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H I G H L I G H T S  

� The ratio of NO3
� to SO4

2� in 2018–2019 declined. 
� A continuous increase in the ratio of NO3

� to SO4
2� of 1999–2018 is presented. 

� The reduction measures in place serve only to improve SO4
2� pollution in winter. 

� High SO4
2� levels are still observed in summer.  
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A B S T R A C T   

A variety of legislative actions for air quality improvement have been conducted in China since 2013, and the 
emission control measures have achieved remarkable reduction in severe haze frequency. The composition of the 
fine particles may change along with the improved air quality, and thus may induce distinct environmental and 
climate effects in future. In this study, a very recent long-term dataset (2018–2019) of non-refractory chemical 
composition measured by a quadrupole aerosol chemical speciation monitor (Q-ACSM) observed in urban Beijing 
is applied to investigate the changes in ratio of nitrate (NO3

� ) to sulfate (SO4
2� ) in PM2.5 (particulate matter with 

diameters of less than 2.5 μm). We show that the ratio of NO3
� to SO4

2� varies seasonally, with a maximum in 
winter (1.6 � 1.2) and a minimum in summer (0.7 � 1.0). Compared with results from earlier studies showing a 
continuous increase in the ratio of NO3

� to SO4
2� since 1999, a decline in the ratio is found during the period of 

2018–2019. This is partially associated with an attenuated nitrate formation likely due to reduced nitrogen 
oxides emissions since 2016 in China. Our results suggest that the strict reduction control measures in place serve 
only to improve SO4

2� pollution in winter but not in summer when high SO4
2� levels are still observed. SO4

2� and 
NO3
� concentrations during study periods together comprise 37–53% of PM2.5, presenting significant role in 

dominating the levels of PM2.5. In addition, we show that the ratio of NO3
� /SO4

2� in warm seasons generally 
increases with increasing relative humidity (RH) due to enhanced NO3

� hydrolysis formation, but with a 
maximum value of only ~1.0 that is pulled down by the high levels of sulfate in summer, while the dependence 
of the ratios on RH is more pronounced in cold seasons when multiple factors (regional transportation, planetary 
boundary layer, PBL and sources of sulfate, etc.) can impact nitrate levels. We finally characterize two typical 
processes that lead to the rapid accumulation of nitrate in the atmosphere over urban Beijing: the regional 
transportation and PBL variations, which is found driving heavy haze in cold seasons, and the hydrolysis for-
mation and partitioning of NO3

� that tends to impact the diurnal patterns of nitrate in warm seasons.   
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1. Introduction 

Haze pollution, which is characterized by high-levels of chemical 
components in fine aerosols, has occurred frequently in China (Yang 
et al., 2011; Sun et al., 2012; Guo et al., 2014; Wang et al., 2019a; Zhang 
et al., 2020) and profoundly impacts human health, weather, and 
climate (IPCC, 2013; WHO, 2018). Air quality is inherently regulated by 
the synergetic effects of emissions, chemistry, transport, and removal of 
pollutants (Zhang et al., 2018, 2020).A variety of legislative actions for 
air quality improvement have been conducted in China since 2013, and 
the emission control measures have achieved remarkable reduction in 
severe haze frequency (Zhang et al., 2019), but analysis of long-term 
measurements in China indicates no improving trend for moderate 
haze events (Zhang et al., 2020). 

The composition of the fine particles may change along with the 
improved air quality, and thus may induce distinct environmental and 
climate effects in future. For example, the proportion of nitrate (NO3

� ) in 
PM2.5 has been observed steadily increasing (Xu et al., 2019a; Wang 
et al., 2017) because the emission reduction measures in China are 
mainly aimed at sulfur dioxide (SO2), suggesting different changes in the 
ratios of each individual chemical component in PM under the scenario 
of emission reductions in China. Compared with SO2, the emission of 
high concentrations of nitrogen oxides (NOx) and gaseous ammonia 
(NH3) has not attracted much attention from the Chinese government 
(Itahashi et al., 2018), likely resulting in the increasing proportion of 
NO3
� in secondary inorganic aerosols (SIA). For example, P. Xu et al. 

