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Abstract. The aerosol hygroscopic growth describes the interaction between aerosols and water vapor, which
varies largely, depending on the chemical composition, types, and emissions of gas precursors under diverse
environments. In this study, we analyzed size-resolved hygroscopic growth measured at five field sites of China
by a hygroscopic tandem differential mobility analyzer (H-TDMA). Results show that the probability density
function of hygroscopic growth factor (GF-PDF) at the megacity sites of Guangzhou (GZ), Shanghai (SH), and
Beijing (BG) was generally with bimodal hydrophobic and hydrophilic modes, while a unimodal hydrophilic
mode was dominated at the suburb sites of Xinzhou (XZ) and Xingtai (XT) throughout the measured particle
size of 40–200 nm. As a result, the more hygroscopic (MH) mode accounts for a number fraction of >80 % at
the suburb sites, compared to only 20 %–40 % for 40 nm particles at the megacity sites. Further analysis shows
that the GF value increases with the aggravated PM2.5 pollution at the sites (BG, XZ, and XT) in northern China,
but that is not the case for GZ and SH, which are located in the southern regions. The distinct dependence of GF
on the variations in PM2.5 concentrations among the sites suggests the spatial variability in particle composition
with the evolution of pollution events in different regions of China. Moreover, different particle hygroscopic
behaviors during new particle formation (NPF) events were observed at the five sites, reflecting the distinct
mechanisms of NPF in diverse atmospheric environments. By including results from more sites, we find that
the aerosol particles observed at those suburb sites are basically more hygroscopic than those in megacities.
However, a large variability in the hygroscopic parameter κ at a given particle size among different sites is also
observed, suggesting a complex impact from local sources and atmospheric processes. The measured dataset is
helpful for improving the understanding of the formation of fine particles and the regional environmental and
climate change.
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1 Introduction

Aerosol hygroscopicity is characterized by the aerosol wa-
ter uptake capacity when the environmental relative humid-
ity (RH) increases (Swietlicki et al., 1999). The particle vol-
ume increases after hygroscopic growth, which leads to in-
creased extinction and scattering and then accelerates the
reduction of atmospheric visibility (Kreidenweis and Asa-
Awuku, 2014; Tang and Munkelwitz, 1994). On the other
hand, when particles are in the same ambient RH conditions,
those with a strong hygroscopic ability tend to produce more
cloud particles, increasing the cloud lifetime and decreasing
the precipitation (Kandler and Schütz, 2007; Krüger et al.,
2014; Wu et al., 2013). In addition, the aerosol particles af-
ter hygroscopic growth have a distinct sedimentation position
and sedimentation rate in the respiratory system compared
to the dry particles, thereby inducing different health effects
(Peters et al., 1997; Broday and Georgopoulos, 2001). There-
fore, aerosol hygroscopicity is one of the important physic-
ochemical properties of aerosol particles (Gasparini et al.,
2004) and plays a critical role in air quality, climate, and hu-
man health. The in-depth understanding of the hygroscopic
behavior of atmospheric aerosols is of great significance in
many research fields.

In order to measure the aerosol hygroscopicity, a variety
of instruments and techniques have been developed and em-
ployed, such as the hygroscopic tandem differential mobil-
ity analyzer (H-TDMA), cloud condensation nuclei counter
(CCNC), and humidified nephelometer. Among them, CCNC
gives an estimate of aerosol hygroscopicity under different
supersaturations but cannot provide information of particle
mixing state (Roberts and Nenes, 2005). The nephelometer
measures the humidity-dependent scattering coefficient over
the whole size range (Kuang et al., 2018) but cannot directly
obtain the size-resolved particle hygroscopicity. While H-
TDMA can not only measure the hygroscopic growth factor
(GF) of size-resolved aerosols under different RH but also
deduce the mixing state of the particles (McMurry et al.,
1996; Weingartner et al., 2002). In addition, H-TDMA mea-
surement is based on particle number concentration, which
has unique advantages in investigating the characteristics of
ultrafine-mode particles; thus, it has been widely used.

