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18.1  Introduction 

Accurate accounting of carbon cycling is paramount to understanding and 
modeling global climate change. At present, a considerable amount of global 
carbon uptake (~2 Gt/year) remains unaccounted for in the carbon budget. It has 
been argued that the missing carbon may be absorbed in the terrestrial biomes of 
the Northern Hemisphere (Tans et al., 1990), in particular the temperate and boreal 
forests in North America (NA), which could account for the bulk (1.7 Gt/year) of 
the missing carbon (Fan et al., 1998). Fire is a driving factor controlling the carbon 
dynamics in NA, which affects both the sign and magnitude of the carbon budget 
(Stocks et al., 1996; Conard and Ivanova, 1997; Kasischke, 2000). According to 
the modeling results of Chen et al. (2000), boreal forests in NA have undergone 
tremendous fluctuations in its carbon budget over the last 200 years (Fig. 18.1). 
Around 1880 when widespread severe fires released a huge amount of carbon into 
the atmosphere, the forests were a very large source of carbon (~140 GtC/year) 
while around 1940, the forests became a very large sink of carbon (~200 GtC/year) 
due to fast forest regeneration that absorbed a large quantity of atmospheric 
carbon. The net carbon exchange is now so small that it is being debated whether 
the boreal forest is currently a sink (Chen et al., 2000) or a source (Kurz et al., 
1995). The close correlation between the carbon budget and fire activity 
demonstrates the importance of the accurate estimation of carbon emissions from 
fires.  

So far, the continental-scale estimates of carbon emission were made mainly 
for fires occurring over the forest ecosystem using ground-based fire datasets 
(French et al., 2000). Few attempts have been made employing remote sensing 
data from coast to coast. While ground-based data are valuable, they have certain 
limitations that can be overcome by remote sensing. Ground-based fire data are 
mainly restricted to total burned area with their quality and completeness varying 
from year to year and region to region. Remote sensing is capable of providing 
additional spatial and temporal fire information to improve fire emission estimations.  
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Figure 18.1  Model simulated time series of net carbon source/sink from boreal 
forests in the North America (left) and major disturbance factors (Chen et al., 2000) 

In addition to burned area, remote sensing can provide “snapshots” of fire 
dynamics information (starting and ending dates and daily spread), and spatial 
heterogeneity (the degree of burning, fragmentation of burned scars, fuel type, 
biomass amount, etc.). On the other hand, remote sensing has its own limitations 
that do not allow providing all emission related parameters such as emission 
factor. Therefore, the best strategy is to combine conventional and satellite data 
to maximize their utility for fire emission estimation.  

18.2  Carbon Emission Estimation 

There is a simple mathematical formula to compute the emission of any chemical 
gas or particle species as originally proposed by Seiler and Crutzen (1980): 

E BA FL FF EF                                            (18.1) 

where E is the emission of a gas (x) or particulate matter from fire (g)—(here, 
mainly for CO2); BA is burned area (ha); FL fuel loading (or density) (kg/ha); 
FF = fraction of fuel consumed (%); EF emission factor for gas species (x) or 
particulate matter (g/kg of fuel consumed). It has been, however, a daunting task to 
obtain any of these variables from ground, air-borne, or space-borne observations. 
Nearly none of them are trivial to derive from any observation platform, nor from 
modeling.  

To effectively make use of a variety of spatial data in raster or vector 
formats, GIS-based emission modeling systems as is shown in Fig. 18.2 have 
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been developed. For fire emission estimation, major fire emission attributes can 
be obtained from satellite and other sources as model inputs. They include 
burned area, degree of burning, fuel loading, above-ground and ground layer 
biomass amount, burning conditions and emission factors, etc.. Before running 
the system, the input data need to be acquired, edited and transformed as 
different attribute data layers. The system consists of several modular subsystems 
that simulate the burning processes. Some of the systems are based on the 
algorithms from the Forest Service First Order Fire Effects Model (FOFEM, 
Reinhardt, 1997) coded into Avenue (the ArcView scripting language) for 
implementation in the GIS.

The system needs to be able to use remote sensing data in combination with 
conventional data in order to enhance the estimation of carbon emissions and cycling.  

Figure 18.2  Flowchart represents the Emission Estimation System (EES) modules. 
Boxes represent module components. Shading distinguishes modules from each other 

18.3  Fire Emission Parameters and Modeling 

18.3.1  Burned Area 

There have been a large number of studies using satellite data to monitor and 
map fires around the globe. Recent reviews on fire detection, burned area 
mapping and fire observation systems/products may be found in Li et al. (2001a), 
Arino et al. (2001), and Grégoire et al. (2001), respectively.