(2018) observed multiple NO3
� pollution processes (~60 μg m� 3 out of 

the total concentration of NR-PM1) in the autumn of 2017. Xu et al. 
(2019a, b) showed that the proportion of NO3

� in NR-PM1 increased 
continuously from 2011 to 2019 based on long-term ACSM observations. 
This suggests that with strong emission reduction measures in place in 
Beijing, the formation of haze with sulfate (SO4

2� ) as the main pollutant 
has transitioned to a pollution process with NO3

� as the main pollutant 
(Li et al., 2019; Xu et al., 2019a). However, recently, a few isolated cases 
have been reported where the proportion of SO4

2� in Beijing’s pollution 
is still higher than that of NO3

� (Wang et al., 2019b; Xu et al., 2018). A 
most recent study reveals that efficient sulfate formation from black 
carbon catalyzed SO2 oxidation in the presence of NO2 and NH3, even at 
very low SO2 levels (down to a few ppb) and an intermediate RH range 
(30–70%) (Zhang et al., 2020), implying that reduction of SO2 alone is 
insufficient in mitigating sulfate formation and haze occurrence. In the 
context of strong emission reduction, understanding the variations in 
chemical characteristics of fine aerosols is crucial to understand the 
chemical/physical processes leading to haze formation, and to help 
devising more effective mitigation strategies. 

The sulfate and nitrate are two major SIA of PM2.5 in the atmosphere 
(An et al., 2019). Current research indicates that NO3

� in the ambient 
atmosphere is formed through three pathways, i.e., the photochemical 
oxidation of nitrogen dioxide (NO2) by OH radicals in the daytime 
(Morgan et al., 2015), and the heterogeneous formation through the 
nitrous oxide (N2O5) hydrolysis reaction at night (Wang et al., 2018; Yun 
et al., 2018), and on the surfaces of dust aerosols (Xia et al., 2019; Tang 
et al., 2012). 

The sources and formation mechanism of NO3
� is relatively clearer 

than that of SO4
2� . The dispute about NO3

� mainly focuses on the 
contribution of two pathways, the heterogeneous hydrolysis of N2O5 at 
night and photochemical oxidation during the day, to the ambient levels 
of NO3

� in urban areas. For the sulfate, it is formed from both the gas- 
phase oxidation of SO2 by OH radical that is with a period of about 1 
week, and from heterogeneous reactions in the aqueous phase of clouds, 
fog, and aerosols (Zhang et al., 2015a). In addition, it also shows that 
residential coal burning has been an important source of primary sulfate 
in the atmosphere in winter of north China (Dai et al., 2019). Meteo-
rological conditions (winds, RH) and variations in the height of the 
planetary boundary layer (PBL) will also cause rapid increases in NO3

�

and SO4
2� mass concentrations in a short period (Zhang et al., 2019; 

Zhong et al., 2018; Wang et al., 2015; Zhang et al., 2020). Since NO3
� is 

volatile, changes in temperature will also affect its formation process 
and concentration. Based on wintertime observations, Guo et al. (2016) 
found that temperature changes had no significant impact on the 
gas-particle partitioning of NO3

� , so the concentration of NO3
� was not 

affected. However, Y. L. Sun et al., 2013a concluded that the NO3
�

concentration was correlated to RH and inversely correlated with tem-
perature based on long-term observations. More importantly, the for-
mation of SO4

2� can affect the formation of NO3
� by changing the 

gas-particle partitioning (Vasilakos et al., 2018; Li et al., 2018). With the 
decline of ambient SO4

2� levels, NO3
� formation may be inhibited. 

Therefore, it is important to explore how these multiple factors affect the 
partitioning of NO3

� in different seasons or in different periods under the 
scenario of strict reduction measures in China. This will help better 
simulate the two major inorganic salts in models. 

In this study, we used a quadrupole-ACSM (Q-ACSM) to measure NR- 
PM2.5 with a 2.5 μm lens in the urban area of Beijing from March 2018 to 
February 2019. The temporal variations (seasonal and diurnal) in the 
mass concentrations of NO3

� and SO4
2� in submicron aerosols were 

Fig. 1. (a) Map of the area surrounding the sampling site (Nanjiao), made by 
ArcGIS (https://www.arcgis.com/index.html#). (b) Wind rose plots for each 
season. The color bar is wind speed (ws, m s� 1). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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characterized, with a focus on the changes in the ratio of NO3
� to SO4

2� to 
investigate the effect of emission control measures on these two major 
SIAs in urban Beijing. The dependence of the ratio of NO3

� to SO4
2� on 

temperature (T) and RH in cold and warm seasons was also examined to 
obtain insights into the effect of these factors on NO3

� and SO4
2� levels. 

Finally, a case study was conducted to elucidate the effects of regional 
transport, the PBL, and chemical processes on the rapid growth of SIAs 
in urban Beijing. 