To date, a number of short-term field measurements of
aerosol hygroscopic growth using the H-TDMA system have
been successively carried out in the North China Plain
(Massling et al., 2007, 2009; Liu et al., 2011; Wu et al., 2013,
2016; Wang et al., 2017; Zhang et al., 2017; Fan et al., 2020),
the Yangtze River Delta (YRD) (Zhang et al., 2011; Ye et
al., 2013; Xie et al., 2017), and the Pearl River Delta (PRD;
Cheng et al., 2008; Tan et al., 2013, 2017). However, most of
the studies are limited to one single site or one region. A com-
prehensive comparison of the aerosol hygroscopic growth
behavior from multiple sites has been lacking. Based on the
data of a single site, for example, it is difficult to obtain in-
sights of how particle hygroscopicity affects air pollution and

is thereby unable to accurately parameterize the relationship
between the two on a larger spatial scale in models. In real-
ity, distinct dependence of aerosol hygroscopicity on air pol-
lution levels was found by Meier et al. (2009) and Massling
et al. (2009). In addition, the particle hygroscopic growth is
highly correlated with the ambient RH, particle size, chemi-
cal composition, and aerosol mixing state (Pitchford and Mc-
Murry, 1994; Tan et al., 2013; Li et al., 2016; Zhang et al.,
2017, 2019), which is strongly impacted by meteorological
variations, aerosol formation mechanisms, and atmospheric
processes (Liu et al., 2011; Wang et al., 2017; Zhang et al.,
2020), thus varying widely among the observations in diverse
environments. For example, several observations in the urban
atmosphere showed that an enhanced aerosol hygroscopic-
ity and cloud condensation nuclei (CCN) activation correlate
with the new particle formation (NPF) events (Lance et al.,
2013; Wu et al., 2016; Liu et al., 2021), while it was observed
to decrease at a mid-level mountain range (Wu et al., 2013),
at an urban site (X. Wang et al., 2018), and in a forest re-
gion (Deng et al., 2018). Moreover, it has been found that
the size dependence of aerosol hygroscopicity was quite dif-
ferent among different atmospheric environment conditions
(Zhang et al., 2014, 2017; Fan et al., 2020; Tan et al., 2013;
Jiang et al., 2016; Cai et al., 2017, 2018).

Therefore, an extensive and comprehensive study of spa-
tial variations in aerosol hygroscopicity is necessary to bet-
ter understand the aerosol hygroscopic behavior under differ-
ent pollution conditions, and the effect of atmospheric pro-
cesses (e.g., pollution evolution and NPF events) on aerosol
hygroscopicity in diverse environment also needed to be fully
elucidated. Aerosol hygroscopic growth is investigated here
at five sites in China using measurements made with the
H-TDMA system. The overall characteristics of the hygro-
scopic growth are firstly investigated, including a comparison
of the GF-PDF, different hygroscopic modes, and the diurnal
cycle among the five sites. To understand the effects of at-
mospheric processes on particle hygroscopicity and mixing
state, the dependence of the particles hygroscopicity on the
pollution evolution is explored. The particle hygroscopic be-
havior during NPF and non-NPF events at the five sites is
also compared.

2 Sites and measurements

2.1 Sampling sites

The field campaigns, which were designed with the scien-
tific aim of a comprehensive study of the physiochemical
properties of ambient aerosols, have been conducted at five
sites in China, part of which are reviewed in Li et al. (2019).
The five sites, including three megacity sites, Beijing (BG;
40.05◦ N, 116.09◦ E), Shanghai (SH; 31.40◦ N, 121.45◦ E),
Guangzhou (GZ; 23.01◦ N, 113.33◦ E), and two suburban
sites, Xinzhou (XZ; 38.24◦ N, 112.43◦ E) and Xingtai (XT;
37.18◦ N, 114.37◦ E; Fig. 1). The Beijing site is between
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Figure 1. The map location of the sampling sites in this study (in
red) and in previous studies (in black). The stars represent megac-
ity sites and circles represent suburb sites. This map was made by
ArcGIS (http://www.arcgis.com/index.html#, last access: 17 May
2022).

