated with buoyancy to that induced by mechanical shear
and is expressed as

Ri(z) =
(g/θvs)(θvz − θvs)(z− zs)

(uz − us)
2 + (vz − vs)

2 +
(
bu2
∗

) , (4)
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where z denotes the height above the ground, s denotes the surface, g is the acceleration due to gravity,
θv is the virtual potential temperature, u and v are the components of wind speed, and u∗ is the surface
friction velocity. Here, u∗ can be ignored because its magnitude is small [48]. Previous theoretical and
laboratory studies [49] have suggested that when Ri is smaller than the critical value (0.25), the laminar
flow becomes unstable. The lowest level z at which interpolated Ri crosses the critical value of 0.25 is
thus referred to as the PBLH in this study, similar to the criterion used by others [41].

3. The Spatial Inhomogeneity of Air Pollution in Summer and Winter

3.1. Visibility Differences between Urban and Rural Areas

Figure 3a shows detailed mean visibilities of each city in urban and rural areas in summer and winter
under polluted conditions. Figure 3b shows the overall mean visibilities of all cities. Only visibilities
associated with RH levels less than 85% were analyzed to eliminate the influence of water vapor. Urban
visibilities of less than 10 km are considered as grossly polluted in summer (June, July, and August) and
winter (December, January, and February).
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Figure 3. Wintertime (in black) and summertime (in green) mean visibilities (unit: km) calculated
based on observational data from meteorological stations in urban (shaded bars) and rural (unfilled
bars) areas of (a) each city and (b) all cities when the air is polluted. Data are from 2001 to 2015.

Averaging over all cities, the wintertime urban mean visibility under polluted conditions is
~5.8 km (standard deviation, or std, = 1.1 km), and the wintertime rural mean visibility is ~10.7 km
(std = 5.3 km). In the summertime, the urban mean visibility is ~7.0 km (std = 1.9 km), and the rural
mean visibility is ~16.4 km (std = 6.8 km). The overall differences in visibility between urban and rural
areas are ~9.4 km and ~4.9 km for summertime and wintertime, respectively.



Remote Sens. 2020, 12, 2320 7 of 22

3.2. Aerosol Optical Depth (AOD) Differences between Urban and Rural Areas

Figure 4 shows the mean difference in AOD (∆AOD = AODurban −AODrural) between the urban
and rural areas of each city and all cities. Summertime ∆AODs are larger than those in winter in
all cities except for Chongqing. Figure 5 shows the variation trends of mean AOD as a function of
distance from the urban geometrical center of each city in winter and summer. As the distance from
the urban geometrical center increases, summertime AODs decrease more rapidly than wintertime
AODs. The range of the decrease in summer is greater than that in winter. Figures 4 and 5 indicate
that the ∆AOD in summer is larger than that in winter. The overall mean ∆AODs are 0.175 in summer
and 0.07 in winter, and the relative difference between summer and winter is 0.105. Moreover, the
AOD variations of different cities in Figure 5 are inconsistent, because of the joint complex effects of
meteorological conditions, topography, and aerosol types.

