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Satellite data from the Advanced Very High Resolution Radiometer (AVHRR)
have been widely employed for fire monitoring around the world by virtue of the
thermal emission in the middle-infrared (mid-IR) channel at 3.7 µm. This channel,
however, receives both thermal emission and solar reflection. As far as fire detec-
tion is concerned, the solar reflection contaminates the fire emission signal, which
can cause significant errors, especially over non-forest biomes. This study presents
a method to detect and eliminate the significant contribution of solar reflection to
the AVHRR mid-IR band so that the fire detection accuracy is improved. AVHRR
data from April to November 2004 were analysed. Twenty-seven percent of com-
mission errors, mainly located in the southwestern part of North America, were
found to be caused by the strong solar reflection from the surface. We also found
that the calculated solar reflection itself is an effective indicator of false detections
for the AVHRR. Introducing a new test to take into account this effect leads to
a considerable reduction in commission errors. The new filter can eliminate most
commission errors at the expense of minor increases in omission errors. The total
number of true fires is missed by 0.3%, and the total number of false fire detections
is reduced by 27.1%.

1. Introduction

Fire is one of the driving factors in global ecosystem patterns and processes, through
its alteration of vegetation distribution and structure, global carbon balance, and
climate (Bowman et al. 2009). Smoke from fires (Li et al. 2001b) can drastically
alter the surface radiation budget (SRB) (Li 1998), which needs to be accounted
for in the retrieval of SRB from satellite (Masuda et al. 1995). The spatial distri-
bution of fires, which can be detected from satellites, is increasingly emerging as an
important input to earth system models (Ju and Chen 2008). Advanced Very High
Resolution Radiometer (AVHRR) data (Cihlar et al. 1997, Cracknell 1997) from
National Oceanic and Atmospheric Administration’s (NOAA) polar orbiting satel-
lites have played an important role in wildfire detection over the last two decades
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(Lee and Tag 1990, Cahoon et al. 1994, Flasse and Ceccato 1996, Justice et al.
1996, Li et al. 1997, Giglio and Kendall 1999, Pu et al. 2007). For example, the
Fire Identification, Mapping and Monitoring Algorithm (FIMMA) product from
an operational system of fire detection at the NOAA employs daily AVHRR data
to detect fires across the United States (http://www.ssd.noaa.gov/PS/FIRE/Layers/
FIMMA/fimma.html).

Although various fire detection algorithms were proposed (Giglio and Kendall
1999, Li et al. 2001a, Xu et al. 2010) for eliminating false fires caused by sate-
llite noise, clouds, hot surfaces, sun glint (Khattak et al. 1991) and so on, those
algorithms still suffer from the fundamental problems of solar contamination and sat-
uration in the middle-infrared (mid-IR) band (Cracknell 1997), which are the major
sources of commission errors, especially in non-forest areas (Li et al. 2001a, He
and Li 2011). A recent study of fire detection using Moderate Resolution Imaging
Spectroradiometer (MODIS) data (He and Li 2011) showed that moderate improve-
ments can be achieved in the detection rate while retaining low commission errors by
eliminating the solar contamination.

In this study, we continue to improve fire detection by eliminating solar contami-
nation in the mid-IR band using AVHRR data and the FIMMA. An earlier method
proposed by He and Li (2011) exploited the corrected brightness temperature (BT) in
the mid-IR band after the solar reflection was eliminated. However, given that the satu-
ration temperature (330 K) in the AVHRR mid-IR band is very low and about half
of all hotspots are saturated, the same method (He and Li 2011) cannot be applied to
AVHRR data directly because it is difficult to distinguish if any pixels are saturated
due to the contribution of thermal emission from fires, or the solar contamination, or
both. Thus, a removal of solar contamination for saturated pixels may underestimate
the thermal emission and introduce extra errors. Instead of using BT, we directly input
the reflected solar radiation received by the AVHRR into the FIMMA by introducing
a new filter, in order to improve the accuracy of the fire detection algorithm by means
of the removal of false fire detections.

2. Data sets and method

The data and methodology employed for eliminating false detections caused by solar
radiation for AVHRR data are described in the following subsections.