the third and fourth Ring Road in the north of Beijing, lo-
cated at the meteorological tower branch of the Institute of
Atmospheric Physics (IAP), Chinese Academy of Sciences,
which is usually affected by local traffic and cooking emis-
sions (Sun et al., 2015). The observation periods were from
25 May to 18 June 2017. The Shanghai site was located in
the Baoshan Meteorological Bureau of Shanghai, which is
near the main road (Youyi Road) with heavy traffic. So, it is
mainly influenced by local emission sources from traffic and
business activities that can be viewed as an urban site. The
observation periods at the Shanghai site were from 6 April
to 6 May 2020. The field campaign at Guangzhou site was
conducted at the meteorological observation station of the
Guangzhou Meteorological Bureau. The site has an altitude
of 145 m, is about 120 m above the city average elevation of
the PRD (Tan et al., 2017), and surrounded by a few light
industrial plants and residential areas. In particular, at night,
it could be affected by the cooking emissions from a nearby
night market. The observation took place in November 2019.
The Xinzhou air and ground observation campaign was con-
ducted in the suburb of Xinzhou city, Shanxi province, which
is located between the Lüliang and Taihang mountains and
dominated by farmland without obvious emission sources
nearby. Due to its high altitude, the aerosols in this area are
mainly transmitted from elsewhere and are thus aged (Zhang
et al., 2017). Aerosol hygroscopic growth was investigated
at this site from 28 June to 22 July 2020. The experiment in
Xingtai was conducted at the National Meteorological Basic
Station from 1 May to 15 June 2016. This sampling site is
located about 17 km northwest of the Xingtai city, the central
part of the North China Plain with many heavy industrial fac-
tories nearby, such as power plants and steelworks (Y. Wang
et al., 2018).

2.2 Instruments and methods

The H-TDMA system is custom-made and consists of two
tandem differential mobility analyzers (DMA1 and DMA2),
one water-based condensation particle counter (WCPC), and
a set of humidity and temperature control devices. Before
entering the instrument, the sampled aerosols first entered the
Nafion dryer, reducing the RH to below 20 %. Then, the dried
air flow went through a bipolar neutralizer to equilibrate the
charge of the particles, after which the quasi-monodisperse
particles (D0, 40, 80, 110, 150, and 200 nm) were selected by
the DMA1. The particles entered to the DMA2 through which
its size increased due to higher RH (Dp). The humidified tube
between DMA1 and DMA2 is controlled at RH of 90 %, with
a residence time of 10 s. The hygroscopic growth factor (GF)
of particles can be expressed as follows:

GF=
Dp

D0
. (1)

Before the measurement, the GF at different RH was deter-
mined with pure ammonium sulfate to ensure the accuracy of
the H-TDMA measurement (Badger et al., 2006). The cali-
brations were conducted once a month. A full description of
the principle, operation, and calibration of the instrument can
be found in Tan et al. (2013).

We used the TDMAinv algorithm (Gysel et al., 2009) to
retrieve the actual GF probability density function (GF-PDF)
from the GF measured distribution function (GF-MDF). Pet-
ters and Kreidenweis (2007) introduced the hygroscopicity
parameter κ into the κ–Köhler equation to characterize the
hygroscopicity and activation capacity of aerosols, which is
related to the GF and RH as follows:

κ =
(

GF3
− 1

)[ 1
RH

exp
(

4σMw

RTρwD0GF

)
− 1

]
, (2)

where RH is the relative humidity (90 % in this study), σ is
the surface tension of the solution/air interface (here assumed
to be the surface tension of pure water interface, which is
about 0.0728 N m−2), Mw is the molecular weight of water
(kg mol−1), R is the universal gas constant, T is the temper-
ature (K), ρw is the density of water (kg m−3), and D0 is the
dry particle size of aerosols (m). The observed GF value was
substituted into Eq. (2) to obtain the hygroscopic parameter
κ .

The retrieved GF-PDF (c(GF,Dd)) was normalized to
unity in this study. The ensemble mean GF of GF-PDF (Sjo-
gren et al., 2008), namely the number-weighted mean GF
(GFmean), is defined as follows:

GFmean =

∫
∞

0
GF× c(GF,Dd)dGF. (3)

The corresponding ensemble mean κ can be derived from
mean GF by using Eq. (2). Because of the complex source,
chemical composition, and mixing state of ambient aerosols,
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different hygroscopic modes always appear in different field
measurements. To better understand the hygroscopicity and
mixing state of size-resolved particles, we divided them into
nearly hydrophobic mode (NH; GF≤ 1.21), less hygroscopic
mode (LH; 1.21<GF≤ 1.37), and more hygroscopic mode
(MH; GF> 1.37; Liu et al., 2011). For each mode, the num-
ber fraction (NF) can be determined from the GF-PDF as
follows:

NF=
∫ end

start
c(GF,Dd)dκ. (4)

Apart from H-TDMA, the non-refractory chemical com-
positions in PM2.5 were measured simultaneously using a
quadrupole aerosol chemical speciation monitor (Q-ACSM)
with a PM2.5 aerodynamic lens in real time (Peck et al.,
2016). The black carbon (BC) mass concentrations were
measured using an Aethalometer (AE-33, Magee Scientific;
Zhao et al., 2017). The time resolution of both Q-ACSM
and AE-33 was 1 min. The particle number size distributions
(PNSDs) of environmental aerosols (10–600 nm) were mea-
sured by a scanning mobility particle sizer (SMPS; TSI) with
a time resolution of 5 min (Collins et al., 2002).