The spatial difference in CALIPSO aerosol distributions from urban to rural areas was also
analyzed. Figure 6 shows the frequency of occurrence of aerosols at different altitudes over the GBMA
and YRD regions from 2006 to 2015. In both regions, the occurrence frequency differs more in summer
than in winter, consistent with the column total AOD from MAIAC. Aerosols reach higher into the
atmosphere in summer than in winter, i.e., higher than 3 km (GBMA) and 2.5 km (YRD) in summer, and
lower than 2 km over both regions in winter. The occurrence frequency as determined by CALIPSO at
lower altitudes (<1.5 km) is larger in urban areas than in rural areas in summer (Figure 6a,c). This is
not as obvious in winter (Figure 6b,d). In rural areas, larger occurrence frequencies in summer are
located at higher altitudes (0.5–2.5 km), whereas they are at lower altitudes (<1 km) in winter. The rural
frequency of occurrence is close to, or even larger than, the urban frequency of occurrence at higher
altitudes in summer. Urban–rural circulation may explain this. Because of higher temperatures, urban
areas act as convergence zones, bringing in near-surface pollutants from rural areas that are then lifted
by updrafts to higher altitudes and dispersed to rural surrounding areas, especially in summer. This is
more clearly seen at the border between urban and rural areas (Figure 6a,c) This process diminishes
the vertical gradient of pollution in the boundary areas of a city. Since updrafts are stronger in summer
than in winter, pollutants can be carried to higher altitudes, leading to more aerosols at higher altitudes
in summer than in winter.
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Figure 4. The spatial differences in aerosol optical depth (AOD) (∆AOD = AODurban −AODrural) between
the urban and rural areas in and around the 35 cities based on MODIS AOD. Black and green bars
represent ∆AOD in winter and summer, respectively. The overall mean ∆AOD calculated using data in
winter and summer are shown as black and green lines, respectively. The city marked with an asterisk
(Chongqing) shows results opposite to those of the other cities.
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Figure 5. Mean AOD as a function of distance from the urban geometrical center of each city in winter
(black curves with open circles) and summer (green curves with crosses). Note that wintertime AOD
data are not available at cities Harbin and Changchun. The distance ranges are <10 km, 11–20 km,
21–31 km, 31–40 km, and 41–50 km from the urban geometrical center.

3.3. PM2.5 Differences between Urban and Rural Areas

Figure 7a–c shows detailed PM2.5 differences for each city. Figure 7d shows summertime and
wintertime overall PM2.5 differences (∆PM2.5 = PM2.5−urban − PM2.5−rural) at each pollution level of
all cities using data from 2013 to 2015. Summertime PM2.5 differences are generally larger than
wintertime PM2.5 differences, with greater increases in magnitude than wintertime PM2.5 differences
as PM2.5 increases.

The results of Section 3 indicate that the SIAP is found to exhibit a pronounced seasonality that is
not recognized before, namely, that summertime SIAP > wintertime SIAP, it can reveal the linkage of air
pollution to the urban heat island, clouds, and precipitation, among others. Combining multi-source
datasets shows the 3-D distribution of air pollution between urban and rural areas that have rarely
been investigated before (mostly 2-D), and this is important for validating future model simulations.



Remote Sens. 2020, 12, 2320 9 of 22
Remote Sens. 2020, 12, x FOR PEER REVIEW    9 of 22 

 

 
Figure 6. The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-
retrieved occurrence frequency of aerosols at different altitudes from urban to rural areas for the data 
period of 2006 to 2015 for (a) the Greater Beijing Metropolitan Area (GBMA) in summer, (b) the GBMA 
in winter, (c) the Yangtze River Delta (YRD) in summer, and (d) the YRD in winter. The color bars 
represent the occurrence frequencies of aerosols. The histograms located in the upper-left corner of 
each panel show the overall mean AODs in rural and urban areas. 

Figure 6. The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-retrieved
occurrence frequency of aerosols at different altitudes from urban to rural areas for the data period of
2006 to 2015 for (a) the Greater Beijing Metropolitan Area (GBMA) in summer, (b) the GBMA in winter,
(c) the Yangtze River Delta (YRD) in summer, and (d) the YRD in winter. The color bars represent the
occurrence frequencies of aerosols. The histograms located in the upper-left corner of each panel show
the overall mean AODs in rural and urban areas.
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4. Potential Reasons for the Seasonal Differences in the Spatial Inhomogeneity of Air Pollution

4.1. Emission Effect

Figure 8 presents the spatial distribution of total PM2.5 emissions in the urban and rural areas of
each city in summer and winter. For all cities, urban PM2.5 emissions are larger than rural emissions
in both winter and summer. Summertime PM2.5 emissions from most cities located south of 32

◦

N
are slightly larger than in winter. The opposite is the case for cities located north of 32

