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Abstract: The urban heat island (UHI) refers to the land surface temperature (LST) difference between
urban areas and their undeveloped or underdeveloped surroundings. It is a measure of the thermal
influence of the urban built-up area expansion (UBAE), a topic that has been extensively studied.
However, the impact of UBAE on the LST differences between urban areas and rural areas (UHIU−R)
and between urban areas and emerging urban areas (UHIU−S) in different seasons has seldom been
investigated. Here, the UHIU−S and UHIU−R in 34 major metropolitan regions across China, and
their spatiotemporal variations based on long-term space-borne observations during the period
2001–2020 were analyzed. The UBAE quantified by the difference in landscape metrics of built-up
areas between 2020 and 2000 and their impact on UHI was further analyzed. The UBAE is impacted
by the level of economic development and topography. The UBAE of cities located in more developed
regions was more significant than that in less developed regions. Coastal cities experienced the most
obvious UBAE, followed by plain and hilly cities. The UBAE in mountainous regions was the
weakest. On an annual basis, UHIU−R was larger than UHIU−S, decreasing more slowly with UBAE
than UHIU−S. In different seasons, the UHIU−S and UHIU−R were larger, more clearly varying
temporally with UBAE in summer than in winter, and their temporal variations were significantly
correlated with UBAE in summer but not in winter. The seasonal difference in UHIU−R was larger
than that of UHIU−S. Both the UHIU−S and UHIU−R in coastal cities were the lowest in summer,
decreasing the fastest with UBAE, while those in mountain cities decreased the slowest. The change
in the density of built-up lands was the primary driver affecting the temporal variations in UHIU−S

and UHIU−R during UBAE, followed by changes in proportion and shape, while the impact of the
speed of expansion was the smallest, all of which were more obvious in summer than in winter. The
decreased density of built-up lands can reduce UHI. These findings provide a new perspective for a
deeper understanding of the effect of urban expansion on LST in different seasons.

Keywords: urban built-up area expansion; urban heat island; seasonal difference; spatiotemporal
variation; urban landscape patterns

1. Introduction

Urbanization generally creates an urban heat island (UHI). The surfaces of rural areas
are mainly undeveloped land, such as farmland, water, and soil, while urban areas consist
of many dry built-up areas, such as buildings, roads, and parking lots. Urbanization can
enhance vertical turbulence and weaken horizontal winds, change water vapor fluxes

Remote Sens. 2023, 15, 248. https://doi.org/10.3390/rs15010248 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15010248
https://doi.org/10.3390/rs15010248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1994-1666
https://doi.org/10.3390/rs15010248
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15010248?type=check_update&version=2


Remote Sens. 2023, 15, 248 2 of 20

(e.g., accelerate evaporation), increase the absorption capacity of incident solar radiation
over land, and alter surface characteristics (e.g., reflectivity, anthropogenic heat transfer)
and characteristics of the urban boundary layer (e.g., sensible heat dissipation, evaporation
and cooling, and convection efficiency) [1–6]. A UHI mainly arises from increased sensible
heat fluxes and reduced latent heat fluxes due to urban built-up area expansion (UBAE).
During UBAE, built-up areas replace the undeveloped surfaces of rural areas, leading to
higher surface and air temperatures [7–9].

The UHI can facilitate extreme weather events (e.g., acid rain, extreme high-temperature
events) and affect residents’ daily lives and health, deteriorating the quality of urban
living [10–16]. Note that even very small towns can produce UHIs [17–19]. The UHI can be
divided into atmospheric UHI and surface UHI with different formation mechanisms [4,20],
differing between daytime and nighttime. Since human activities are mainly concentrated
during the daytime, this study focuses on daytime surface UHI quantified by the land surface
temperature (LST) difference between urban areas and their rural surroundings.

The UHI is influenced by multiple factors, such as solar radiation and precipitation,
the local background climate, variations in sensible and latent heat fluxes, air temperature,
air pollution, anthropogenic heat emissions, the type of urban functional zone, urban form,
and vegetation distribution [4,21–27]. Among them, urban landscape patterns (ULPs)
quantified by landscape metrics are important factors affecting UHI. Previous studies have
investigated the relationship between ULPs and UHI, but conclusions were not consistent
because ULPs may play different roles in different target cities, seasons, and geographical
conditions [28,29]. Specifically, while UHI changes with UBAE over time, it is unclear
whether there are differences in the temporal variation of UHI in different seasons and in
areas with different topographies, and whether there are seasonal differences (SDs) in the
effect of ULPs on the temporal variation of UHI.