3 Results and discussion

3.1 Measured time series of GF-PDFs

Figure 2 shows the time series of GF-PDFs of the 40 and
150 nm particles at the five sampling sites. The white space
in Fig. 2 denotes missing values or outliers caused by the in-
strument malfunction. In general, large variations in the GF-
PDFs were observed at all the sites, showing significant tem-
poral changes in the properties of hygroscopic growth of the
fine aerosol particles. For 40 nm particles, apparent bimodal
shape of strong and weak hygroscopic modes in GF-PDFs,
with GF of ∼ 1.5 and ∼ 1.1, respectively, were observed at
the three megacity sites (GZ, SH, and BG), while only a
strong hygroscopic mode (with GF of 1.5 and 1.8) dominated
the GF-PDFs at the two more rural sites (XZ and XT). This
indicates the different mixing states of ambient aerosol par-
ticles between urban and non-urban regions on account of
their contrasting emission sources. The urban sites are fre-
quently influenced by local sources (e.g., traffic and cook-
ing activities; Sun et al., 2015; Tan et al., 2017), whereas
the suburban sites are relatively clean with much fewer emis-
sion sources nearby, and the aerosols are mainly transmit-
ted from elsewhere and are thus more aged and well mixed
(Zhang et al., 2017; Y. Wang et al., 2018). Owing to the con-
tinued local primary emissions in the populated regions, the
freshly emitted hydrophobic ultrafine particles do not imme-
diately mix with the background aerosol particles. As a re-
sult, the bimodal distributions of both hydrophilic and hy-
drophobic modes were present in GF-PDFs at the three ur-
ban sites, while the aerosol particles at the two non-urban

sites are much less impacted by the local sources and more
aged and internally mixed and are thus more hygroscopic.

Previous observations have also shown that the XZ site is
relatively clean (Zhang et al., 2017) and has uniform aerosol
chemical compositions (Wang et al., 2016). For 150 nm parti-
cles, the hygroscopic mode in the GF-PDF is basically more
dominant at all the five sites, suggesting that the aerosol par-
ticles tend to be internally mixed after aging and growing in
the atmosphere. The hydrophobic mode for 150 nm particles
was occasionally present in the time series of GF-PDF at the
BG site, due to the abundant traffic emissions and cooking
sources near the site. In addition, the hydrophilic mode of
150 nm particles generally has larger GF values than that of
40 nm particles, indicating a dependence of the particle hy-
groscopicity on particle size, which will be further discussed
in Sect. 3.6.

The campaign mean GF-PDF distributions present the hy-
groscopic growth properties of all measured particle diame-
ters more clearly (Fig. 3). There were evident hydrophobic
modes, particularly for 40 and 80 nm particles, at the urban
sites, which are affected greatly by primary emissions (Tan et
al., 2013). At the non-urban sites, however, the hydrophobic
modes of GF-PDFs were much smaller throughout the whole
measured sizes. The hydrophilic modes at the XZ site for
each measured particle sizes were narrower and more con-
centrated, reflecting the uniformity of the particle composi-
tions.

3.2 Diurnal variations of GF-PDFs

Figure 4 shows the diurnal variations in size-resolved GF-
PDFs at these sites. In general, the diurnal variations in GF-
PDFs varied largely from site to site for 40 and 80 nm par-
ticles. At these megacities where the atmosphere was heav-
ily impacted by local primary emissions, the diurnal patterns
of GF-PDFs of the small particles exhibited bimodal dis-
tributions in both hydrophobic and hydrophilic modes. The
proportion of the hydrophilic modes showed an increase at
around noontime (at the GZ and SH site) or early afternoon
(at the BG site), with a corresponding decrease or even disap-
pearance of the hydrophobic modes. This could be associated
with the nucleation process in the daytime (Fig. S1), which
demonstrated that the growth of the newly formed particles is
mainly contributed by hydrophilic matters (e.g., sulfate and
organic acids; Yue et al., 2010; Wu et al., 2013; Liu et al.,
2021). By contrast, there is only hydrophilic mode for dif-
ferent sizes of the fine particles and no evident diurnal vari-
ations at the suburb site of XZ. At the XT site, the GF value
of particles with different sizes in the daytime was higher
than that at nighttime, but the diurnal patterns become less
evident with the increase in particle size, indicating that the
larger particles are more homogenously composed compared
to the small ones. Overall, at the urban sites, the mean GF
for 110, 150, and 200 nm particles was basically higher in the
daytime than nighttime, indicating that photochemical aging
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Figure 2. The time series of the probability density functions of growth factor (GF-PDFs) for 40 and 150 nm particles at different sampling
sites (GZ, SH, BG, XZ, and XT sites). The color scales denote the GF-PDF.