2.1 Data sets

AVHRR (NOAA-15, 16, and 17) data covering North America (NA) from April
to November 2004 were provided by the NOAA/Coast Watch sector (http://www.
class.noaa.gov/saa/products/search?datatype_family=AVHRR). The data are geo-
corrected and operationally used in the Hazard Mapping System (HMS) at NOAA
(McNamara et al. 2004, Stephens et al. 2005, Schroeder et al. 2008). The AVHRR
bands are described in table 1.

The MODIS Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg
CMG product (MOD11C3, collection 4) generated for 2003 (Wan and Li 1997,
Petitcolin and Vermote 2002) was used to derive surface emissivity for AVHRR mid-
IR bands. The emissivity in MODIS band 20 (3.66–3.84 µm) was used because it is
the closest to AVHRR band 3b.

The MOD12Q1 V004 Land Cover product (Friedl et al. 2002) was used in the
FIMMA. We employed the 14-class system developed at the University of Maryland
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(Hansen et al. 2000): water (0), evergreen needleleaf forest (1), evergreen broadleaf
forest (2), deciduous needleleaf forest (3), deciduous broadleaf forest (4), mixed forest
(5), woodland (6), wooded grassland (7), closed shrubland (8), open shrubland (9),
grassland (10), cropland (11), bare ground (12) and urban and built-up (13).

Surface elevation data at a spatial resolution of 30 seconds are from
the US Geological Survey (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.
html). The solar contamination is attenuated by the atmosphere and explained by the
surface elevation in the algorithm.

The fire detection results were compared with human-added hotspots confirmed by
the accompanying smokes by the analysts who inspected Geostationary Operational
Environmental Satellite (GOES) and AVHRR imageries, which are a subset of the
HMS fire data from April to November 2004. The HMS is an interactive system
in which satellite analysts manually integrate, inspect, and filter fire data generated
from various automated fire detection algorithms. Using active fire data detected from
GOES and polar orbiting satellite (AVHRR and MODIS) imagery, quality-controlled
products of fire locations and major smoke plumes are generated for NA (McNamara
et al. 2004, Stephens et al. 2005). The quality of HMS data is validated against coinci-
dent Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
data (Schroeder et al. 2007). It was found that hotspots added by analysts are reli-
able; however, some true fires detected by automated algorithms may be wrongly
deleted because they lack discernible smoke plumes. The validation study revealed
that commission errors from the MODIS and GOES fire products are less than 2%
and omission errors are up to 80% or more over the United States (most of the omis-
sion errors owing to the big difference in spatial resolutions between the ASTER and
the MODIS). As such, we employed the original MODIS and GOES fire products
(i.e. including those data filtered out by the HMS) together with hotspots added by
analysts, as ground truth to test the FIMMA. Given that the combined fire products
may still not detect some real fires, we try to maintain the same level of omission errors
while modifying the fire detection algorithm.

2.2 The method

2.2.1 The original FIMMA. In this study, the original FIMMA forms the basis
for developing a new filter. The FIMMA was based on the scheme described in Li
et al. (2000) and implemented as a contextual algorithm, taking advantage of seve-
ral fire detection algorithms (Giglio and Kendall 1999, Li et al. 2001a). Additional
filters were added to screen for noisy data. The daytime algorithm is summarized in
table 1. The original FIMMA is composed of filters 1–9. Filter 1 is used to mask out
cloudy pixels. The BT (Tb) is converted from total radiance (L) received in a mid-IR
band,

Tb = B′(L) (1)

where B′(L) represents the inversion function of Planck’s law. Filter 2 is used to dif-
ferentiate potential fire pixels from hot ground. Any single hot spot (i.e. none of its
adjacent 8 pixels are potential fires) from filter 2 is doubtful because of noise and thus
is excluded in filter 3. Filter 4 is used to eliminate false fires around badly scanned
lines, barcode patterns and so on. Thermal anomalies such as pixels in water, bare
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ground and urban areas (checked using the land-cover product) are excluded in fil-
ter 5. Filters 6–8 are used to exclude sun glint from bright backgrounds (e.g. soil and
water) around their specular reflection directions. Filter 9 is composed of a series of
contextual threshold tests that look for pixels that have distinctly higher mid-IR BTs
(T3) and BT differences (�T = T3 − T4) than their non-fire background. In filter
9, valid non-burning neighbouring (or the background) pixels are searched for from
a 5 × 5 up to a 41 × 41 window around a potential fire pixel until at least 35% of
the pixels within the window are valid background pixels and the number of valid
background pixels is at least eight.