◦

N where
emissions from heating in winter may make a difference. For most cities, urban–rural differences in
PM2.5 emissions in summer are slightly larger than in winter. Figure 9 shows the urban–rural emission
differences of precursors (including NOx, SO2, and NH3), which promote the formation of particulate
matter. Results also show that the urban–rural differences in precursors in summer are larger than in
winter in most cities. Overall, the seasonal differences are not obvious, suggesting that the emission
difference is a factor but not the only one causing the different spatial inhomogeneities of air pollution
in different seasons. It should be noted that the AOD differences in a few cities are inconsistent with
emission differences, because AOD is not only affected by PM2.5, but also by PBL height, RH, and
larger particles (e.g., PM10, dust).
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4.2. Urban Structure Effect

Figure 10a,b show the relationship between SBC and ∆AOD in summer and winter, respectively.
In summer, ∆AOD decreases as SBC increases. In winter, there is no clear relationship between them.
Figure 10c shows the extent of changes in AOD every 10 km as a function of SBC. Results show that
the extent of decreases in AOD reduces with increasing SBC in summer. The extent of decreases in
AOD with increasing SBC barely changes in winter. Figure 10d shows the relationship between PM2.5

concentration and building density. PM2.5 concentrations first increase then decrease as the building
density increases in both summer and winter, but the correlation in summer is more significant than in
winter. The above results indicate that urban structure has a more obvious relationship with the spatial
inhomogeneity of air pollution in summer than in winter. Low SBC values indicate simpler shapes and
more compact urban areas, which serve as a barrier against pollutants being transported elsewhere,
causing greater differences between the pollution levels of urban and rural areas. High SBC values
indicate more complex shapes and less compact urban areas, which favors the dispersion of pollutants,
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leading to lower differences in the pollution levels between urban and rural areas [50,51]. The urban
structure affects the spatial distribution of air pollution in the summer because the compactness of
urban areas plays an important role in the dispersion of pollutants in the more active PBL. In winter,
the PBL is very stable, so the influence of the compactness of urban areas likely weakens, lessening
the effect.
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Figure 10. The relationships between the Boyce-Clark shape index (SBC) and ∆AOD in summer (a)
and winter (b) at 35 cities in 2015. The red dashed lines are the linear least-squares-fit lines. (c) The
extent of changes in AOD every 10 km from the urban geometrical center as a function of SBC. The
AOD decrease is calculated based on Figure 5. (d) The relationship between PM2.5 concentration and
building density within 300 m around the PM2.5 sites in Beijing (unit: µg/m3). The building density
information is extracted using the ArcMap application.
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4.3. Meteorological and Topographical Effect

To gain further insight into the impact of the PBL on air quality, their relationship is investigated
more rigorously. Note that pollutants mainly exist within the PBL. A lower (higher) PBLH means less
(more) space available for aerosols, so changes in the PBLH will affect the spatial inhomogeneity of air
pollution to varying degrees [21,52].

Figure 11a–d show the mean PBLHs in summer and winter at four cities at three pollution levels.
Figure 11e shows PBLH differences between clean and heavy polluted conditions in the four cities in
summer and winter. The PBLH decreases persistently as the air quality changes from clean, moderately
polluted to heavily polluted, and the extent of changes in PBLH is more in summer (~0.2–0.9 km) than
in winter (<0.4 km). In absolute terms, the PBLH decreases in summer (~0.54–0.99 km) are more than
twice that in winter (<0.35 km) at these four cities when air quality changes from clean to polluted
conditions. In relative terms, the PBLH decreases 51%, 50%, 52%, and 35% in summer at the four cities,
respectively, but 21%, 30%, 38%, and 26% in winter. A greater PBLH reduction leads to greater PM2.5
concentrations within the PBL. The greater reduction in the PBLH in summer enhances the spatial
inhomogeneity of air pollution more significantly than that in winter.
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Figure 12 shows the variation of ΔPM2.5 with wind speed. In Beijing, ΔPM2.5 increases with 
increasing wind speed in summer, but decreases in winter. The prevailing southeast wind in summer 
carries pollutants from surrounding area to urban area, and the northwest mountain areas prevent 
diffusion of urban pollutants. This process facilitates the accumulation of pollutants in urban areas 
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Figure 11. Planetary boundary layer height (PBLH, unit: km) under different pollution conditions
calculated based on sounding data in (a) Beijing, (b) Nanjing, (c) Shenyang, and (d) Xi’an. The green
lines are summertime and the black lines are wintertime. (e) is the PBLH difference under clean and
heavy pollution conditions at each city.