2. Site and measurements 

2.1. Sampling site and instruments 

We conducted long-term measurements from 1 March 2018 to 23 
February 2019 on the campus of the Atmospheric Exploration of the 
China Meteorological Administration (39�4803400N, 116�2804900E) 
(Fig. 1a). The sampling site was located between the southern fourth and 
fifth ring roads, which is frequently influenced by vehicle emissions. Air 
masses transported from Hebei Province, south of Beijing, which are 
heavily polluted because of the emissions from industries and anthro-
pogenic sources, pass over the site. Wind roses (Fig. 1b) show that 
horizontal winds at the site are dominantly from the northeast and 
southwest in spring, summer, and winter (Fig. 1b). Winds from the north 
can also occur in winter. In autumn, the dominant winds are from the 
northwest and south. A large number of instruments were installed in a 
container deployed at the site for measuring aerosol physical and 
chemical properties, including a Q-ACSM, scanning mobility particle 
sizers, an aerodynamic particle sizer (model 3321, TSI), a hygroscopic 
and volatile tandem differential mobility analyzer (H/V-TDMA), a cloud 
condensation nuclei counter (CCNc-100), an eddy covariance flux meter 
(model 7500A, LI-COR Environmental), and a Raman Lidar. 

The eddy covariance flux meter measured meteorological parame-
ters, including wind speed (WS), wind direction (WD), T, and RH. The 
highest T during the observation period was close to 40 �C (in summer), 
and the lowest T was close to � 10 �C (in winter). RH was high in 
summer, with an average value of 69%, and low in winter, with an 

average value of 38%. Black carbon (BC) was measured by an aethal-
ometer (model AE-33, Magee Scientific) at the Institute of Atmospheric 
Physics, Chinese Academy of Sciences. Ammonia (NH3) data were 
collected using an NH3 analyzer (model EC9842, Ecotech) installed at 
the campus of the China Meteorological Administration. 

Atmospheric particle concentrations, including PM2.5 and PM10, and 
collocated gaseous species, including CO, ozone (O3), NO2, and SO2, 
were measured simultaneously at the Yizhaung provincial control sta-
tion (Yizhuang site) by various gas analyzers from the Ministry of 
Ecology and Environment (MEE, http://www.mee.gov.cn/hjzl/), with a 
temporal resolution of 1 h. The Yizhuang site is very close to our 
observation site (3.5 km). All observation data were further processed 
and analyzed at 24-h intervals according to the PM2.5 sampling time. 

2.2. ACSM data calibration and analysis 

In this study, real-time NR-PM2.5, including organics (Org), nitrate 
(NO3

� ), sulfate (SO4
2� ), ammonium (NH4

þ), and chloride (Chl), were first 
measured in Beijing with a PM2.5-Q-ACSM equipped with a capture 
vaporizer (CV). Compared with the standard vaporizer (SV), the CV can 
effectively reduce the bounce times of particles, thus reducing the loss of 
detected particles (Hu et al., 2017, 2018). Zhang et al. (2017) have 
demonstrated the usefulness of data measured by a PM2.5-Q-ACSM 
equipped with a CV. An ammonium sulfate solution was used for the 
calibration of the ACSM to determine its response factor and relative 
ionization efficiency (RIE). After passing through the aerodynamic lens, 
the CV vaporized all particles (Ng et al., 2011). 

The average lowest detection limits of the ACSM in 30 min are 0.54, 
0.06, 0.07, 0.25, and 0.03 μg m� 3 for Org, NO3

� , SO4
2� , NH4

þ, and Chl 
(Sun et al., 2012). All of the NR-PM2.5 species were preprocessed using 
the Igor Pro-ACSM. Default RIEs of 1.4 for Org, 1.1 for NO3

� , and 1.3 for 
Chl (Allan et al., 2003; Drewnick et al., 2005). Our calibration deter-
mined an RIE of 5.57 for NH4

þand an RIE of 1 for SO4
2� , which were used 

rather than default values so that more accurate data on SO4
2� and NH4

þ

could be obtained. The collection efficiency (CE) is set to 0.5, a value 
applicable to field observations (Drewnick et al., 2005; Jayne et al., 

Fig. 2. (a) Time series of NR-PM2.5 and PM2.5 con-
centrations concentration measured at the Nanjiao 
sampling site derived from Q-ASCM (in red) and 
TEOM technique (in blue). The measurements of 
PM2.5 concentration by TEOM is conducted at a site 
nearby the Nanjiao sampling site; (b) Correlation of 
NR-PM2.5 and PM2.5 concentrations obtained by the 
two instruments. The black line is the best-fit line 
from linear regression. The slope of the line and the 
correlation coefficient (r) are shown. (For interpre-
tation of the references to color in this figure legend, 
the reader is referred to the Web version of this 
article.)   
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2000; Xu et al., 2015; Sun et al., 2015a). Because the CV is an 
improvement over the SV, the CE can be improved for ambient particles 
in the ACSM. A recent evaluation of CV values measured by inorganic 
species showed consistent results with measurements made in the same 
area (Hu et al., 2017). Therefore, in this study, we used the CE of the SV, 
i.e., CE ¼ 1 (Xu et al., 2016; Hu et al., 2017). To reduce the uncertainty 
of the CE, we added a Nafion dryer under the aerosol inlet, reducing the 
sampling humidity of aerosols to less than 40% (Sun et al., 2015a, 
2015b). 