Figure 3. Mean probability density functions of growth factor (GF-
PDFs) for different particle sizes (40–200 nm) derived from H-
TDMA data at different sampling sites.

processes in the daytime enhanced the particles hygroscopic-
ity (Wu et al., 2016; Liu et al., 2021). In addition, due to the
lift of the planetary boundary layer (PBL) height after the
sunrise, the aged particles above PBL could be mixed to that
below PBL (Zhang et al., 2016), making the particles at all
the sites more dominated by the strong hygroscopic mode.

3.3 Number fraction of hydrophobic, less hygroscopic,
and more hygroscopic mode of the fine aerosol
particles

To better understand the hygroscopicity and mixing state of
size-resolved particles at the five sites, we divided the ob-
served GF-PDFs into three modes, i.e., nearly hydrophobic
mode, less hygroscopic mode, and more hygroscopic mode
(Liu et al., 2011; Wang et al., 2017). The NH mode parti-
cles in submicron aerosols are mainly composed of exter-
nally mixed primary BC, primarily emitted organic matter,
and their mixtures, while MH mode particles primarily con-
sist of internally mixed hygroscopic secondary organic and
inorganic matter or their mixtures with primary emissions.
So, the different modes represent different aerosol composi-
tion and formation pathway. Figure 5 gives the comparison of
the campaign mean number fractions of the NH, LH, and MH
for 40, 80, 110, 150, and 200 nm particles at the five sites.
Obviously, at the suburb sites XZ and XT, the MH modes
were typically more abundant than other sites for 40 nm par-
ticles, with number fractions larger than 80 %, corresponding
to the NH modes of only ∼ 10 %. At the urban sites of GZ,
SH, and BG, however, NH mode accounted larger fractions
of ∼ 40 %, and the values decreased with the increase in par-
ticle size. As a result, the MH modes for 40 nm particles at
the urban sites only accounted for a number fraction of 20 %–
40 %. On NPF days, the number fraction of MH mode at ur-
ban sites increased ∼ 4 % compared to the mean values that
represent the whole measurements, and the maximum num-
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Figure 4. Campaign-averaged diurnal variations in GF-PDFs for all measured dry particle sizes (40–200 nm) at different sampling sites (GZ,
SH, BG, XZ, and XT sites). The color scales denote the GF-PDF.

Figure 5. Campaign-averaged number fraction (NF) of nearly hy-
drophobic (NH; blue), less hygroscopic (LH; orange), and more hy-
groscopic (MH; yellow) groups for 40–200 nm particles at each site.

ber fraction of MH mode was∼ 45 % at the BG site (Fig. S2).
The results are basically comparable with those reported in
other field campaigns in urban (e.g., Meier et al., 2009; Tan
et al., 2013; Enroth et al., 2018) and suburban (e.g., Liu et al.,
2011; Zhang et al., 2016; Tao et al., 2020) regions. The MH
mode generally dominates at relatively remote sites where
the atmosphere is less impacted by local primary sources,
whereas the hydrophobic mode accounts for higher fractions
at those urban sites.

3.4 Dependence of the particle hygroscopic properties
on mass concentrations of PM2.5

Given that the relationship between aerosol hygroscopicity
and pollution levels is still unclear and varies greatly from
region to region. Here, we examined and compared the de-
pendence of the number fraction of the NH and MH mode
and mean GF on PM2.5 mass concentrations at the five sites
(Figs. 6 and 7). It shows that there is no obvious dependence
of number fraction of NH and MH mode on the PM2.5 mass
concentration for 40 nm particles at all the five sites, which
could be expected due to the low mass fraction of ultrafine
particles. In other words, this means that, whether in urban
or suburban sites, the proportion of MH and NH modes of
the ultrafine particles is not subject to changes in the pollu-
tion conditions. However, for accumulation mode particles
of about 100–200 nm particles, with the increase in PM2.5
mass concentration, the fraction of the MH mode roughly in-
creased towards 1, and the fraction of the NH mode reduced
to nearly 0 at the BG, XZ, and XT sites, indicating that the
more particles are hygroscopic during the pollution episodes.
On the contrary, the number fraction of MH mode declined
slightly for 40–150 nm particles with the increase in PM2.5
mass concentration at the GZ site, which was probably due
to an increase in primary organic aerosols with the increase
of pollution levels (Fig. S3). No obvious trend was observed
at SH, for it is clean overall, with the PM2.5 mass concentra-
tion being less than 60 µg m−3 during the campaign.