Among all fire emission related factors, burned area can be inferred most 
accurately by satellite. This is because fires usually leave a distinct “footprint” that 
can be captured by satellite. Two types of “fire footprints” have been traced for fire 
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remote sensing, namely, the long-lived fire scars and short-lived fire hot spots. 
Fire scars may be measured by the drastic decrease in vegetation index such as the 
Normalized Difference Vegetation Index (NDVI) computed from reflectance in 
visible (VIS) and near infrared (NIR) channels:  

(NIR VIS)NDVI
(NIR VIS)

                                      (18.2) 

Numerous attempts have been reported to estimate burned areas based on 
changes in NDVI (Kasischke and French, 1995; Martin and Chuvieco, 1995; Li 
et al., 1997, 2000b). However, use of the NDVI alone tends to cause significant 
commission errors, since the NDVI decrease may be unrelated to fire and more 
related to drought, seasonal vegetation senescence, timber harvesting, image 
mis-registration, and cloud contamination. A further difficulty lies in the selection 
of effective thresholds for separating burns that are spatially and temporally 
variable (Fernandez et al., 1997). 

One might composite all fire hot spots to obtain the burned area. As optical 
remote sensing of fires is only feasible under clear-sky conditions (Li et al., 
2000a), an accumulation of fire hot spots may be substantially less than the 
actual area of burning, depending on cloud cover and frequency (Li et al., 2000b). 
To overcome these limitations, methods have been developed that combine 
synergistic information on fire hot spots and vegetation damage indicated by a 
vegetation index (Roy et al., 1999; Fraser et al., 2000a). A method named 
Hotspot and NDVI Differencing Synergy (HANDS) proposed by Fraser et al. 
(2000a) has a high degree of automation and self-adaptation(see Fig. 18.3). The 

Figure 18.3  A simplified schematic of the HANDS method proposed by Fraser et 
al. (2000a) in generating burned area (right) by synergetic use of fire hot spot (left top) 
detected by the Li et al. (2000a) algorithm and vegetation index (left bottom) 
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principle of this method is to use hotspot locations to train spatially variable 
NDVI difference threshold, while changes in NDVI between two periods (before 
and after a fire, or on two anniversaries in two consecutive years) allow to 
eliminate false fire hot spots. 

Using the fire detection algorithm of Li et al. (2000a) and the mapping 
algorithm of Fraser et al. (2000a), a long-term (1989 2000) daily 1-km fire 
product has been generated across the NA from the historical AVHRR archive 
(Pu et al., 2006, c.f. Fig. 18.4). Validations of the satellite mapped burned areas 
against fire polygons generated by air-borne surveillance showed a very close 
match (Li et al., 2003). Moreover, the satellite mapping method can pick up fires 
that were missed by the conventional method. This is especially the case over 
remote regions where fires are usually allowed to develop in their own natural 
course and so manual mapping is less complete. This and other validations 
(Fraser et al., 2000b; Fraser and Li, 2002) have revealed consistent high accuracy 
in mapping burned areas over forests. 

Figure 18.4  Upper panels: nation-wide fire burned scars mapped from AVHRR 
data in 1989 and 2000. Such fire maps are available on a daily basis across NA 
continent. Lower left panel: comparison of fire burn scars mapped from satellite 
and the USDA Forest Service for the fires occurred in the western states in 2000 
(Li et al., 2003)

Large errors are found in mapping fires over non-forest land (Csiszar et al., 
2003). This has been a major problem for all satellite-based fire products using 
the mid-infrared channel of AVHRR around 3.7 µm, which is also a key channel 
for fire detection. The problem arises from channel saturation and the contribution 
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of solar reflection (Li et al., 2001a). Note that the main purpose of this channel 
was originally designed for mapping sea surface temperature during night overpass. 
The maximum detection limit is usually set around 320 K with a range of variation 
(Csiszar and Sullivan, 2002). This does not incur any problem unless exceptionally 
hot targets are detected such as fires or volcanoes that can readily saturate the 
channel. Were the saturation caused by hot targets alone, it would not be a problem 
so far as fire detection is concerned. Unfortunately, saturation may be caused by 
unusually large thermal emissions or solar reflection, or both. As illustrated in Li 
et al. (2001a), a scene of albedo over 20% in this wavelength can reflect enough 
solar radiation to saturate the channel. Although channel 3 is known to have a 
significant contribution of solar reflection in the mid-IR, none of the existing fire 
detection algorithms have taken it into consideration (Li et al., 2001a). This is 
partially because much attention has been paid to fires occurring over forests 
where reflectivity in that channel is very small ( 5%). For other natural scene 
types, surface reflectivity may be large, variable and difficult to obtain (Salisbury 
et al., 1991; Salisbury and D’Aria, 1994; Snyder et al., 1997), as shown in 
Fig. 18.5. 