2.2.2 The new filter. The radiance received in a mid-IR channel under clear-sky
conditions consists of two parts: the thermal emission, Lt, from the atmosphere and
ground surface, and the solar reflection, Ls, resulting from the scattering/reflection
of the atmosphere and surface (Wan and Li 1997). In this study, we created filter 10
(table 1) to reduce commission errors in the accounting of Ls and the Normalized
Difference Vegetation Index (NDVI):

((Ls > A and T4 < B k) or T4 ≥ B k) and NDVI < C (2)

where A, B and C are thresholds to be determined. The surface bidirectional
reflectance factor (or directional emissivity) in the mid-IR band is needed to accurately
calculate Ls (Tang et al. 2009). The only operational emissivity product for the mid-IR
band, the global MODIS Land Surface Temperature/Emissivity product (Wan 2008),
is based on the assumption that the surface is a Lambertian surface (Wan and Li 1997).
We used this product and adopted the same assumption. Omitting angle notations for
simplification, Ls can be expressed as

Ls = Lp + α

π (1 − α · S)
· μs · E0 · [ts + tds] · [tv + tdv]. (3)

where Lp is the path radiance resulting from the scattering of solar radiation by the
atmosphere; α is the surface albedo; S is the spherical albedo of the atmosphere; μs

is the cosine of the solar zenith angle (SZA); E0 is the solar irradiance incident at
the top of the atmosphere (normal to the beam); ts is the transmission function for
the solar beam; tds is the transmission function for downward diffuse solar radiation;
tv is the direct transmission function between the surface and the sensor and tdv is
the transmission function for the upward diffuse solar radiation. The parameter α

is related to the surface emissivity as α =1 − ε according to Kirchhoff’s law, and
ε is acquired from the MODIS emissivity product (He and Li 2011). In simulating
satellite-observed signals, radiances were integrated over the bandpass of the sensor
weighted by the spectral response function of the sensor (http://www2.ncdc.noaa.gov/
docs/klm/).

The components of Ls (Lp, S, ts, tv, tds and tdv) are computed using the MODT-
RAN4 model (Berk et al. 1998) with a variety of atmospheric parameters and varying
viewing geometries (including surface elevation) for the NOAA-15, 16 and 17 AVHRR
mid-IR bands. The output data are then used to develop look-up tables (LUTs) for
speedy application. Multi-dimensional linear interpolation is performed to estimate
any of the six parameters.
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In order to choose thresholds A, B and C in equation (2), we have analysed the
ranges of Ls, T4 and NDVI for original FIMMA-detected false fires, which were
distinguished by the ‘ground truth’ data set described in section 2.1.

3. Results and discussion

3.1 Determination of thresholds for the new filter

Figure 1 shows the increase in BT (�T = B′(Lt + Ls) − B′(Lt)) for varying Lt (BT
along the x-axis) and Ls for AVHRR channel 3b (N16). It illustrates that the higher
the ratio of Ls/Lt, the higher the increase in BT. A high Ls can cause a significant
increase in BT, which could trigger the fire alarm.

AVHRR data from July 2004 were used to determine thresholds for filter 10.
After applying the original FIMMA (filters 1–9) to AVHRR data from this month,
33,674 hotspots were detected, of which 1695 (5.0%) were false fires. The percentage
of false fires is low because forest fires dominate in this month and the FIMMA per-
forms well in detecting such fires. The reason for selecting data from July as training
data is that for this year, the greatest number of fires occurred in July and the solar
contamination was stronger than other months except June.

Strong solar contamination occurs at either small SZAs or small viewing zenith
angles (VZAs) (short path lengths), whereas large Lp occurs at either larger SZAs or
larger VZAs (long path lengths). Lp is generally only several hundredths of the total
Ls except for those pixels with very low albedos; the stronger the solar contamination,
the lower the proportion of Lp. Of the 33,674 fire pixels, only 2556 (7.6%) pixels have
Ls larger than 0.1 W m−2 sr−1 µm−1, and Lp comprises only 2.2 ± 1.2% of the Ls.
To improve the computation efficiency, Lp is omitted in the calculation of Ls.

In order to choose threshold A for Ls in the detection of false fires, we used a scatter
plot of Ls and T4 to separate false fires (red) from true fires (blue), as shown in figure 2.
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Figure 1. The increase in BT (�T = B′ (Lt + Ls) − B′ (Lt)) with varying Ls and Lt (or BT).
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Figure 2. Scatter-plots of T4 and Ls for hotspots in 2004. (a) April, (b) May, (c) June, (d) July,
(e) August, (f ) September, (g) October and (h) November.