Fig. 2 shows the time series of and comparisons between NR-PM2.5 
concentrations measured at the Nanjiao sampling site and PM2.5 con-
centrations measured at the nearby Yizhuang site. The annual trends 
(Fig. 2a) and concentrations (Fig. 2b) at the two sites match well (slope 
of the linear regression fitting is 0.83, and the correlation coefficient is 
0.89). Due to the lack of BC data during the observation period, the 
concentration of NR-PM2.5 observed by the ACSM at Nanjiao is slightly 
less than that of PM2.5 measured at Yizhuang site. Note that in the 
autumn of 2018, the ACSM aerosol inlet was blocked, and only a small 
amount of data was obtained at that time. 

3. Results and discussion 

3.1. Measured time series of chemical components and meteorological 
parameters 

Fig. 3 shows the time series of mass concentrations of chemical 
components, meteorological conditions, and concentrations of trace 
gases and particulate matter (PM2.5 and PM10) from 2018 to 2019. All of 
the chemical components measured varied throughout the year, 
showing large fluctuations with changing meteorological conditions and 
trace gas concentrations. This results in large variations in the mass 
concentrations of PM2.5 and PM10. Overall, more and higher spikes of 
mass concentration of the chemical components were observed in winter 
and spring. Because of the malfunction, only few data is obtained in 
autumn and it may not well represent the circumstances in this season. 

3.2. Seasonal variation 

Fig. 4 shows the seasonal variations in mean mass concentrations of 
NO3
� and SO4

2� , the ratio of NO3
� to SO4

2� , and the mass fractions of the 
chemical components. No obvious seasonal variations are observed in 
both the average mass concentration and the fraction of NO3

� , with 
ranges of ~10–12 μg m� 3 and 22–26%, respectively. A slightly greater 

Fig. 3. Time series of (a) NR-PM2.5 species at the ground level, (b) wind direction (WD) and wind speed (WS), (c) relative humidity (RH) and temperature (T), (d) 
NO2 and SO2, (e) O3 and NH3, and (f) PM2.5 and PM10 in Beijing from 2018 to 2019. 
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mean mass concentration of NO3
� is observed in winter (12.7 � 18.7 μg 

m� 3). The slightly lower mass concentration of NO3
� in summer is related 

to both the lower level of NO2 (Fig. 3d) and the gas-particle partitioning 
of NO3

� in the warm season at high temperatures (Sciare et al., 2007). 
The seasonal cycle is similar to that observed in 2011–2012 in urban 
Beijing (Sun et al., 2015a, 2015b). The observed mean annual mass 
concentration of NO3

� reported in that study was 18.0 � 18.3 μg m� 3 

(reported as PM1 and converted to PM2.5 according to the ratio 
PM1/PM2.5 � 0.7), indicating the decline in NO3

� in recent years. The 
mean concentration of SO4

2� (proportion of SO4
2� ) varies greatly in 

different seasons, ranging from 7.8 � 16.0 μg m� 3 (14%) in winter to 
14.2 � 10.2 μg m� 3 (31%) in summer (Fig. 4a). The overall seasonal 
variations in mass concentration and fraction of SO4

2� in this study are 
consistent with those observed in 2011–2012 in urban Beijing (Sun 
et al., 2015b) and in 2017–2018 (Zhou et al., 2019), when the highest 
mean mass concentrations of SO4

2� were also observed in summer 
because of the strong photochemical formation and conversion of SO2 to 
SO4

2� (Zheng et al., 2011). For example, Y. L. Sun et al., 2015b observed 
that the mass concentrations of SO4

2� were 11.0 � 13.1 μg m� 3 in winter 
and 15.1 � 11.7 μg m� 3 in summer. Note that the disparity in mass 
concentrations of SO4

2� between winter and summer is larger in this 

study due to the significantly decreased mass concentration of SO4
2� in 

winter. This suggests that the reduction control measures conducted by 
the Chinese government mitigated SO4

2� pollution in winter. 
The ratio of NO3

� to SO4
2� varies seasonally (Fig. 4b). In winter, the 

mean concentration of NO3
� was greater than that of SO4

2� (with a mean 
ratio of 1.6 � 1.2). This mean ratio is similar to what was observed in the 
winters of 2011–2015 in Beijing, i.e., ~1.5 (Fig. 5) (e.g. Dao et al., 2014; 
Sun et al., 2015b; Li et al., 2018; Li et al., 2019; Wu et al., 2020). 
However, the mean ratio is smaller than that observed in the winters of 
2016–2017 in urban Beijing, with NO3