Figure 18.5  The emissivity of some natural materials (Salisbury et al., 1991). 
Note that emissivity is equal to 1 minus albedo 

This inherent problem can be resolved/lessened by the MODIS sensor. 
MODIS has several advantages over the AVHRR for fire monitoring (Kaufman 
et al., 1998a; Justice et al., 2002; Roy et al., 2002; Ichoku et al., 2003; Kaufman 
et al., 2003; Li et al., 2004). First, the saturation limit for the MODIS 3.7 m
channel is much higher. Second, the MODIS products include estimates of 
surface emissivity at this and other IR channels. Use of the emissivity data and 
solar radiative transfer calculation, one can determine and subtract the contribution 
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of solar reflection from the total radiance measured at this channel so that the 
remaining signal is a true measure of thermal emission. Third, MODIS includes a 
longer mid-IR channel near 4 m where incoming solar radiation is much reduced. 
Fourth, MODIS has several additional channels that can greatly facilitate fire 
detection and mapping. One most useful channel is the shortwave (SW) IR channel 
around 1.6 m. 

While NDVI has been widely used for mapping burned area, its signal may 
fade out quickly for regions where understory vegetation grows rapidly after fire. 
A vegetation index derived from a combination of SWIR channel around 1.6 m
and NIR as was proposed by Kaufman and Remer (1994) has a long-lasting 
“memory” of burning: 

NIR SWIRSWVI
NIR SWIR

                                  (18.3) 

This is demonstrated in Fig. 18.6 showing a comparison of NDVI and 
SWVI of an old fire scar inside the white polygon. The scar was generated by a 
big forest fire that occurred in 1995, but the vegetation indices were computed 
from the SPOT/VGT (a French satellite) image obtained in 1998. It is seen that 
the NDVI shows almost no trace of burning, but there is a distinct fire boundary 
markedly discernible from the SWVI. Another advantage of using SWVI over 
the NDVI lies in its lack of influence by smoke plume. Note that smoke consists 
of fine-mode particles whose transmittance to solar radiation increases with 
wavelength. Taking advantage of these properties, Li et al. (2004) proposed a 
method for near real-time mapping of burned area using multiple MODIS 
channels from SWIR to mid-IR (also see Fig. 18.9). 

Figure 18.6  Comparison of NDVI and SWVI image derived from SPOT/VGT 
image in August 1998 over a burned scar created in 1995 in Alberta, Canada
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18.3.2  Spatial Fragmentation and Temporal Expansion of  
           Burned Area 

Burn fragmentation due to varying degrees of burning is next to total burned area 
in determining fire emissions. The methodology described based on AVHRR and 
MODIS sensors is adequate to delineate fire boundaries. However, a burning field 
generally shows very inhomogeneous distribution due to varying degrees of burning 
severity. Burn fragmentation is very important for estimating fire emissions. 
High-resolution data such as that from LANDSAT-7 TM is valuable for assessing 
fire severity (Michalek et al., 2000) and calibrating burned areas mapped by the 
coarse resolution data (Fraser et al., 2004).  

Figure 18.7 shows a comparison of burned areas extracted from LANDSAT-5 
TM and SPOT/VGT data for fires that occurred during May 1998 in Alberta, 
Canada. The outer burn perimeter derived using VGT data corresponds quite well 
to the TM boundary. However, as a result of the coarser resolution of VGT 
imagery (1 km), most interior small-scale unburned islands are mapped as being 
burnt. This leads to a systematic over-prediction of burnt area, and thus also the 
emission estimation. By double sampling a representative selection of fires with 
both TM and VGT data, a function of the two burned areas was derived that can 
be used to calibrate the coarse resolution burned area at a continental scale. The 
calibration coefficient may be parameterized by the change in a vegetation index 
before and after burning.  