We chose T4 because it never saturates for any fire pixels from the FIMMA. The
dashed line in figure 2 is selected to single out most of the false fires caused by solar
contamination, while retaining the vast majority of true fires. The horizontal line (for
threshold A) in figure 2 is set at 0.14 W m−2 sr−1 µm−1. The vertical line (threshold B)
in figure 2 is 313 K; this value was chosen because from the analysis of true fire pixels
data in July 2004, few true fire pixels have T4 > 313 K. If a fire pixel from filter 9 has
a NDVI > 0.2 (threshold C), this pixel is more likely to be a fire pixel (Kalpoma and
Kudoh 2006). Thus, in this study, any fire pixels with NDVI > 0.2 are identified as true
fires in filter 10 regardless of the magnitude of Ls.
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3.2 The result

The new filter was validated using an independent set of data, namely 7 months worth
of AVHRR data. The performance of filter 10 is summarized in table 2. The ‘ground
truth’ refers to the number of fire pixels in the validation data set; ‘true’ and ‘false’
are the numbers of true fires and false fires identified by the validation data set. The
commission error (C, in %) is defined as the ratio of the number of false fire pixels
detected by the AVHRR to the number of AVHRR fire pixels during a month and is
expressed as a percentage. The omission error (O, in %) is defined as the difference
between the sum of fire pixels in the validation data set and the AVHRR (FIMMA)
fire pixels and the total number of fire points in the validation data set.

Comparing output from the original FIMMA and the new version, commission
errors decrease substantially, whereas omission errors remain roughly the same. The
total number of false fires is reduced by 27.1% with or without applying filter 10 (from
11,593 to 8454, or by 3139). Meanwhile, the number of true fires decreases by only
326 (from 102,792 to 102,466) or 0.31%. Of the 3139 false fires eliminated by filter
10, a total number of 2295 pixels (or 73.1%) are in the ‘open shrublands’ category,
332 pixels (or 10.6%) are in the ‘wooded grassland’ category, 178 (5.7%) pixels are
in the ‘grassland’ category, 151 pixels (or 4.8%) are in the ‘woodland’ category and
131 pixels (or 4.2%) are in the ‘closed shrublands’ category. The biomass in these land-
cover types is generally low and the reflectance in the mid-IR band is high.

Table 2 and figure 2 show that the solar contamination effect in October and
November is much less than in other months because of the much weaker contri-
bution of solar radiation. In general, commission errors and omission errors are small
for forest fires and large for agricultural fires, which are mainly located in the southern
part of the United States.

Figure 3 is a demonstration of the performance of the new filter in the FIMMA
for July 2004. False fires eliminated by filter 10 are shown as dots. Most of the false
fires induced by solar contamination and eliminated by filter 10 are in the south
western region of NA. An inspection of Google Earth® images shows that the typ-
ical landscape here contains a low amount of biomass resulting in high reflectance,
which causes such commission errors (e.g. in the lower right panel of figure 3, where
the geographic coordinate is 32.640◦ N, 106.073◦ W).

Table 2. Summary of validation results.

Original FIMMA (without filter 10) New FIMMA (with filter 10)

Ground
truth True False O% C% True False O% C%

April 25,969 1,120 989 95.7 46.9 1,092 602 95.8 35.5
May 15,936 492 1,592 96.9 76.4 467 495 97.1 51.5
June 59,831 22,799 1,716 61.9 7.0 22,730 1,266 62.0 5.3
July 92,797 31,979 1,695 65.5 5.0 31,857 1,344 65.7 4.0
August 69,299 35,255 1,712 49.1 4.6 35,211 1,244 49.2 3.4
September 25,709 3,562 1,247 86.1 25.9 3,535 888 86.2 20.1
October 22,983 4,794 1,490 79.1 23.7 4,786 1,468 79.2 23.5
November 22,968 2,791 1,152 87.8 29.2 2,788 1,147 87.9 29.1
Total 335,492 102,792 11,593 69.4 10.1 102,466 8,454 69.5 7.6

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
 L

ib
ra

ri
es

] 
at

 1
6:

15
 2

0 
Ju

ne
 2

01
2 
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500
km

N

Figure 3. Demonstration of the performance of the new filter in the FIMMA. False fires elimi-
nated by filter 10 are shown as dots. These false fires mainly occurred in the southwestern part of
NA because there is less vegetation thus high solar reflection in this region. The period covered
is April–November 2004.