� concentrations 2.5–3.5 times 
higher than SO4

2� concentrations (Fig. 5) (Li et al., 2019). The ratio of 
NO3
� to SO4

2� increased continuously from about 0.5 in 1999–2000 (Yao 
et al., 2002) to as high as 3.5 in 2017 (Fig. 5) (Li et al., 2019), illustrating 
the increasingly dominant role of NO3

� . This reflects a significant con-
version of SO4

2� to NO3
� pollution in winter in China during the past 20 

years, with the rapid reduction in SO2 emissions but a continuous in-
crease in NOx emissions, especially from vehicle sources in urban areas 
(Zheng et al., 2018). Also, the direct reductions in primary SO4

2� from 
coal burning sources in winter of Beijing (Dai et al., 2019) should also 
considerably contribute to the elevated ratio of NO3

� to SO4
2� during past 

years. The ratio of NO3
� to SO4

2� from this study is smaller than that 
observed in 2016–2017. This is partially associated with an attenuated 
nitrate formation likely due to reduced NOx emissions since 2016 in 
China (Zheng et al., 2018; Xu et al., 2019). The decrease in SO4

2� may 
also decrease aqueous production or gas-particle partitioning of NO3

�

due to the weakened hygroscopicity of aerosol particles (Li et al., 2019). 
The ratio of NO3

� to SO4
2� in winter is thus expected to decrease over the 

next few years, as NOx emissions decline and SO4
2� sources weakens. 

In summer, SO4
2� accounts for a larger proportion of SIA (31%, 14.2 

μg m� 3) than NO3
� (22%, 9.9 μg m� 3), yielding the smallest ratio of NO3

�

to SO4
2� throughout the whole year. The mean ratio in this study is 0.7 �

1.0, much lower than that observed in the summers of 2015–2017 (with 
ratios of ~2.0) (Li et al., 2018; Lv et al., 2019; Xu et al., 2019) and 
comparable to that observed before 2013 (Fig. 5). Note that the con-
centration of SO4

2� in summer is still high even at very low SO2 levels, 
which warrants further investigation in the future. 

In summary, our results show that there was a turning point of 
decline in the ratio of NO3

� to SO4
2� in China in 2018–2019, before which 

the ratio had been increasing continuously since 1999. The average mass 
concentration of NO3

� during 2018–2019 has been reduced compared 
with that observed during 2011–2012 (Sun et al., 2015a, 2015b). This is 
likely due to the decline in NOx emissions since 2016 (Zheng et al., 
2018). Our results suggest that the strict reduction control measures are 
efficient in improving SO4

2� pollution in winter but not in summer. 
However, the two SIA, SO4

2� and NO3
� concentrations together still 

comprise 37–53% of the PM2.5 concentration, presenting significant role 
in dominating the levels of PM2.5. 

3.3. Diurnal variations 

Fig. 6 shows the diurnal cycles of mass concentrations of NO3
� and 

SO4
2� , mass fractions of NR-PM2.5 chemical species, and the ratio NO3

� / 
SO4

2� for each season. In summer and autumn, the diurnal variations of 
NO3
� are with minimum mass concentrations during the day 

(12:00–16:00 local time, or LT) and maximum mass concentrations at 
night (21:00–06:00 LT) (Fig. 6b and c). Three factors may explain this: 
(1) In warm seasons, due to the high ambient daytime temperature, gas- 
particle partitioning of NO3

� causes the conversion of NO3
� in the particle 

phase to the gas phase (Takahama, 2004), and thus decreasing the NO3
�

levels in daytime; (2) A large amount of NO3
� is formed through the 

heterogeneous hydrolysis of N2O5 in the absence of ultraviolet light at 
night (Mentel et al., 1996), and thereby elevating its levels during 
nighttime, and (3) PBL heights are generally higher in the daytime than 
at night (Liu and Liang, 2010), which would further accumulate the NO3

�

concentrations. In winter, the mass concentration of NO3
� continuously 

increases from 08:00 LT to 16:00 LT, probably due to the formation of 

Fig. 4. Seasonal variations in (a) NO3
� (blue) and SO4

2� (red) mass concentra-
tions and (b) the ratio NO3

� /SO4
2� . Horizontal lines in the box plot represent the 

median values, the circles represent the mean values, upper and lower borders 
of the box represent the 25th and 75th percentile values, and the upper and 
lower borders of the dashed vertical lines represent the 10th and 90th 
percentile values. The pie charts at the bottom show the average mass fractions 
of the chemical composition of NR-PM2.5 in each season. The mean mass con-
centration of NR-PM2.5 for each season is also shown below the pie charts. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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NO3
� through the weak photochemical oxidation of NO2 by the OH 

radical at sunrise when ambient temperatures are low (Ma et al., 2019). 
Overall, the mass concentration of NO3

� is low in the daytime and high at 
night. This suggests the dominant role of the PBL in controlling the 
diurnal patterns of NO3

� in cold seasons when photochemical processes 
are weaker. 