Since 2000, municipal cities in China have expanded exponentially [30]. Many stud-
ies have investigated the UHI in China by evaluating UHI from remote sensing data.
For instance, Land Satellite Thematic Mapper and Enhanced Thematic Mapper (Landsat
TM/ETM+) data have been used to analyze mid-to-long-term spatiotemporal distributions
of UHI for specific cities (e.g., Beijing, Shanghai, Nanjing, Wuhan, and Lanzhou) [31–36].
Moderate Resolution Imaging Spectroradiometer (MODIS) LST products have often been
used to analyze long-term variations in UHI. There are significant spatial and SDs in
UHI [27,37,38]. For example, for dozens of cities in China from 2003 to 2011, the daytime
UHI in summer was higher than that in winter, and the nighttime UHI in summer was the
most stable. In addition, daytime (nighttime) UHIs of southern cities were higher (lower)
than those in northern cities [39,40]. D. Zhou et al. (2015) reported that UHI decreased
drastically with increasing distance from urban boundaries and that areas affected by UHI
were 2.3 times (day) and 3.9 times (night) as large as urban construction areas [41]. The
handful of studies that have considered seasonal fluctuations mainly focused on short
study periods (less than 10 years) [37,42,43] and lacked time series dynamic analyses.
Furthermore, the existing studies were mainly focused on the LST differences between the
initial urban area and rural area (UHIU−R). Analyses are lacking on the LST differences
between the initial urban area and the emerging urban area (UHIU−S) that can directly
reflect changes in the urban thermal environment with urban built-up area expansion.

Although it has become trendy to consider more influencing factors (e.g., population,
anthropogenic emissions, and impervious surface areas) in LST attribution analyses [44],
broadening our understanding of the urban thermal environment, some studies have found
that choosing one typical landscape composition metric and selecting several typical config-
uration metrics are better for analyzing LST variations [45–47]. Moreover, the built-up area
was found to be the primary driver behind urban heating effects by directly transforming
the physical properties of the underlying surface and indirectly changing urban ventilation,
traffic demand, energy consumption, and contact with the surrounding region [48–51].
The UHI significantly changes with UBAE as areas initially covered by undeveloped land
are gradually replaced by built-up land, changing ULPs and, subsequently, the spatial
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distribution of LST. However, during the process of UBAE, the spatiotemporal variation
in UHIU−S and UHIU−R, and the effects of UBAE on the temporal variations in UHIU−S
and UHIU−R in different seasons is still unclear.

This study has thus two objectives: (1) to investigate the temporal variations in
UHIU−S and UHIU−R with UBAE, identifying their differences in different seasons and
for different topographies and regions; (2) to analyze the effects of ULPs changes on the
temporal variations in UHIU−S and UHIU−R in different seasons. To achieve the above
objectives, the UHIU−S and UHIU−R of 34 municipal cities across China from 2001 to 2020
in summer and winter were examined. Differences in landscape metrics of built-up area
(BALMs) between 2020 and 2000 were calculated to quantify UBAE. The effects of UBAE
on UHIU−S and UHIU−R in summer and winter were then analyzed using the ordinary
least-squares (OLS) model.

This study is organized as follows. Section 2 introduces the research areas, data, and
methods. Section 3 presents the spatiotemporal variations in UBAE and UHI and their
relationship. Section 4 presents the Discussion. Conclusions are summarized in Section 5.

2. Materials and Methods
2.1. Study Areas and Data

We selected 34 major metropolitan regions across China (Figure 1). The MODIS LST
product (MOD11A2) with a 1-km spatial resolution at 10:30 Beijing time from 2001 to 2020
was used to calculate daytime UHIU−S and UHIU−R. These LST products were improved
by filtering out cloudy conditions and correcting for atmospheric water vapor, haze effects,
and the sensitivity to errors in surface emissivity [52–54]. Global 30-m land-cover dynamic
monitoring products with a fine classification system (GLC-FCS) from 2000 and 2020 were
used to identify urban built-up areas. The GLC-FCS product (1985–2020, every 5 years)
is produced by the Chinese Academy of Sciences using continuous time-series Landsat
imagery on the Google Earth Engine platform and contains 29 land-cover types [55,56].
Impervious surfaces were regarded as built-up areas in this study. A 1 × 1 km2 grid (to be
consistent with the MODIS pixel size) was created for each city. The percentage of impervious
surfaces (ISP) was then calculated for each 1× 1 km2 window based on GLC-FCS data. Fifty
percent of ISP was used as the threshold to identify the urban boundary in urban fringe
areas [39,48]. Figure 1 shows the identified urban areas of 34 cities in 2000 and 2020.
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2.2. Calculating UHI

Nine research windows, each with a size of 6 km × 6 km, were selected for each
city, including one initial urban window, four emerging urban windows, and four rural
windows. Figure 2 shows the spatial distribution of these nine windows. Initial urban
windows remained urban and developed during 2000–2020. For most cities, four emerging
urban windows were selected in their main expansion directions. However, for individual
cities (e.g., Lanzhou), due to their small outward expansion areas, emerging urban windows
were selected in urban fringe areas. Emerging urban windows were mainly covered by
undeveloped surfaces before 2000 but were gradually replaced by urban built-up areas
as cities expanded from 2000 to 2020. Rural windows represent areas that remained
undeveloped during 2000–2020. They were located 5 km away from urban areas to ensure
that these windows were not or were weakly affected by the UHI [41]. In each window,
water bodies were excluded, and their elevation differences were within 200 m based on
digital elevation model data.
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UHIU−S is the LST difference between the average temperature of the initial urban
window and the average temperature of emerging urban windows, and UHIU−R is the LST
difference between the average temperature of the initial urban window and the average
temperature of rural windows, calculated as:

UHIU−S = TU − TS (1)

UHIU−R = TU − TR (2)

where TU is the average temperature of the initial urban window, and TS and TR are the
average temperatures of the emerging urban windows and rural windows, respectively.

2.3. Quantifying UBAE

To investigate the effect of UBAE on UHI, UBAE was quantified using four factors:
expansion speed, proportion, compactness, and shape, which can thoroughly reflect the
characteristics of landscape patches of built-up areas. Accordingly, four BALMs were
calculated for whole urban areas in 2000 and 2020 (shown in Figure 1): the annual average
expansion speed of built-up areas (AVG), the proportion of built-up areas (PLAND), the
built-up patch density (PD), and the shape index of built-up areas (LSI) [57]. The PLAND
difference (PLANDdi f f ), PD difference (PDdi f f ), and LSI difference (LSIdi f f ) between 2020
and 2000 were then calculated. Combined with AVG, they were used to quantify UBAE,
collectively referred to as UBAE Indices (UBAEIs) here.

AVG is expressed as follows:

AVG = [UA2020 −UA2000]/n (3)
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where UA2020 and UA2000 are the total areas of built-up patches in 2020 and 2000, respec-
tively, and n is the year number. A larger AVG value means that UBAE is faster.

PLANDdi f f is calculated as follows:

PLAND =
∑n

i=1 ai

A
(4)

PLANDdi f f = PLAND2020 − PLAND2000 (5)

where ai is the area of built-up patch i, A is the total area of the research areas, and n is the
number of built-up patches. PLANDdi f f < 0 (>0) means the proportion of built-up area
decreased (increased) with UBAE.

PDdi f f is expressed as follows:

PD = n/A× 106 (6)

PDdi f f = PD2020 − PD2000 (7)

where n is the number of built-up patches, and A is the total area of built-up patches. A
higher value of PD means more dispersed built-up areas. PDdi f f < 0 (>0) means that the
built-up areas tended to be more (less) compact with UBAE.

LSIdi f f is calculated as:

LSI =
0.25 ∑m

k=1 e∗ik√
A

(8)

LSIdi f f = LSI2020 − LSI2000 (9)

where e∗ik is the total length (in m) of the edges between built-up patches i and k, including
the entire built-up boundary and some or all background edge segments involving built-up
areas. A is the total area of built-up patches. LSI = 1 when the landscape consists of a
single square patch of the built-up area. LSI increases without limit as the built-up area
shape becomes more irregular. LSIdi f f < 0 (>0) means that the shapes of built-up areas
tended to be more (less) regular.

2.4. Quantifying the Relationship between UBAE and the Temporal Variation in UHI

The OLS regression model has been frequently used to characterize the relationship
between UHI and land-use changes. It can reflect homogeneous and stationary relation-
ships across space and is reliable for quantifying the large-scale effect of various factors on
UHI and diagnosing the importance of each factor [43,50,58]. It is expressed as follows:

y = β0 + ∑i
i=1 βixi + ε (10)

where y is the dependent variable, which here is the temporal variation in UHIU−S or
UHIU−R, quantified by the slope of the UHI fitting line (SloFL) from 2001 to 2020. β0 is
the y-intercept, βi is the local estimated coefficient of i, xi is the independent/explanatory
variable i (i.e., the four UBAEIs), i represents the number of independent variables (i.e., 4),
and ε is the error term. The main output of the OLS analysis includes the coefficient
of determination (R2), the p value, the coefficient of each explanatory variable, and the
studentized residual (StdResid). The p value represents the overall fitness/performance of
the model. The coefficients represent the strength and type of relationship between each
independent variable and the dependent variable. StdResid can test the reliability of each
estimated value. The closer the absolute value of StdResid is to 0, the smaller the difference
between estimated and actual values. A result is unreliable when the absolute value of
StdResid is larger than 2.5.
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Moran’s Index (Moran’s I) was used to conduct the spatial autocorrelation test for
StdResid, expressed as:

I =
n ∑n

i=1 ∑n
j=1 Wij(xi − x)

∑n
i=1 ∑n

j=1 Wij(xi − x)2 =
∑n

i=1 ∑n
j 6=1(xi − x)

(
xj − x

)
S2 ∑n

i=1 ∑n
j=1 Wij

(11)

where n is the total number of cities, Wij is the spatial weight, xi and xj are the StdResids
output from the OLS analyses of city i and city j, respectively, x is the average value of
all StdResids, and S2 is the variance of StdResid. Here, the global Moran’s I of StdResid
was calculated to test the ability of the OLS model to address the spatial autocorrelation of
variables. Results of the OLS analyses are reliable when StdResid is randomly distributed.
StdResid is considered randomly distributed when the absolute value of Moran’s I is close
to 0, and the Z-score is between −1.65 and 1.65.