3.3 Discussion

Like any other filters, thresholds A, B, and C in filter 10 may be tuned according to
specific satellite, region, emissivity data quality and even application objectives. The
spectral response functions for AVHRR 3 (NOAA-15, 16 and 17) are close enough
to void any adjustment. In this study, the algorithm is trained using fire data in
July in the NA covering various land-cover types and performs well in three sea-
sons. In the light of the physical basis for the corrections, these thresholds may not be
modified for other seasons when fires are not very intensive and solar contamination
is weak, let alone being much less. Of course, they may be fine-tuned for applica-
tions over small regions with ground truth data available to improve fire detection
accuracy.

To detect false fires, filter 10 relies on Ls that is partly based on the MODIS emissiv-
ity product, which assumes a Lambertian surface. This assumption is useful to reduce
the number of unknowns in the inversion algorithm (Wan and Li 1997). A com-
parison of the MODIS emissivity product (Wan 2008) and the retrieved emissivity
from bidirectional reflectance distribution function (BRDF) models showed that their
differences (root mean square error = 0.024) are not significant (Tang et al. 2009).
As such, we also assume that the surface is a Lambertian surface when calculating Ls.
This assumption and the quality of the MODIS emissivity product influence the per-
formance of the new filter. For example, if Ls is underestimated, a false fire may not
pass the test in filter 10; true fires may pass the test if Ls is overestimated.
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To improve the performance of this filter in the long run, the MODIS emissivity
product should be improved, which in turn will improve the accuracy of Ls. It should
also be realized that there is a trade-off between commission errors and omission
errors, for example, the user can choose to increase the threshold for Ls in order
to decrease omission errors with the cost of increasing commission errors in their
application.

In an operational fire detection system, the timely MODIS emissivity and land-
cover products are unavailable due to the lag in their processing. For this reason, we
have designed to detect fire for the current year by using land cover and emissivity from
the previous year. MODIS emissivity data (from July 2003) and MODIS land-cover
data (for 2003) used for the calculation of Ls in July 2004 were outdated; so there may
be extra errors in Ls, especially for areas where the land cover undergoes significant
changes.

4. Concluding remarks

The FIMMA is in operational use by the NOAA for detecting fires automatically using
AVHRR data covering NA. A quality-controlled fire product is also generated by the
supervised integration of multiple fire products from AVHRR, MODIS and GOES
through the HMS (McNamara et al. 2004, Stephens et al. 2005). Satellite-detected
fire hot spots are validated by apparent smoke plumes that could be detected auto-
matically (Li et al. 2001b). Validation against ASTER fire data (Schroeder et al. 2007)
indicated that the overwhelming majority of fires detected by MODIS and GOES data
are true fires (99%), although some fires were wrongly deleted because they had such
faint smoke plumes. On the other hand, fires with discernible smoke plumes that go
undetected by satellite sensors were added by analysts. As such, both MODIS and
GOES fire products, combined with human-added fires as ground truth, are employed
in this study.

AVHRR data are widely used in fire detection, but there exist two outstanding
issues: saturation of the mid-IR channel and contamination of thermal emission by
solar reflection (Li et al. 2001b). The saturation problem prevents us from using the
corrected BT to improve fire detection after the solar reflection is eliminated, as pro-
posed by He and Li (2011). Analysis of false fires detected by the original FIMMA
shows that high solar reflection leads to some false detections. This can be lessened by
removing the solar reflection.

To this end, an LUT is created for the calculation of reflected solar radiation in the
AVHRR mid-IR band. A new test is proposed to reduce commission errors generated
by the FIMMA. The performance of the revised FIMMA was tested using the afore-
mentioned hybrid fire product. We find that the new test can eliminate a significant
amount (27.1%) of commission errors caused by the solar contamination with a minor
increase (<0.3%, depending on the month) in omission errors. Consistent results are
obtained when the algorithm is applied to both the data sets used for algorithm devel-
opment (July 2004) and for testing (April through June and August through November
2004). The majority of false fires occurred in the southwestern part of NA due to the
low vegetation density and ensuing high solar reflection.
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