Figure 7 shows that, with the increase in PM2.5 mass con-
centration, there were insignificant variations in GFmean for
40 nm particles. The particles became more hygroscopic with
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the increase of PM2.5 mass concentration at BG, XZ, and
XT. But at GZ, the aerosol particles were generally less hy-
groscopic with decreased GFmean values under higher PM2.5.
The distinct changes in aerosol particles hygroscopic behav-
ior, with variations in PM2.5 concentration among different
sites, suggest differences in particle composition and mixing
state with the evolution of pollution events in different re-
gions of China. The results also point to different formation
mechanisms or aerosol sources regulating and driving the air
pollution in these regions.

3.5 Measured GF-PDFs of ultrafine particles during
NPF and non-NPF events

In order to understand the effects of NPF on particle hy-
groscopic behavior, we examined the GF-PDFs of ultrafine
particles during the evolutions of NPF and non-NPF events.
Figure 8 displays the mean diurnal variations in PNSDs and
GF-PDFs for 40 nm particles on the NPF and non-NPF days.
A typical NPF event is usually with a banana-type shape that
can be observed on the PNSDs, showing a sudden appear-
ance and continuous growth of ultrafine particles (Dal et al.,
2005; Wu et al., 2016). The particle size of 40 nm, which can
represent the NPF-tracked particles, was thus selected. In this
study, 4, 4, 8, 7, and 8 NPF events at the GZ, SH, BG, XZ,
and XT sites occurred, respectively, and were selected for a
further study. NPF events started at around 09:00 LT (Fig. 8a)
at nearly all sites. After the onset of NPF, the hygroscopic
modes in GF-PDFs at the sites of BG, XZ, and XT were
obviously enhanced, corresponding to significant increases
in the GFmean values (Fig. 8b). This suggests that the more
hygroscopic chemical components were formed in the nu-
cleation and growth processes, leading to an increase in the
number fraction of the hydrophilic mode. Liu et al. (2021)
showed an obvious enhanced hygroscopicity of 40 nm or-
ganic aerosol (OA) particles during NPF events in urban Bei-
jing, and Shantz et al. (2012) and Wu et al. (2016) also ob-
served an enhancement of the fraction of water-soluble com-
pounds in the newly formed particles, showing that more than
40 % of 50 nm newly formed particles are water-soluble com-
pounds. In addition, the sulfuric acid may be a dominant con-
tributor to new particle growth in the North China Plain (Yue
et al., 2010). While at the GZ site, the GFmean increased very
slightly, at the SH site, it even declined from the beginning
to the end of the NPF event, showing that the NPF processes
generated less hygroscopic particles. The decreased GF of
the nucleated particles would also relate to the chemical
component participating in the nucleating and growth pro-
cesses. It is likely that those hydrophobic secondary organic
aerosols (SOAs; with GF of ∼ 1.1 at 90 % RH; Kulmala et
al., 2013) may play an important role in the growth process
of the newly formed particles at GZ and SH sites. This re-
sult is also consistent with the previous study performed in
clean environments, where the newly formed particles con-
sisted of a minor fraction of water-soluble fraction, and the

GF value of the newly formed particles decreased with the
particle growth (Wu et al., 2013; Kawana et al., 2017; Li
et al., 2017). Compared to NPF days, no significant eleva-
tions on non-NPF days were observed in GFmean in the day-
time at all the sites (Fig. 8d and e), further demonstrating the
effect of NPF on the particles hygroscopicity. On non-NPF
days, the 40 nm particles are mainly from the local primary
sources (cooking, traffic, etc.), which can be indicated from
the measured peak particle number concentration during the
rush hours or at lunch- and dinnertime (Fig. 8c). This is also
illustrated by the diurnal variation in the size-resolved chemi-
cal components measured at BG, showing that the mass frac-
tion of cooking organic aerosols (COAs) and traffic-related
hydrocarbon organic aerosols (HOAs) increased obviously
during rush hour and at lunch- and dinnertime on non-NPF
days (Sun et al., 2016, 2018). The XZ site is near the main
road and, thus, is more affected by the traffic emissions, in-
cluding road truck emissions at night (Fig. 8c), while the
catering night market activities near the GZ site, which con-
tinue until the next morning, lead to a large number of small
particle emissions. The distinct changes in aerosol particle
hygroscopic behavior at the sites indicate that different com-
positions of the nucleated particles in different regions of
China, which further reflect different formation mechanisms
regulating the new particle formation in diverse atmospheric
environment.