In spring, the mass concentration of NO3
� peaks between 08:00 LT 

and 12:00 LT. This is likely related to the nocturnal boundary layer 
(NBL) effect (Geyer, 2004). At night, there is a continuous emission of 
NOx near the ground, which is not conducive to the production of N2O5. 
However, high concentrations of NO2 still exist in the upper NBL, which 

has temperature conditions more conducive to the accumulation of 
N2O5. Therefore, in the upper NBL at night, a large amount of NO3

� will 
be generated through the hydrolysis of N2O5. Until the sun rises, the 
vertical turbulence caused by the changes in ambient temperature will 
transport the NO3

� already formed at high altitudes within the NBL, 
resulting in a sudden rise in the concentration of NO3

� on the ground in 
the morning. This may explain why the peak in the morning is only 
observed in spring. However, this still needs further verification. 

The amplitudes of the diurnal cycles of SO4
2� are much smaller than 

those of NO3
� , varying little from season to season. This is because the 

formation of SO4
2� from photochemical oxidation by SO2 is very slow 

Fig. 5. The ratio NO3
� /SO4

2� from different studies, starting in 1999–2000 and ending in 2018–2019 (this study). Red bar represents summer, blue bar represents 
winter and gray bar represents the annual mean. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this 
article) (Guo et al., 2011; Han et al., 2015; He et al., 2012; Liu et al., 2020; Song et al., 2006; Wang et al., 2005; Zhang et al., 2016). 

Fig. 6. Seasonal average diurnal cycles of (a–d) mass concentrations of sulfate (SO4
2� , red) and nitrate (NO3

� , blue), (e–h) mass fractions of NR-PM2.5 chemical 
species, and (i–l) the ratio NO3

� /SO4
2� . (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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with a time scale of one week (Cox, 1979). The slight fluctuations are 
mainly influenced by variations in the PBL and meteorology. Fig. 6i-l 
shows the diurnal cycles of the ratio NO3

� /SO4
2� in different seasons. 

Since the diurnal cycles of SO4
2� vary little from season to season, the 

diurnal cycles of NO3
� /SO4

2� show similar patterns to the diurnal varia-
tions of mass concentration of NO3

� in all seasons. 

3.4. Impacts of T and RH on the ratio of NO3
� to SO4

2- 

The mass ratio of NO3
� to SO4

2� generally varies under different 
meteorological conditions (humidity and RH) and is an indicator of local 
and transmitted sources of pollution (Arimoto et al., 1996; Yao et al., 
2002). To obtain insights of the effect of the temperature and RH on the 
nitrate and sulfate formation, in this study, we analyzed the dependence 
of the ratio of NO3

� to SO4
2� on temperature and relative humidity (RH) 

in cold seasons (winter and spring) and warm seasons (summer and 
autumn) (Fig. 7). 

The ratio NO3
� /SO4

2� in cold seasons varies little as T increases from 
� 15 �C to 20 �C. The ratio decreases from ~2.0 in winter to nearly 0 as T 
increases from 20 �C to 40 �C in warm seasons. The sensitivity of the 
ratio to changes in T reflects the enhanced gas-particle partitioning of 
NO3
� to the gaseous state at high temperatures (Takahama, 2004). Here, 

the threshold value for NO3
� partitioning is 20 �C, consistent with that 

previously reported by (Li et al., 2018). 
The dependence of the ratio NO3

� /SO4
2� on RH is more pronounced. 

In cold seasons, NO3
� /SO4

2� increases from about 0.5 to greater than 2 
with increasing RH under very dry atmospheric conditions in Beijing 
(RH < 40%). The ratio remains constant (~2.2) in the RH range of 
20–80%, decreasing slightly when RH > 80%. The slight reduction at 
very high RH levels is likely associated with an enhanced aqueous for-
mation or in-cloud SO4

2� oxidation over urban Beijing in winter (Wang 
et al., 2016). The variations of the ratios with RH is also likely associated 
with the changes of PBL (see Section 3.5). In warm seasons, the ratio 
NO3
� /SO4

2� generally increase with increasing RH from about 0.1 to 1. 