Figure 18.7  Left: Burned area derived from LANDSAT TM (white lines) and 
SPOT VGT (yellow lines) superimposed on a false color TM image. Right: 
comparison of burned areas estimated from fine-resolution TM data (20 m) and 
coarser resolution VGT data (1 km) (Fraser et al., 2004) 
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For fire emission modeling, it is also necessary to have dynamic information 
on the progress of burned scars. Such fire-spread information can be coupled 
with daily fire weather data into the emission model (discussed later) to simulate 
fuel consumption from crown and ground fires. At a minimum, one may use 
daily fire hotspots to roughly represent a fire episode. While this temporal 
accumulation of fire hot spots provides valuable dynamic information that is in 
addition to the total burned area, it is often interrupted by any presence of cloud 
cover. To generate a more continuous fire development data with the traditional 
AVHRR imagery, we developed a burn growth algorithm using current hotspots 
as seeds. Burned pixels are iteratively “grown” from hotspot locations if they 
satisfy three conditions: 

(1) Joined to a hotspot or previously identified burned pixel; 
(2) Not cloudy, based on a thermal infrared (channel 4) threshold; and 
(3) Elevated mid-infrared (channel 3) signal with respect to background. 
Tests #2 and #3 are specifically designed to permit mapping of burned areas 

that are covered by smoke plumes. 
This near real-time burned area growing algorithm was applied to daily 

AVHRR images corresponding to a big fire occurred in Virginia Hill in Alberta, 
Canada from May 3 to 20, 1998. Figure 18.8 shows the resulting cumulative 
burned area for each day. Burned pixels identified on a given day are then linked 
to current fire weather data in order to estimate fuel consumption.  

Figure 18.8  Development of daily burned area for a fire in Canada 

For MODIS, this complicated procedure may be avoided by using the 
multiple SW IR channels at 1.24, 1.64 and 2.13 m, following the new method 
of mapping fire scars proposed by Li et al. (2004). Fresh fire scars are clearly 



Zhanqing Li et al. 

346

visible on a false color image composited by data from the three SWIR channels 
even under a heavy smoke. In contrast, the scar is completely marked by the 
smoke for a real color image using data from red, blue and green channels (see 
Fig. 18.9). This technique allows for mapping of real-time burned areas as long 
as no cloud is present.  

Figure 18.9  Left: a true color AVIRIS image of a fire smoke scene composited 
from red, green and blue channels. Right: a false color image composited from 
three AVIRIS SWIR channels that are equivalent to MODIS channels at 1.24, 1.64 
and 2.13 m (Li et al., 2004) 

18.3.3  Fuel Loading 

Fuel loading varies considerably with fuel type, tree density, species composition, 
age, etc. Due to a lack of available spatial information on fuel loading, previous 
estimates of fire emissions (e.g., Cahoon et al., 1994) have assumed total fuel 
loading and consumption based on fire experimental data (e.g. 2.5 kg/m2). To 
improve estimates of the large spatial variability in fuel loading, a recent emission 
study by French et al. (2000) characterized average fuel loading for nine forested 
ecozones in Canada. They employed the Canadian Forest Service’s forestry 
inventory (CanFI) data and allometric equations to convert stand information to 
aboveground biomass. Below ground carbon was estimated from a national soil 
map, which is available in GIS format from CanSIS. CanFI provides general 
information pertinent to spatial changes in fuel loading. They do not provide 
spatial details, as they are given on the scale of ~10,000 km2. The area of an 
ecoregion is usually much larger than 100 km2, while fuel loading within an 
ecoregion could be highly variable at much finer spatial scales. Since burn scars are 
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usually patchy and non-uniform, more spatially resolved fuel loading information 
would help improve estimates of fire emissions.  

In order to reduce the uncertainties in emission estimation, it is highly 
desirable to obtain dynamic information to characterize the spatial and temporal 
variations in fuel loading. This is an extremely challenging task and thus no 
large-scale fine-resolution data on fuel loading exist at present. While no attempt 
has been made to extract fuel loading information from remote sensing, certain 
qualitative measures of biomass content could be derived from satellites 
(Arseneault et al., 1997). The most promising approach would be to use space-borne 
lidar to measure the height of vegetation. This concept has been demonstrated 
with a proposed space-borne vegetation lidar (Dubayah and Drake, 2000). Satellite 
imagery, particularly at SW infrared channels, conveys certain information 
pertinent to vegetation biomass. A preliminary analysis indicates that there is a 
correlation between SWVI and total forest biomass and the vegetation index can 
explain between 60% 66% of the variation in post-fire forest regrowth age, an 
indirect measure of biomass content (Fraser and Li, 2002)(see Fig. 18.10). 
Although both correlations are weak, they may still be valuable for regions 
where there does not exist any biomass data, which is the case over the vast 
majority of forest land anywhere in the world. So, any information is better than 
none.  