Also, the GFmean of the 40 nm particles on NPF days is
generally greater than particles with the same sizes during
non-NPF days (Fig. 9), further confirming the role of nucle-
ation process on enhancing the particle hygroscopicity. For
accumulation mode particles, the GFmean values during non-
NPF days are overall higher than that on NPF days at the BG,
XZ, and XT sites, due to the larger particles probably being
from secondary conversion and primarily being composed of
more hygroscopic substances on non-NPF days. But, at the
GZ and SH sites, the GFmean values for larger particles are
lower during non-NPF days, suggesting that there are pri-
mary sources of the accumulation mode particles at the two
sites.

3.6 Comparison of size-resolved hygroscopic parameter
(κ) of fine aerosol particles observed at different
sites

To further investigate the spatial variability in the aerosol hy-
groscopicity in different regions of China, we presented cam-
paign mean size-resolved κ for NH, LH, and MH modes cal-
culated from the H-TDMA measurements of the five sites
(Fig. 10a). The measured bulk mass concentration fraction
of chemical components in PM2.5 measured by the ACSM
is also presented here (Fig. 10b). Clearly, it shows that the
MH mode particles hygroscopicity was closely relevant to
the chemical compositions. That is, the particles were found
to be more hygroscopic with larger κ values at the sites such
as BG, XZ, and XT, where the hygroscopic inorganics ac-
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Figure 6. Box diagram for the number fraction of nearly hydrophobic (NH) mode (red) and more hygroscopic (MH) mode (blue) of (a–e) all
selected diameter particles (40–200 nm) under different PM2.5 mass concentrations from all sampling sites. The horizontal line in the block
diagram represents the median, the upper and lower borders represent the 25th and 75th percentiles, and the upper and lower borders of the
dotted vertical line represent the 10th and 90th percentiles.

Figure 7. The mean value of number-weighted mean growth factor (GFmean) of all selected diameter particles (40–200 nm) under different
PM2.5 mass concentrations from all sampling sites.

count for a large mass fraction in PM2.5, while they were
less hygroscopic when the organics dominated the chemical
composition at the sites of GZ and SH. This is also demon-
strated by comparing a whole time series of the mass fraction
of chemical composition with the κ at the five sites (Fig. S4),

showing that the κ generally increases with increase of the
mass fraction of hydrophilic inorganic salts, and the opposite
is true for organics. Previously, quite a weak hygroscopic-
ity of organic materials (with GForg ranging between 1 and
1.1) has been observed at GZ (Hong et al., 2018), whereas
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Figure 8. The mean variation in particle number size distributions (PNSDs) and the probability distribution functions of growth factor (GF-
PDFs) for 40 nm particles during (a–b) NPF and (c–d) non-NPF days at the five sampling sites. The dots in panels (b) and (d) represent the
GFmean values.

Figure 9. The mean values and differences in number-weighted mean growth factor (GFmean) during NPF and non-NPF days for particles
with the size of 40–200 nm from all sampling sites. The difference represents the GFmean of NPF days minus the GFmean of non-NPF days.

the greater κ values at BG were not only caused by the high
mass fraction of hygroscopic inorganic salts (e.g., sulfate and
nitrate) in PM2.5 but also because the organics were demon-
strated to be more hygroscopic with mean κ values of∼ 0.28
in urban Beijing (Liu et al., 2021). The mean κ values of NH
and LH mode are close to 0 at the five sites and decrease
slightly with the increase in particle size. Figure 10c shows a
comparison of size-dependent κ values reported in previous
studies and that observed in this study. Generally, the mean κ
values of the particles at all measured sizes are greater in sub-
urban regions (Zhang et al., 2016; Wang et al., 2017) com-
pared to those of measured in megacities (Tan et al., 2013;
Ye et al., 2013; Xu et al., 2015; Jiang et al., 2016; Wu et