This is due to the enhanced NO3
� formation through the heterogeneous 

hydrolysis of N2O5 at high RH levels during the night. 
Others have examined the relationships between NO3

� /SO4
2� and T 

and RH. For example, Y. L. Sun et al., 2013b found that the ratio 
NO3
� /SO4

2� was positively correlated with RH in summer in urban Bei-
jing from 2011 to 2012 and that the ratio fluctuated in the range of 
0.5–2, consistent with findings from this study. They also found that the 
ratio decreased from 2.2 to 0.7 as RH increased from 10% to 90% in 
winter. Li et al. (2018) also observed that the mass ratio of NO3

� to SO4
2�

increased from about 0.5 to ~4 as temperatures decreased from 40 �C to 
20 �C) and as RH increased from 20% to 90% in the summer of 2015 in 
Beijing. The ratios are much larger than in 2011–2012, which closer to 
our observations in winter. 

3.5. Case studies: attributing the rapid increase in ambient NO3
� under 

different meteorological conditions 

To further elucidate the mechanism and formation of NO3
� in fine 

particles in urban Beijing, two periods, representing typical cases of the 
rapid growth of the mass concentration of NO3

� in a short time during the 
observation period (Fig. 8) are selected for analysis. Used were the ratios 
of SO4

2� and NO3
� to BC or carbon monoxide (CO) (due to the unavail-

ability of BC data for Case 1) to eliminate the influence of the PBL on the 
variations in NO3

� and SO4
2� concentrations because the physical and 

chemical properties of CO and BC are relatively stable within the PBL 
(Zhang et al., 2015a,b). Fig. 9a shows a typical case (defined as Case 1) 
of a burst in the mass concentration of NO3

� during a heavy haze event 
that occurred on 11–14 March 2018. The PM2.5 concentration was 
175.8 � 73.8 μg m� 3, reaching a maximum value of ~400 μg m� 3 

(Fig. 9). The winds show static meteorological conditions. The mean RH 
and T were 54.2% and 8.7 �C, respectively, and varied diurnally. The 
mean concentrations of O3, SO2, NO2, and CO were 61.1, 14.1, 85.1, and 
1720.0 μg m� 3, respectively. The mass concentration of NO3

� increased 
rapidly from 11.9 μg m� 3 to nearly 100.0 μg m� 3 within 60 h. The mass 

Fig. 7. Variations in the ratio NO3
� /SO4

2� as a function of 
(a) T and (b) RH in cold seasons (blue boxes) and warm 
seasons (red boxes). Horizontal lines in the box plot 
represent the median values, upper and lower borders of 
the box represent the 25th and 75th percentile values, and 
the upper and lower borders of the dashed vertical lines 
represent the 10th and 90th percentile values. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this 
article.)   

S. Li et al.                                                                                                                                                                                                                                        



Atmospheric Environment 237 (2020) 117662

8

concentration of SO4
2� also rapidly grew from about 10 μg m� 3 to 40.7 

μg m� 3. However, the ratios SO4
2� /CO and NO3

� /CO showed continuous 
increases only before 14:00 LT on 12 March, then stabilized. Further 
investigation of the variations in the PBL retrieved from lidar data 
(Fig. 9) shows that the height of the PBL was ~1.0 km and remained that 
way before 12:00 LT on March 12, after which the height of the PBL 
decreased to 200–300 m. This suggests that the observed fast increase in 
mass concentrations of NO3

� and SO4
2� after 12:00 LT on March 12 was 

mainly due to the sharp decrease in the PBL height. The growth before 
12:00 LT on March 12 was likely due to other sources, e.g., secondary 
formation or transport. Some studies have shown that NO3

� formation in 
springtime is facilitated by dust through heterogeneous processes (Xia 
et al., 2019). However, our data show that the mass concentrations of 
PM10 were almost the same as those of PM2.5, suggesting that 
coarse-mode aerosols were negligible (Fig. 9b). Note that winds were 
light (<2 m s� 1) and coming from the south or southwest. The contin-
uous growth before 12:00 LT on March 12 is thus attributed to the 
regional transport of air pollution from populated regions south of urban 
Beijing. 