3. Results
3.1. Geographical Distributions of UBAEIs

Figure 3 shows the spatial distributions of UBAEIs (i.e., AVG, PLANDdi f f , PDdi f f ,
and LSIdi f f ). The average AVG of the 34 cities was 19.1 km2/year. Shanghai, the most
economically developed city in China, had a maximum AVG of 76.9 km2/year. Lanzhou
had the minimum AVG of 0.12 km2/year because its main urban area is surrounded
by mountains, limiting UBAE. The proportion of built-up areas increased in 13 cities
(PLANDdi f f > 0) and decreased in 21 cities (PLANDdi f f < 0), while the density of
built-up lands increased in 12 cities (PDdi f f < 0) and decreased in 22 cities (PDdi f f > 0).
For most cities, the densities and proportions of built-up areas increased (or decreased)
synchronously. Changchun had the largest PLANDdi f f and the smallest PDdi f f , indicating
that its UBAE was primarily through infilling. However, Tianjin and Nanjing had the
smallest PLANDdi f f and the largest PDdi f f , indicating that their UBAEs were primarily
through extension and leapfrog development. The shape complexity of built-up areas
increased (LSIdi f f > 0) in all cities except Taiyuan and Lanzhou, located in mountainous
areas. Overall, in the east-west direction, AVG and LSIdi f f increased, while PLANDdi f f
and PDdi f f remained almost unchanged. In the north-south direction, AVG, PDdi f f , and
LSIdi f f first increased, then decreased, while PLANDdi f f did the opposite.

The 34 cities were divided into three types according to the topography of each city. A
city was classified as a coastal city if oceans were less than 6 km away in 2020. A city was
classified as a mountain city if there were mountains higher than 500 m in the vicinity. All
other cities were classified as plain and hilly cities.

Figure 4a shows clear regional and topographic differences in UBAE. The UBAE
of coastal cities was the most significant and fastest, as indicated by clear decreases in
proportion, density, and shape regularity of built-up areas. Due to topographical limitations,
the UBAE of mountain cities was the least significant and the slowest, with changes in PD
and LSI also the smallest. Figure 4b shows UBAEIs in different regions. UBAE differences
were consistent with differences in economic level. The UBAEs of cities in eastern, northern,
and central-south China, areas with developed economies, were the fastest. The UBAEs
of cities in northeast and northwest China, areas with slow-growth economies, were the
slowest. The proportions, densities, and shape regularities of built-up areas decreased
more markedly in cities with faster UBAEs. For cities with slower UBAEs, the proportions
and densities of the built-up area increased or little changed (e.g., in the northeast and
northwest China), and their shape regularities changed little.
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3.2. The Geographical Distribution of UHI

Figure 5 shows the spatial distributions of average UHIU−S and UHIU−R in 34 cities
from 2001 to 2020. Figure 6 shows UHIU−S and UHIU−R for different topographies and
regions. On an annual basis, the average UHIU−R of all cities (1.95 ◦C) was larger than
the average UHIU−S (0.73 ◦C). The UHIU−R in the 34 cities were all positive, varying from
0.17 ◦C (Xining) to 3.63 ◦C (Chengdu). The UHIU−Ss in 29 cities were positive, while
those in 5 cities (Qingdao, Lanzhou, Taiyuan, Guangzhou, and Xining) were negative. This
means that the LSTs of emerging urban areas in these five cities were higher than those of
urban areas (Figure 5(a1,b1)). Overall, the spatial patterns of annual UHIU−S and UHIU−R
were consistent (Figure 6b). Arid cities located in northwest and north China had smaller
UHIU−R and UHIU−S values than humid cities located in northeast, east, central-south,
and southwest China (Figure 6b), attributed to the poor cooling effect caused by the sparser
vegetation around arid cities compared to other cities [39]. Similar results for UHIU−R
were obtained in other regions of the world [8,48].

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 5. Spatial distributions of average 𝑈𝐻𝐼𝑈−𝑆 and 𝑈𝐻𝐼𝑈−𝑅 from 2001 to 2020 for 34 cities (unit: 
°C): annual (a1) 𝑈𝐻𝐼𝑈−𝑆 and (b1) 𝑈𝐻𝐼𝑈−𝑅, summertime (a2) 𝑈𝐻𝐼𝑈−𝑆 and (b2) 𝑈𝐻𝐼𝑈−𝑅, wintertime 
(a3) 𝑈𝐻𝐼𝑈−𝑆 and (b3) 𝑈𝐻𝐼𝑈−𝑅, and seasonal differences (SDs) in (a4) 𝑈𝐻𝐼𝑈−𝑆 and (b4) 𝑈𝐻𝐼𝑈−𝑅. SD 
is defined as the 𝑈𝐻𝐼 difference between summer and winter. 