Figure 18.10  Left: Relationship between post-fire regeneration ages obtained 
from historical fire record and predicted from a SWVI. Right: same as left but for 
above-ground biomass content (Fraser and Li, 2002) 

Combining the forest regrowth age with another proxy of fuel loading 
would provide a much improved estimate of fuel loading; that is the tree density 
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or the fraction of forest cover inside a satellite pixel. Global distribution of the 
percentage of tree cover has been derived from 500 m resolution MODIS data 
(Hansen et al., 2002). 

Use of the tree density information alone has proven valuable in estimating 
carbon emissions from the tropical deforestation and regrowth from 1980s to 
1990s (DeFries et al., 2002). More accurate estimation of fuel loading would 
require a field survey to determine the average tree densities and diameters of 
different forest stands (Michalek et al., 2000) in order to better estimate above- 
ground biomass from the tree density data for different forest cover types. 
Allometric equations can be used to determine average tree biomass.  

Despite these promising attributes from satellite, our ability to map fuel 
loads with satellite imagery is still very limited, as they are all concerned mainly 
with above-ground biomass. Below-ground biomass is even more difficult to 
estimate by any means, but it is very important for estimating the total emission 
from fires. Variations in the burning of organic soils account for a large portion 
of uncertainty in the estimates of emissions from forest fires, but not so for 
non-forest fires.  

Average pre-burn ground layer biomass estimates are usually determined by 
collecting a number of ground layer profiles in each tree density class. The depths 
of different strata within the ground layer (e.g., litter, live moss, dead moss, fibric 
and humic soil) are measured at each profile. Samples of each stratum can be 
analyzed in the laboratory to determine bulk density and biomass.  

While satellite remote sensing cannot be used to infer underground biomass 
directly, satellite observations of smoke loading integrated over the lifetime of 
burning could provide certain qualitative information of the biomass burned 
above and below ground, should the mode (smoldering or flaming) and temperature 
of burning be known (Kaufman et al., 1990). It is worthwhile to explore the 
relationship between burned biomass and smoke emissions. There are many 
ways to identify smoke from analysis of satellite imagery such as the threshold 
method, neural network method, pattern recognition method, etc.. Figure 18.11 
presents an example of classification of smoke, cloud and clear land by applying 
the methods proposed by Li et al. (2001b) to AVHRR data. For MODIS, smoke 
can be much more easily identified from clouds whose reflectivity remains high 
for all solar channels using the combination of channels at short and longer 
wavelengths as illustrated in Fig. 18.9. Smoke emissions are generally proportional 
to smoke optical depths.  

Aerosol optical depth has been retrieved from both sensors (Mishchenko et 
al., 1999; Kaufman et al., 2002). However, large uncertainties exist for smoke 
aerosol whose retrieval depend critically on aerosol absorption properties (Wong 
and Li, 2002). For smoke, absorption depends on fuel type and burning conditions. 
While this is a promising approach, little effort has been made, for it demands 
sizable resources to establish the relationship between the two quantities, as it 
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requires fire-by-fire analyses of total, above- and below-ground biomass amounts 
measured before, during and after burning.  

Figure 18.11  A smoke image classified by a method of Li et al. (2001b) applied 
to the AVHRR data 

18.3.4  Fuel Type  

Fuel type is important for characterization of fire behavior, fuel loading and 
emission efficiency (Anderson, 1982). In NA, continental-scale fuel type data 
have been generated both in the US and Canada from land cover type (Eyre, 1980), 
forest inventory, above-ground and ground layer biomass survey, ecoregions, 
drainage classes, topography, and soil types (Bailey, 1998). In the US, fuel model 
and types are available from the National Fire Danger Rating System (NFDRS, 
http://www.fs.fed.us/land/ wfas/nfdr_map.htm) and the Forest Service Wildland 
Fire Assessment System (Burgan et al., 1998; Reinhardt et al., 1997). The conven- 
tional fuel type data are static and have coarse spatial resolution relative to other 
fire attributes extracted from satellite as elaborated above. As more refined and 
more reliable land cover classification data are now available from numerous 
satellite sensors (AVHRR, MODIS, TM/ETM ) (DeFries et al., 1998; Cihlar et 
al., 1999; Hansen et al., 2000), it is possible to generate continental-scale fuel type 
at high resolutions, together with low-resolution ground-based survey data on 
forest inventory, soil drainage class, and ecozone. An ecosystem map may help 
confirm the classified fuel types by examining whether they fall into a sound 
ecozone, such as the Terrestrial Ecozones and Ecoregions of Canada produced by 
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the Agriculture and Agri-Food Canada, Ecological Stratification Working Group 
(1996). A drainage map provides additional information that may be used to 
discriminate similar fuel types. After the various data sets are synthesized, a set of 
rules need to be established and applied by an expert system to classify the fuel 
types with multi-layer information. The criteria for the classification depend on the 
characteristics of fire behavior for a particular fuel type. The classification may 
follow a hierarchical structure in order to establish the relations between various 
input data sets and to organize the classification rules. Use of satellite data allows 
updating of the fuel type change due to biomass burning and other land cover and 
land use events.  