Figure 12 shows the variation of ∆PM2.5 with wind speed. In Beijing, ∆PM2.5 increases with
increasing wind speed in summer, but decreases in winter. The prevailing southeast wind in summer
carries pollutants from surrounding area to urban area, and the northwest mountain areas prevent
diffusion of urban pollutants. This process facilitates the accumulation of pollutants in urban areas
and increase urban–rural pollution difference. However, in winter, the prevailing northwest wind
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from mountain area is cleaner and pushes urban pollutants to surrounding areas, reducing urban–rural
pollution differences. The prevailing wind directions in Xi’an are same as that in Beijing in summer
and winter. There are also mountains near Xi’an, but they are situated south of the urban area. So the
combined effects of wind and topography in Xi’an is opposite to that in Beijing. There is no continuous
mountain area around Nanjing. Winds from any directions help disperse urban pollutants and decrease
urban–rural pollution differences. In Shenyang, the prevailing winds in summer and winter are southeast
wind and northeast wind, respectively. The cleaner winds from eastern mountain area help remove
urban pollutants. The above results indicate that the combination of wind and topography can affect the
spatial inhomogeneity of air pollution.

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 22 

 

summer and winter. There are also mountains near Xi'an, but they are situated south of the urban 
area. So the combined effects of wind and topography in Xi’an is opposite to that in Beijing. There is 
no continuous mountain area around Nanjing. Winds from any directions help disperse urban 
pollutants and decrease urban–rural pollution differences. In Shenyang, the prevailing winds in 
summer and winter are southeast wind and northeast wind, respectively. The cleaner winds from 
eastern mountain area help remove urban pollutants. The above results indicate that the combination 
of wind and topography can affect the spatial inhomogeneity of air pollution. 

 
Figure 12. Variations in ΔPM2.5 concentration (unit: ug / m3) as a function of wind speed in Beijing, 
Nanjing, Shenyang, and Xi’an in summer (green curves) and winter (black curves). The ΔPM2.5 
concentration is the difference in PM2.5 concentration between urban and rural areas. 

Figure 13 shows the ΔAODs of different terrain cities. The results show that the ΔAODs in 
summer are larger than in winter in all such cities. Comparing different categories of cities in Figure 
13, ΔAOD has smaller changes in summer than in winter. This indicates that the effect of topography 
in winter is more obvious than that in summer. 

 

Figure 12. Variations in ∆PM2.5 concentration (unit: ug/m3) as a function of wind speed in Beijing,
Nanjing, Shenyang, and Xi’an in summer (green curves) and winter (black curves). The ∆PM2.5

concentration is the difference in PM2.5 concentration between urban and rural areas.

Figure 13 shows the ∆AODs of different terrain cities. The results show that the ∆AODs in
summer are larger than in winter in all such cities. Comparing different categories of cities in Figure 13,
∆AOD has smaller changes in summer than in winter. This indicates that the effect of topography in
winter is more obvious than that in summer.

4.4. Humidity Effects

Humidity facilitates both particle growth and new particle formation, having a stronger effect
when RH levels are high [53–55]. New particle formation is highly localized and extremely tiny (from
nano- to tens of nano-meter). This process tends to have little effect on AOD and PM2.5 that are most
strongly influenced by particles >0.1 m. However, particle growth can largely enhance the scattering
efficiency and increase particle size and AOD, also affecting nucleation and coagulation, and thus dry
and wet depositions, which would influence the mass concentration. Humidity exerts a considerable
influence on aerosols and generally increases both AOD and PM2.5 [54,56,57]. Due to the spatial
variation in RH, humidity can influence the spatial inhomogeneity of air pollution in terms of mass
concentration, particle diameter, and optical depth [55,58–60].
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Figure 13. The ∆AODs of mountainous cities, coastal cities, and plain cities in summer (green bars)
and winter (black bars).