Topography, land-cover type, and meteorological conditions can affect the urban 
𝐿𝑆𝑇, altering the 𝑈𝐻𝐼 [43,63]. Figure 6a shows 𝑈𝐻𝐼𝑈−𝑆 and 𝑈𝐻𝐼𝑈−𝑅 for different topog-

raphies. Annual and summertime 𝑈𝐻𝐼𝑈−𝑅 show similar patterns: the 𝑈𝐻𝐼𝑈−𝑅 of coastal 
cities was smaller than that of inland cities because sea breezes driving cold air into urban 
areas greatly reduced the 𝑈𝐻𝐼 in summer [64,65]. However, in winter, the 𝑈𝐻𝐼𝑈−𝑅  of 

coastal cities was larger than that of inland cities, probably because land breezes 

Figure 5. Spatial distributions of average UHIU−S and UHIU−R from 2001 to 2020 for 34 cities
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wintertime (a3) UHIU−S and (b3) UHIU−R, and seasonal differences (SDs) in (a4) UHIU−S and (b4)
UHIU−R. SD is defined as the UHI difference between summer and winter.
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SDs in UHIU−S and UHIU−R were significant. Summertime UHIU−R and UHIU−S
values were positive in all regions, but in the winter, they were negative in northwest and
northern China and positive elsewhere (Figure 5(a2,a3,b2,b3) and Figure 6b). Moreover,
summertime UHIU−S and UHIU−R values were more intense than in winter during the
day, and the SDs of UHIU−R were larger than those of UHIU−S (Figure 5(a2–a4,b2–b4)).
There are two reasons for this. First, urban spatial morphology was significantly correlated
with LST in summer but not in winter [59,60]. Second, the evaporative cooling effect caused
by rural vegetation was stronger in summer than in winter [39,48,61]. The SDs of UHIU−R
in the 34 cities were all positive, and the SDs of UHIU−S in most cities were also positive,
except in Urumqi and Lanzhou. This might be because the SDs in vegetation in the rural
areas of these two cities are small [62]. Overall, the SD in UHIU−R was significantly larger
than that of UHIU−S (Figure 5(a4,b4)).

Topography, land-cover type, and meteorological conditions can affect the urban LST,
altering the UHI [43,63]. Figure 6a shows UHIU−S and UHIU−R for different topographies.
Annual and summertime UHIU−R show similar patterns: the UHIU−R of coastal cities
was smaller than that of inland cities because sea breezes driving cold air into urban areas
greatly reduced the UHI in summer [64,65]. However, in winter, the UHIU−R of coastal
cities was larger than that of inland cities, probably because land breezes weakening UHI
circulation reduced the heat exchange between urban and rural areas, thus increasing the
UHI. This needs further study.

3.3. Temporal Variations in UHI

Figure 7 shows the temporal variations in UHIU−S and UHIU−R in 34 cities from
2001 to 2020. The SloFL from 2001 to 2020 was used to quantify the temporal variation in
UHI. A SloFL < 0 means that UHI decreases with UBAE, and a SloFL > 0 means that UHI
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increases with UBAE. On an annual basis, the UHIU−S and UHIU−R in Tianjin decreased
faster (with a smaller SloFL) than in other cities, but those in Harbin and Lanzhou increased
the fastest (with the largest SloFLs). This can be attributed to their opposite trends from
2000 to 2020 in PLAND, PD, and LSI (Figure 3), discussed in Sections 3.4 and 4. Overall,
the average UHIU−R in all cities decreased slightly (SloFL = −0.01), with a reduction less
than that of UHIU−S (SloFL = −0.05) (Figure 8(d1,d2)).
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The temporal variations in UHIU−S and UHIU−R changed seasonally. In the summer,
the UHIU−Ss in most cities decreased faster (with smaller SloFLs) than UHIU−R except in
Urumqi and Lanzhou, located in arid and rainless areas with sparse vegetation (Figure 7).
Wintertime UHIU−S and UHIU−R showed no clear trend (Figure 7). For both UHIU−S and
UHIU−R, summertime absolute values of SloFLs were larger than wintertime absolute values,
indicating that UHI was more sensitive to UBAE in summer than in winter. Average values
from all cities illustrate this: Both the UHIU−S (SloFL = −0.09) and UHIU−R (SloFL = −0.02)
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decreased with UBAE in summer and did not change (SloFL = 0) in winter (Figure 8(d1,d2)).
Moreover, the SD in UHIU−S between summer and winter significantly decreased with
UBAE, but the SD in UHIU−R changed little (Figure 8(d1,d2)).