Fig. 8b shows a typical case (defined as Case 2) of warm-season 
variations in NO3

� that occurred from 26 July to 3 August 2018 in 

urban Beijing. During this case, the mean PM2.5 concentration was 56.5 
� 26.9 μg m� 3. Winds were steady and light. RH and T varied diurnally, 
with mean values of 68.5% and 31.4 �C. The mean concentrations of O3, 
SO2, NO2, and CO were 105.6, 2.1, 23.3, and 1200 μg m� 3, respectively. 
Both O3 and NO2 also varied diurnally, with SO2 concentrations 
approaching the lower limit of detection (2 μg m� 3). NO3

� varied diur-
nally, with a maximum value at night and a minimum value during the 
day, indicating the heterogeneous hydrolysis formation from N2O5 at 
night and conversion of NO3

� in particle phase to the gas phase during 
the warmer daytime. It has been known that, nitrogen dioxide reacts 
with ozone to produce the NO3 radical, and the latter further reacts with 
NO2, forming N2O5. N2O5 is prone to photolysis or thermal deposition 
and is stable at night. In addition to the daytime gas-phase formation of 
HNO3, the hydrolysis of N2O5 with aerosols and fog is a major source of 
nitric acid in the urban atmosphere at night (Pathak et al., 2009). This 
reaction proceeds efficiently on wet surfaces but slowly in the gas phase 
(Wahner et al., 1998). Fig. 10 further confirms this, showing good 
agreements between the ratio SO4

2� /BC with RH and T (correlation co-
efficients of 0.72 and � 0.69, respectively). Also, the higher the RH, or 
the lower the T, the faster the growth rate of NO3

� is (here, the growth 
rate at a given time is the slopes of the NO3

� and observation time). 

Fig. 8. Time series of meteorological parameters (wind speed,WS, wind direction, WD, relative humidity, RH, and temperature, T), gaseous precursors (O3, CO, NO2, 
and SO2), mass concentrations of SO4

2� , NO3
� , and BC, and ratios of SO4

2� and NO3
� to BC and CO for (a) Case 1 and (b) Case 2. Data are from 11 to 13 March 2018 (left 

panels) and 26 July to 3 August 2018 (right panels). 
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However, it shows different patterns for Case 2, implying distinct at-
mospheric processes of accumulation of nitrate for the two cases. 

In summary, Case 1 and Case 2 represent two typical processes 
leading to the rapid accumulation and increase in NO3

� in the atmo-
sphere over urban Beijing. The mean background NO3

� concentration 
during the cold-season Case 1 was 3.4 � 3.5 μg m� 3, increasing to 51.2 
� 26.4 μg m� 3 due to the regional transportation and PBL variations. 
The mean background NO3

� concentration during the warm-season Case 
2 was 2.0 � 1.4 μg m� 3, increasing to 15.9 � 9.5 μg m� 3 due to the 
nighttime hydrolysis of N2O5. The Case 1 scenario contributes to heavy 
haze in cold seasons, while the Case 2 scenario impacts the diurnal 
patterns of NO3

� in warm seasons. 

4. Conclusions 

In this study, the ratio of NO3
� to SO4

2� in fine particles is charac-
terized using Q-ACSM -measured non-refractory submicron aerosol data 
in the urban area of Beijing from March 2018 to February 2019. We 
show that the ratio of NO3

� to SO4
2� varies seasonally, with a maximum 

value in winter (1.6 � 1.2) and a minimum in summer (0.7 � 1.0). Based 
on a literature review of results from earlier studies, the ratio of NO3

� to 
SO4

2� in China had been increasing continuously since 1999–2000 but 
started to decrease in 2018–2019. The mean concentration of NO3

� was 
also lower compared with that in earlier years. We attribute the 
observed turning point (2018–2019) to the decrease in NOx emissions 
since 2016 (Zheng et al., 2018). The ratio of NO3

� to SO4
2� in winter is 

expected to decrease over the next few years, as NOx emissions decline 
and SO4

2� sources (both primary emissions from coal burning and sec-
ondary formation) weakens. The mass concentration of SO4

2� in summer 
is comparable to that observed in earlier years. Our results suggest that 
the strict reduction control measures in place serve only to improve 
SO4

2� pollution in winter but not in summer. SO4
2� and NO3

� concen-
trations together comprise 37–53% of the PM2.5 concentration, pre-
senting key role in dominating the levels of PM2.5. 

Our results also show that the gas-particle partitioning of NO3
� and 

the hydrolysis of N2O5 regulate the diurnal cycle of the ratio NO3
� /SO4

2�

in summer, while variations in the PBL height dominate it in winter. The 
dependence of the ratio NO3

� /SO4
2� on RH is more pronounced in cold 

seasons. In warm seasons, the ratio generally increases with increasing 
RH due to enhanced NO3

� formation through the heterogeneous hydro-
lysis of N2O5 at high RH levels. We finally characterize two typical 
processes that lead to the rapid accumulation and increase in NO3

� in the 
atmosphere over urban Beijing: (1) regional transportation and PBL 
variations and (2) the hydrolysis of N2O5. We find that the former 
contributes to heavy haze in cold seasons and that the latter tends to 
impact the diurnal variations in NO3

� in warm seasons. 
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