Table 1 summarizes the correlation coefficients between ∆AOD and ∆RH for all cities. Twenty-eight
cities have positive relationships between ∆AOD and ∆RH in summer, while only eleven cities have
positive relationships in winter. Figure 14 shows the variations in ∆PM2.5 concentration as a function
of RH in Beijing, Nanjing, Shenyang, and Xi’an. Results indicate that ∆PM2.5 continuously increases
as RH increases in summer in all cities, while the variations in ∆PM2.5 differ with different values
of RH in winter. In winter, the ∆PM2.5 variations in Beijing and Xi’an are different from other cities.
∆PM2.5 changes at high RH in Xi’an are opposite to those in Beijing, which may be caused by different
aerosol compositions and properties between urban and rural areas. Urban particles grow more
than rural particles under high RH in Beijing, which is contrary to Xi’an. This may lead to different
relationship between ∆AOD and ∆RH in different seasons in Table 1 in a few cities. Figure 15 shows
the mean RH in each city in summer and winter. Twenty-seven cities have higher RHs in summer
than in winter. The other eight cities, mainly located in the northernmost and southernmost parts of
China, have lower RHs in summer than in winter. Previous studies have shown that urban aerosols
are more hygroscopic than rural aerosols, especially in summer, because of the higher proportion of
inorganic aerosols and higher RH in summer (shown in Figure 15). The spatial inhomogeneity of
AOD or pollutants in summer is thus more sensitive to the effects of RH [61–65]. Furthermore, the
differences in aerosol hygroscopicity can affect the spatial inhomogeneity of AOD between urban
and rural areas. Differences in RH affect the process of particle growth, serving as a potential factor
explaining the spatial differences in aerosol loading. Note that the effects of humidity on aerosols are
still highly uncertain.

Table 1. The correlation coefficients between normalized ∆AOD and ∆RH between urban and rural
areas at all cities, where “*” and “**” means passing the significance test at the 0.05 and 0.01 levels,
respectively. ‘NAN’ means no data.

Summer Winter

City Correlation Coefficient City Correlation Coefficient

Beijing 0.43 ** Beijing 0.4 **
Changchun 0.31 * Changchun NAN
Changsha 0.26 * Changsha 0.22
Chengdu 0.68 * Chengdu −0.39

Chongqing 0.31 Chongqing 0.43
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Table 1. Cont.

Summer Winter

City Correlation Coefficient City Correlation Coefficient

Dalian 0.24 Dalian −0.16
Fuzhou 0.13 Fuzhou 0.27

Guangzhou −0.29 * Guangzhou 0.11
Guiyang −0.3 Guiyang −0.27
Harbin −0.34 * Harbin NAN

Hangzhou 0.37 * Hangzhou −0.1
Hefei −0.4 ** Hefei −0.12

Hohhot −0.25 Hohhot 0.54 **
Jinan 0.12 Jinan −0.17

Kunming 0.44 * Kunming 0.64 *
Lanzhou 0.27* Lanzhou 0.32 **

Nanchang 0.31 Nanchang −0.51 **
Nanjing 0.32 * Nanjing −0.11
Nanning 0.51 Nanning −0.44 *
Ningbo 0.39 ** Ningbo 0.07

Qingdao 0.32* Qingdao −0.41 *
Shanghai 0.43* Shanghai −0.12
Shenyang 0.11 Shenyang −0.09
Shenzhen 0.1 Shenzhen −0.01

Shijiazhuang −0.17 Shijiazhuang −0.37
Taiyuan 0.52 * Taiyuan 0.62 **
Tianjin 0.33 * Tianjin −0.44 *
Wuhan 0.24 Wuhan −0.01
Urumqi 0.34 ** Urumqi −0.24 *
Xiamen 0.34 * Xiamen −0.4 *

Xi‘an 0.22 * Xi‘an −0.27 *
Xining 0.29 Xining −0.02

Yinchuan 0.54 ** Yinchuan 0.49 *
Zhengzhou 0.21 * Zhengzhou −0.27 *

In summary, the above analyses suggest that the effects on seasonal SIAP are complex, likely driven
by multi-factors that vary with season, including emission, urban structure, PBL, and relative humidity.