Figure 8(a1–c1,a2–c2) show the temporal variations in UHIU−S and UHIU−R of cities
with different topographies from 2001 to 2020. Both UHIU−S and UHIU−R changed more
significantly in summer than in winter for the different types of cities. The variations in
UHIU−S and UHIU−R of mountain cities differed from the other cities. Specifically, espe-
cially in summer, the UHIU−S of mountain cities decreased more slowly (SloFL = −0.04)
than those of coastal cities (SloFL = −0.13) and plain and hilly cities (SloFL = −0.1). The
UHIU−R of mountain cities increased slightly (SloFL = 0.01) while those of the other cities
decreased. This can be attributed to the differences in UBAE of different types of cities,
discussed next.

3.4. The Effect of UBAE on the Variation in UHI

Table 1 gives annual, summertime, and wintertime OLS results (i.e., coefficients
of each UBAEI and R2). Figure 9 shows StdResids outputs from the OLS model. The
correlation between the UBAEIs and SloFLs of UHI (including UHIU−S and UHIU−R)
was stronger in summer than in winter, illustrated by the highest R2 value that passed
the significance test (Table 1) and absolute values of StdResids in all cities less than 2.5
(Figure 9(a2,b2)) in summer. This suggests that UBAE significantly affected the variation
in UHI in summer but not in winter, consistent with results in Section 3.3. Results from the
spatial autocorrelation test in Table 1 show that StdResid patterns were not significantly
different from random in summer (i.e., Moran’s I was close to 0, and the Z-score was
between −1.65 and 1.65), further suggesting that the OLS results are reliable, and that the
analysis did not neglect any key explanatory variables.

Table 1. OLS results between UBAEIs and SloFLs for different seasons. Asterisks “**” and “*”
indicate 0.01 and 0.05 significance levels, respectively.

OLS Results Spatial Autocorrelation Test

Coefficient
AVG

Coefficient
PLANDdiff

Coefficient
PDdiff

Coefficient
LSIdiff

R2 Moran’s I Z-Score

UHIU−S

Annual 0.000717 −0.001174 −0.006464 −0.001321 0.25 * −0.1 −1.68
Summer −0.000372 0.000694 −0.004078 −0.001685 0.46 ** −0.069 −0.92
Winter −0.001015 −0.003707 −0.020491 0.000089 0.15 −0.085 −1.3

UHIU−R

Annual 0.000288 0.00134 −0.004557 −0.000421 0.20 * −0.042 −0.28
Summer −0.00032 0.001986 −0.00233 −0.001428 0.50 ** −0.045 −0.35
Winter −0.00079 −0.001234 −0.028536 0.001345 0.04 0.051 1.95

Among the four UBAEIs, PDdi f f (with the largest absolute value of the coefficient)
was the dominant factor affecting the temporal variation in UHI (SloFL) during UBAE,
followed by PLANDdi f f and LSIdi f f . The impact of AVG (with the smallest absolute value
of the coefficient) was the least (Table 1). In summer, the relationships between UBAEIs
and SloFLs were consistent for UHIU−S and UHIU−R, i.e., PLANDdi f f was positively
correlated with SloFL, while AVG, PDdi f f , and LSIdi f f were negatively correlated with
SloFLs. Overall, the decreased density and proportion, the increased shape complexity,
and the faster expansion of built-up areas accelerated the reduction in UHI and vice versa.
Section 4 discusses potential factors. This indicates that in the context of continuous urban
expansion, reducing the density of built-up lands is an effective way to weaken the UHI
intensity [66].
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Figure 9. The StdResid distribution output from the OLS model of (a1) annual UHIU−S, (a2) sum-
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4. Discussion

The representativeness of the selected urban and emerging urban windows (shown in
Figure 2) to whole urban and emerging urban areas when calculating UHI was evaluated.
For each city, the standard deviation of LST (LST-STD) was calculated for whole urban
and emerging urban areas. The absolute value of the difference (LST-Diff) between the
average LST of selected urban windows and the average LST of whole urban areas was also
calculated (Figure 10). The representativeness of the selected urban windows is acceptable
when LST-Diff is less than LST-STD and close to 0. For most cities, the LST-Diff was
significantly less than LST-STD and less than 0.5 in all seasons, indicating that the LST of
selected urban and emerging urban windows can accurately represent the LST of whole
urban and emerging urban areas. The LST-Diff for individual cities (such as Fuzhou,
Guiyang, Qingdao, and Xiamen) was greater than the LST-STD. The types of land use
are relatively complex (with larger LST-STDs) in these cities, and there are large areas of
natural surfaces (e.g., water bodies and mountainous forest parks) within their urban areas,
significantly changing the average LSTs of whole urban areas. As the main focuses of this
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study were on built-up areas, natural surfaces were avoided when selecting urban and
emerging urban windows. As a result, the LSTs of selected urban and emerging urban
windows obviously differ from the average LSTs of whole urban and emerging urban areas
in these cities. In conclusion, the LSTs of selected urban and emerging urban windows are
sound, and the calculated UHI is reliable.
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Previous studies have found that the LST spatial distribution differs in summer and
winter because of the different relationships between LST and the urban spatial morphology
(e.g., the density and proportion of built-up areas, the built-up fraction) [59,60]. The impact
of the change in the urban spatial morphology on LST in summer was greater than that in
winter, i.e., the density/fraction of built-up lands was significantly positively correlated
with LST in summer but not in winter. LST varied gradually with the urban spatial
morphology in summer, but there was no definite relationship in winter. The LSTs of urban
fringes were even higher than those of urban centers in winter [59,60,67]. The LSTs of
the initial urban area (TU in Equations (1) and (2)) and the emerging urban area (TS in
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Equation (1)) were thus more sensitive to UBAE in summer than in winter, further resulting
in more significant temporal variations in UHIU−S and UHIU−R in summer than in winter
(Figures 7 and 8).