al., 2016). This is consistent with that observed at the five
sites by this study. However, it exhibits a wide and large vari-
ability in κ values among different sites at a given Dp. The
large spatial difference in κ values suggests that there are
different emission sources and complex atmospheric physi-
cal and chemical processes which could be significantly dif-
ferent under diverse ambient conditions. This is particularly
true for the particles with a small size. Note that the κ val-
ues observed at the five sites are more consistent for 200 nm
particles, which is owing to the fact that the larger particles
are normally more aged and with homogenous compositions
(Y. Wang et al., 2018).
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Figure 10. (a) Size-resolved mean hygroscopicity parameters (κ) that are nearly hydrophobic (NH), less hygroscopic (LH), and more
hygroscopic (MH) for all measured particle sizes at different sites. (b) Campaign-averaged bulk mass fraction of chemical compositions
of PM2.5. The BC mass concentration of the GZ site is based on the data measured in January 2020 due to the lack of observations in
November 2019. (c) Size-dependent mean κ for all measured particle sizes retrieved from the H-TDMA measurements at different sites and
reported by previous studies (Tan et al., 2013; Jiang et al., 2016; Ye et al., 2013; Wu et al., 2016; Xu et al., 2015; Wang et al., 2017; Zhang
et al., 2016). The error bars represent ±1σ .

4 Conclusion

In this study, the hygroscopic growth factors at five sites, in-
cluding three urban and two non-urban sites across China,
were investigated to understand the characteristics and the
impact of mixing states of aerosols under diverse environ-
mental conditions. The study made use of comprehensive
measurements of size-resolved particles (40–200 nm) at RH
of 90 % made with a H-TDMA system, combined with the
chemical composition and particle number size distribution
measured by a ACSM and a SMPS, respectively. There ex-
ist hydrophobic modes of GF-PDFs at the GZ, SH, and BG
sites for small particles, and the unimodal hydrophilic modes
throughout the whole measured sizes are dominant at the XZ
and XT sites. The more hygroscopic mode (MH) mode was
typically more abundant at the XZ and XT site, with a cor-
responding number fractions of >80 %, indicating that the
particles at suburban sites were highly aged and internally
mixed. The number fractions of MH modes for 40 nm parti-
cles account for only 20 %–40 % at those urban sites of GZ,
SH, and BG. The diurnal patterns of GF-PDF at the megacity
sites of GZ, SH, and BG show obvious enhancement of the
proportion of hydrophilic modes in daytime; however, such
patterns are absent at the suburb sites of XZ and XT. Further
analysis reveals that the aggregated PM2.5 pollution leads to

more hygroscopic particles at the sites in north China (BG,
XZ, and XT), but that is not the case in the southern sites (GZ
and SH). The distinct dependence of aerosol hygroscopicity
on PM2.5 concentrations among the sites is attributed to the
spatial variability in particle formation mechanisms with the
evolution of pollution events in different regions of China.
Moreover, the particle hygroscopicity during NPF and non-
NPF days at each site was also investigated. The distinct par-
ticles hygroscopic behaviors during NPF events are observed
at the five sites, demonstrating the different mechanisms of
NPF in diverse atmospheric environment. There was no obvi-
ous variation in particle hygroscopicity observed during non-
NPF days at all the five sites.

Overall, the aerosol particles observed at the suburban
sites are more hygroscopic than those of in megacities, but
note that a wide and large variability in the hygroscopic pa-
rameter κ among different sites at a given particle size sug-
gests the complex impact from emission sources and atmo-
spheric physical and chemical processes. Future field mea-
surements and observations should be conducted at more
sites with a longer duration, so as to improve understanding
of the formation of fine particles and the impact on regional
environment and climate change. In addition, it is worth not-
ing that measurements at the SH and XZ site were conducted
during COVID-19, when the gaseous pollutants and chemi-
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cal composition of aerosols might be affected to varying de-
grees. This would thereby lead to changes in the particle mix-
ing state and hygroscopicity. For example, in North China,
the study has shown that the secondary process or atmo-
spheric oxidation were enhanced during the COVID-19 pan-
demic, likely yielding more hygroscopic species like aque-
ous secondary organic aerosol (Zhong et al., 2021). Whereas,
in Yangtze River Delta, the study has shown that the sec-
ondary components decreased during the lockdown (Ma et
al., 2021). However, the evaluation of such effect of the pan-
demic on aerosols’ hygroscopicity is complex, owing to vari-
ation in the meteorological conditions, emissions, and an-
thropogenic sources with seasons and years. It warrants fur-
ther studies to clarify such impact in the future.
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