4.5. Discussion for Potential Factors

The interaction mechanism between urbanization and air pollution is very complicated. Here, the four
potential factors we proposed provide new insights into this subject. Meanwhile, they raise more questions
than what can be addressed in this study, due to the limitations of currently available observational
data. For the sake of a future study, the limitations of the approach and uncertainties or ambiguities
in the interpretation of the results are stated here. (1) For the emission effect, the spatial resolution
of the emission data is about 10 km. While it is higher than some related products, it is still not fine
enough to resolve any variations on urban–rural scales for which higher resolution data would be needed.
(2) For the urban structure effect, the relationship between SBC and ∆AOD is faint. It is thus impossible to
solely extract the urban effects, as other factors disturb the signal of urban structures. Resolving this issue
entails model simulations (e.g., LES—Large eddy simulation or WRF—Chem simulation) [66]. (3) While
the influences of PBLH, wind speed, and topography are analyzed here, quantification of their respective
importance is still wanting. (4) For the humidity effect, a handful of studies have been conducted, there
still exit large uncertainties, especially concerning urban–rural difference. Understanding the effects of
humidity merit further comprehensive observations of aerosol chemical composition between urban and
rural areas.
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5. Conclusions

Satellite data and ground-based observation data from multiple sources were used to analyze
the spatial inhomogeneity of air pollution between the urban and rural areas of 35 cities in China in
different seasons. The results obtained from these multi-source datasets are consistent and provide
observational analysis support for previous model simulation work [30]. Results show that the spatial
inhomogeneity of air pollution between urban and rural areas is larger in summer than in winter. Urban
pollution is often more severe than rural pollution in summer. However, in winter, both urban and
rural pollution are severe, and rural pollution is even more severe than urban pollution in few cities.

Emissions, urban structures, meteorology and topography, and humidity are the potential reasons
for why the spatial inhomogeneity of air pollution is larger in summer:

(1) For most cities, the urban–rural differences in PM2.5 and precursor-gas emissions in summer
are larger than in winter but not obviously. This indicates that besides the emission effect, there are
also other factors causing different spatial inhomogeneities of air pollution in different seasons.



Remote Sens. 2020, 12, 2320 19 of 22

(2) The effect of the urban structure is more significant in summer than in winter. The compactness
of urban areas has a more obvious effect on the dispersion of pollutants in summer because of an active
planetary boundary layer, but not in winter.

(3) The reduction in planetary boundary layer height over urban areas is larger in summer than
in winter from clean to heavy polluted conditions. This causes more significant influence on urban
pollution concentrations in summer than in winter, as is its impact on the spatial inhomogeneity of air
pollution. Moreover, both wind speed and topography affect the spatial inhomogeneity of air pollution.

(4) For most cities, higher relative humidity can cause the larger spatial inhomogeneities of air
pollution in summer and winter due to particle growth.

Note that these explanations are not independent, i.e., there are interactions between them,
influencing each other. However, their respective importance cannot be quantitatively assessed by
analyzing observation data alone. Numerical simulations will be conducted to gain further insights.
This study mainly focused on physical factors. Synchronous experiments of urban and rural areas
are needed in the future to gain a deep insight into related problems. The chemical transformation of
pollutants and socioeconomic factors also need to be investigated to understand their impacts on the
spatial inhomogeneity of air pollution.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/14/2320/s1,
Figure S1: The spatial distribution of 1680 PM2.5 sites in China until 2015.
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