The UBAE can be classified into infilling and sprawling, and sprawling can be further
divided into extension and leapfrog expansion [43]. The infilling expansion increases
the density of built-up lands in the initial urban area, which can increase the LST of the
initial urban area (TU) by enhancing surface heat storage and weakening the heat exchange
between the initial urban area and its surroundings [68–71]. This has a positive effect on
UHIU−S and UHIU−R. The sprawling expansion (especially leapfrog expansion) usually
decreases the density of built-up lands, with a complex impact on LST. On the one hand,
with outward urban sprawling, undeveloped surfaces (e.g., vegetated land and water
bodies) around initial urban areas are gradually replaced by built-up areas (e.g., roads,
buildings, and industrial parks), developing into emerging urban areas. This significantly
increases the heat capacity and anthropogenic heat emissions in emerging urban areas,
increasing the LST of emerging urban areas (TS) [72,73]. Meanwhile, the background
temperature (TR) also increases due to the sprawling expansion [74]. On the other hand,
sprawling expansion has little impact on the LST of the initial urban area (TU) [73,75]. This
is because a city with sprawling expansion often has good planning policies and enough
area for moving industrial land with high LSTs from the initial urban area to the emerging
urban area. Moreover, more natural areas such as green land surfaces and parks are built in
the initial urban area to improve its urban thermal environment [37,51,76], even decreasing
the LST of the initial urban area (TU). Sprawling expansion (especially leapfrog expansion)
may thus have a negative effect on UHIU−S and UHIU−R. If the UBAE of a city is primarily
through infilling, PLANDdi f f > 0 and PDdi f f < 0 can result. If the UBAE is primarily
through sprawling, PLANDdi f f < 0 and PDdi f f > 0 can result. So PLANDdi f f and PDdi f f
are negatively and positively correlated with the decreasing rates of UHIU−S and UHIU−R.

Figure 11 shows the correlation coefficient matrix of the four UBAEIs. There was
a significant correlation between PDdi f f and PLANDdi f f , i.e., the increase in proportion
corresponded to the increase in density of the built-up lands. There was a positive correla-
tion between AVG and PDdi f f and a negative correlation between AVG and PLANDdi f f ,
indicating that the UBAE of a city with larger AVG was primarily through sprawling,
which rapidly increased the built-up areas in emerging urban areas but reduced the overall
proportion and density of built-up areas. This results in TU changing little or even de-
creasing but TS rapidly increasing, ultimately accelerating the decreases in UHIU−S and
UHIU−R in summer. However, for a city with a smaller AVG, its expansion is mainly
achieved by infilling, increasing the proportion and density of built-up areas in the initial
urban area with a slow sprawling speed. This increases TU but slows the increase in TS,
eventually attenuating the reduction in UHIU−S and UHIU−R. AVG is thus positively
correlated with the decreasing rate of UHI. There were positive correlations between
LSIdi f f and AVG, and LSIdi f f and PDdi f f , but a negative correlation between LSIdi f f and
PLANDdi f f , meaning that for a city with built-up areas increasingly complex in shape, its
proportion and density of built-up areas commensurately decreased and vice versa. The
increasingly complex shapes of built-up areas thus accelerated the reduction in UHI.