18.3.5  Fraction of Fuels Consumed 

The fraction of fuels consumed (FFC) by fire depends on fuel type, fuel loading, 
fuel moisture dictated by fire weather conditions, as well as the phase of 
combustion, i.e., smoldering or flaming. Studies on the estimation of fire emissions 
have either assumed a constant FF (Cahoon et al., 1994) or used temporally 
(monthly or seasonally) and spatially (regionally or provincially) averaged values 
(Vose et al., 1996). Cairns et al. (2000) assigned constants of above-ground 
biomass burned to four categories of forest. French et al. (2000) used a simple 
model to estimate a weighted fraction of biomass consumed for each year and 
ecozone based on annual area burned. 

The spatial and temporal variations of FFC may be resolved by integrating 
various data sets, in particular the remote sensing data and the forest fire danger 
estimates provided by forest services on a daily basis. In Canada, such data are 
available from the Fire Weather Index (FWI) System (Van Wagner, 1987) and 
Fire Behavior Prediction (FBP) System (Forestry Canada Fire Danger Group, 
1992). The systems have been operated during the fire season. The FWI system 
calculates fuel moisture codes and fire behavior indices based on daily weather 
conditions. The FBP system simulates fire behavior for each of the 16 fuel types 
based on the FWI indices, topography, and fuel type. The primary outputs of the 
FBP system are rate of spread, fuel consumption, and fire intensity. Total fuel 
consumption (TFC) includes surface fuel consumption (SFC) and crown fuel 
consumption (CFC). The moisture codes and indices of FWI system, fuel types, 
and topography determine how much surface fuel is consumed, whether a crown 
fire occurs, and what fraction of the crown fuel is consumed.  

Figure 18.12 presents the flowchart of a fuel consumption and fire emissions 
modeling system developed based on the Canadian FWI and FBP modules. The 
system can make direct use of satellite-based products such as daily burned area 
and fuel type data. Therefore, the output can depict the spatial and temporal 
variation of fire emission. The system was run for estimating emissions from a 
big fire in Canada with the results presented in Fig. 18.13 (Li et al., 2000c). This 
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approach is better than the polygon-based model simulation that assumes homog- 
enous fuel distribution within a fire polygon. 

Figure 18.12  A flowchart of a fuel consumption model for computing fraction of 
fuel consumed 

Figure 18.13  Estimated fuel consumptions from surface (left) and tree crown 
fires for a big fires in Virginia fires in Alberta, Canada from May 3 20, 1995 (Li 
et al., 2000c) 

This approach is similar to that of Cairns et al. (2000), but uses improved 
estimates of several key parameters from satellite: (1) more precise fire starting 
date, (2) fire ending date, (3) daily fire spread, and (4) burn severity and 
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fragmentation. For fire emissions modeling, fire weather is the primary factor 
dictating fuel consumption. Precipitation amount is an input of the system for 
determining fuel moisture. Information on vegetation moisture may also be 
extracted from NDVI or other vegetation indices from MODIS or AVHRR (Illera 
et al., 1996; Gonzalez-Alonso et al., 1997). 