The UHI variations of cities located in areas with different topographies (Figures 4a
and 8) can be explained by the above results. The UHIU−S and UHIU−R of coastal cities
with smaller SloFLs decreased faster than those of inland cities (Figure 8(b1,b2)) because
the UBAEs of coastal cities had the smallest PLANDdi f f and the largest AVG, PDdi f f , and
LSIdi f f (Figure 4a). However, mountain cities, their UHIU−Ss decreased slower than the
other cities, and their UHIU−Rs increased when the UHIU−Rs of other cities decreased
(Figure 8(a1,a2)). This is because the AVG, PDdi f f , and LSIdi f f of mountain cities were the
smallest (Figure 4a).
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5. Conclusions

In this study, long-term multiple remote sensing datasets from 2001 to 2020 were
used to analyze spatiotemporal variations in land surface temperature (LST) differences
between urban areas and emerging urban areas (UHIU−S) and between urban areas and
rural areas (UHIU−R) in 34 municipalities across China. Four landscape metrics of built-up
area (BALMs) were first calculated: the annual average expansion speed of built-up areas
(AVG), the proportion of built-up areas (PLAND), the built-up patch density (PD), and
the shape index of built-up areas (LSI). Four indices were further calculated to quantify
the urban built-up area expansion (UBAE): AVG, the PLAND difference (PLANDdi f f ),
PD difference (PDdi f f ) and LSI difference (LSIdi f f ) between 2020 and 2000, collectively
referred to as UBAE Indices (UBAEIs). The effects of UBAE on UHIU−S and UHIU−R in
winter and summer were further analyzed. The major findings are summarized as follows.

From 2000 to 2020, the average AVG of the 34 cities was 19.1 km2/year. Shanghai
and Lanzhou had maximum and minimum AVGs of 76.9 km2/year and 0.12 km2/year,
respectively. For most cities, the densities and proportions of built-up areas increased
(or decreased) synchronously, and their shapes became more complex. There were sig-
nificant spatial differences in UBAE. Economic development and topography impacted
UBAE. The built-up areas of cities located in economically developed regions (e.g., eastern,
northern, and central-south China) expanded faster, and their proportions, densities, and
shape regularities decreased more noticeably than in cities located in regions with slower
economic development. The UBAEs of coastal cities were the most clearly seen, with
built-up areas expanding the fastest and their proportions, densities, and shape regularities
experiencing the greatest decline. This was followed by plain and hilly cities, with the
UBAEs in mountain cities the least noticeable.

There were clear spatial and seasonal differences in UHIU−S and UHIU−R. Overall,
the annual average UHIU−R of all cities (1.95 ◦C) was larger than the average UHIU−S
(0.73 ◦C), and summertime UHIU−S and UHIU−R were larger than those in wintertime.
The seasonal difference in UHIU−R between summer and winter was significantly larger
than that of UHIU−S. Arid cities located in northwestern and northern China had lower
UHIU−Rs, possibly because of the weaker cooling effect caused by the sparser vegetation
in rural areas. Compared with mountain cities and plain and hilly cities, the UHIU−S and
UHIU−R of coastal cities were the lowest in summer because of the significant cooling
effect caused by sea breezes. The LSTs of selected urban and emerging urban windows can
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well represent the LST of the whole urban areas and emerging urban areas, showing that
the calculated UHI is reliable.

The temporal variations in UHIU−S and UHIU−R showed clear spatial and seasonal
differences. On an annual basis, overall, UHIU−S decreased with UBAE from 2001 to
2020, while UHIU−R only slightly decreased. Both UHIU−S and UHIU−R in Tianjin clearly
decreased, while those in Harbin and Lanzhou increased because of their opposite trends
from 2000 to 2020 in PLAND, PD, and LSI. The UHIU−S and UHIU−R of coastal cities
decreased the fastest because the density and proportion of their built-up areas decreased
the most. However, the UHIU−S of the mountain cities decreased more slowly than the
other cities, and the UHIU−Rs increased when the UHIU−Rs of other cities decreased
because the densities of their built-up areas increased. The temporal variations in UHIU−S
and UHIU−R were more noticeable in summer than in winter, and their relationship with
UBAE was significant in summer but not in winter, indicating that the impact of UBAE on
UHIU−S and UHIU−R in summer was more obvious than in winter.

Among the four UBAEIs, PDdi f f was the dominant factor affecting the temporal
variation in UHI during UBAE. AVG had the least impact. The decreased density and
proportion, the increased shape complexity, and the faster expansion of built-up areas
accelerated the reductions in UHIU−S and UHIU−R. This indicates that during urban
development, reducing the density of built-up lands by soundly planning the spatial
distribution of built-up areas and natural lands can effectively weaken the UHI effect
under the condition that the urban expansion speed cannot be effectively controlled.

Although this study investigated the effect of urban expansion on UHIU−S and
UHIU−R in different seasons, the underlying intrinsic physical mechanism needs further
quantitative examination using numerical model simulations. However, this is difficult to
do at present because combining high spatial resolutions and long time series is a challenge
for numerical modeling. We only analyzed the daytime LST in this study, so future studies
should take nighttime into account to broaden our understanding. There are various meth-
ods to calculate UHI, which will be compared in future studies. The conclusions reported
here are generally valid for the majority of cities studied but may not be true for all cities
due to city-specific unique characteristics regarding climatic background, policies, and
socioeconomic factors, among others. Focusing on a particular city could lead to valuable
insights into the physical mechanisms underlying the effect of urban expansion on UHI.
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