Kaufman et al. (1998a) proposed a “short-cut” approach to estimate fuel 
consumption by using the MODIS thermal radiance at IR channels around 4 and 
11 m. It was assumed that the rate of biomass consumption and emission of trace 
gases and aerosol particles are proportional to radiation emitted at the two 
channels. The assumption may only be valid if the channels are not saturated. 
Unlike the low saturation level (~320 K) of AVHRR ch. 3, the 4 and 11 m
MODIS channels are sensitive to temperatures up to 450 and 400 K respectively. It 
is worth noting that fire temperature varies considerably within a burning field in 
general due to inhomogeneous fuel loading, moisture, heat-induced turbulence, 
wind, etc. This is clearly illustrated in Fig. 18.14, obtained by an air-borne thermal 
imager during a fire experiment conducted over a Canadian boreal forest. While 
the hottest portion of the burning field is around 700 K, hot burning is confined to 
small areas. The bulk of the area is less than 400 K. Besides, the brightness 
temperature as measured from space is always lower than surface temperature due 

Figure 18.14  Temperature distribution over a burning field over a Siberia forest 
in Yartsevo, Russia on July 18, 2000 (Courtesy of Doug McRae at the Canadian 
Forest Services) 
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to atmospheric attenuation and contribution of the atmospheric emission at much 
colder temperatures. As a result, the spatially integrated temperatures as registered 
by the MODIS sensor over a field of view of 1 km rarely exceed the saturation 
limits for ordinary wild fires. The relationship between the brightness temperatures 
at the two channels can serve as an indicator of relative contribution from 
smoldering and flaming fires to the total biomass consumption and evaluate their 
effect on the combustion efficiency and emissions (Kaufman et al., 1998a, 1998b).  

Combustion efficiency may be measured as the fraction of carbon released 
from the biomass in the form of CO2 over the sum of CO2 and CO (Ward et al., 
1996). To make this approach work, it requires extensive in-situ measurements of 
fire thermal energy, burned area and rate of emission of gases and particle 
matters in order to establish their relationships (Kaufman et al., 1998b). Yet, the 
relationship may be complex, as it is likely to change with vegetation types. 

18.3.6  Emission Factor 

Emission factors (EFs) are required to convert fuel consumption (kg) to gas and 
particulate emission yields (g). For large-scale fire emissions modeling, the EFs 
have normally been compiled from biomass burning experiments (Cofer et 
al., 1988; FIRESCAN Science Team, 1996; Goode et al., 2000). Comprehensive 
measurements have been made in some of the experiments that document the 
proportion of biomass burned, the combustion efficiency and the emission 
factors of CO2 and other trace gases. EFs were measured during the International 
Crown Fire Modeling Experiment for a jack pine with spruce understory fuel 
type (Cofer et al., 1998). The Boreal Forest Island Fire Experiment measured EFs 
for Scots Pine in Siberia (FIRESCAN Science Team, 1996). The experiments 
include reports on weather condition and vegetation characteristics (species, 
composition, fuel loading, fuel moisture content, etc.). Relationships between fire 
emission factors and burning and environmental conditions established from 
these experiments are valuable to better quantify the variation of emission factors 
(Hao et al., 1998; Susott and Ward, 1999; Yokelson et al., 1999). 

A comprehensive database of EFs was assembled from the literature based 
on results from fire experiments conducted in Canada and the United States. 
Table 18.1 lists the emission factors that we have compiled and used in the 
current version of our fire emission estimation system. A table in the FOFEM 
literature (Reinhardt et al., 1997) shows different combinations of combustion 
efficiencies for flaming and smoldering phases of combustion under varying 
moisture regimes. Ward and Hardy (1991) reported empirically derived equations 
for CO2 and CO as functions of combustion efficiency. Reinhardt et al. (1997) 
used the CO equation with the table of combustion efficiencies to create CO 
emission factors for different moisture regimes. These emission factors vary with 
moisture regime due to different ratios of flaming to smoldering combustion.  
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Table 18.1  Table of emission factors used in the EES for different moisture 
conditions. Emission factors for CO, PM10, and PM2.5 were obtained from FOFEM 
literature. All other emission factors were derived by the Center for the Assessment 
and Monitoring of Forest and Environmental Resources (CAMFER), University of 
California, Berkeley for use in the EES  

Pollutant 
Moisture 
Regime 

Litter, 
Wood 

0 1 Inch

Wood 
1 3

Inches

Wood 
3

Inches

Herb, 
Shrub,
Regen 

Duff 
Canopy 
Fuels 

     emission factor in pounds of emissions per ton of fuel consumed 
PM10 Wet 9.30 14.00 26.60 25.10 28.20 25.10 
PM10 Moderate 9.30 14.00 21.60 25.10 30.40 25.10 
PM10 Dry 9.30 14.00 19.10 25.10 30.40 25.10 
PM25 Wet 7.90 11.90 22.50 21.30 23.90 21.30 
PM25 Moderate 7.90 11.90 18.30 21.30 25.80 21.30 
PM25 Dry 7.90 11.90 16.20 21.30 25.80 21.30 
CO Wet 52.40 111.40 268.90 249.20 288.60 249.20 
CO Moderate 52.40 111.40 205.80 249.20 316.10 249.20 
CO Dry 52.40 111.40 174.40 249.20 316.10 249.20 
CH4 Wet 2.10 4.46 10.76 9.97 11.54 9.97 
CH4 Moderate 2.10 4.46 8.23 9.97 12.64 9.97 
CH4 Dry 2.10 4.46 6.98 9.97 12.64 9.97 

TNMHC Wet 3.67 7.80 18.82 17.44 20.20 17.44 
TNMHC Moderate 3.67 7.80 14.41 17.44 22.13 17.44 
TNMHC Dry 3.67 7.80 12.21 17.44 22.13 17.44 

NH3 Wet 0.52 1.11 2.69 2.49 2.89 2.49 
NH3 Moderate 0.52 1.11 2.06 2.49 3.16 2.49 
NH3 Dry 0.52 1.11 1.74 2.49 3.16 2.49 
N2O Wet 0.49 0.47 0.43 0.43 0.42 0.43 
N2O Moderate 0.49 0.47 0.45 0.43 0.42 0.43 
N2O Dry 0.49 0.47 0.45 0.43 0.42 0.43 
NOx Wet 8.23 7.97 7.27 7.36 7.19 7.36 
NOx Moderate 8.23 7.97 7.55 7.36 7.07 7.36 
NOx Dry 8.23 7.97 7.69 7.36 7.07 7.36 
SO2 Wet 2.53 2.45 2.24 2.27 2.21 2.27 
SO2 Moderate 2.53 2.45 2.33 2.27 2.18 2.27 
SO2 Dry 2.53 2.45 2.37 2.27 2.18 2.27 

For other chemical species, e.g. CH4, Total Non-Methane Hydro-Carbons 
(TNMHC), and NH3, one can use their emission ratios to CO based on field 
experiments to create the emission factors in Table 18.2. 
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Table 18.2  Total emission of carbon species from the Virginia Hill fire computed 
the fire emission model coupled with various satellite derived parameters 

Emissions From Fire (megatons) Type of 
Burning 

Pixels 
Avg. Fuel 

Consumption 
(t/ha) CO2 CO CH4

Surface 994 20.4 2.7743 0.2873 0.0103 
Crown 716  3.5 0.3716 0.0272 0.0007 
Total 994 23.9 3.1459 0.3145 0.011 
*  Note that such ratios are much less variable than their emission magnitudes (Hao, private communication). 

18.3.7  Fuel Moisture Content 

It should be stated that several of the emission parameters as discussed above are 
affected by fuel moisture content (FMC). FMC is difficult to obtain over large 
scales. Limited success has been reported to estimate FMC by means of remote 
sensing using shortwave (SW) reflective, thermal and microwave data (Bowman, 
1989; Carter, 1991; Gogineni et al., 1991; Chuvieco et al., 2004). The basic 
information content for optical remote sensing of MFC comes from the SW 
infrared (SWIR) reflectance around 1.6 m (Tucker, 1980; Hunt and Rock, 1989), 
that is available from many common sensors such as MODIS, AVHRR and VGT 
(Fraser and Li, 2002). Because of water absorption around this wavelength, SWIR 
is negatively correlated with FMC. While SW NIR measurements may convey 
certain information on FMC, it is so weak that the investigations are far from being 
conclusive (Hunt and Rock, 1989; Carter, 1991). 

Thermal emission is related to FMC by altering the latent heat release due to 
evapotranspiration that is proportional to FMC. For plants of high FMC, an 
increase in latent heat release leads to a decrease in sensible heat and thus lowers 
the air temperature. Temperature differences between the ground and air may 
thus serve as an alternative measure of FMC. Based on this principle, several 
indices have been proposed including the Stress Degree Day (SDD) (Jackson, 
1986), the Crop Water Stress Index (CWSI) (Jackson et al., 1981), and the Water 
Deficit Index (WDI) (Moran et al., 1994). WDI has been successfully tested as a 
predictor of fire danger with NOAA-AVHRR and Landsat-TM data (Vidal et al., 
1994; Vidal and Devaux-Ros, 1995).  

18.4  Summary 

Biomass burning emits huge amount of gases and particles in various forms of 
carbon compounds and thus play a key role in global carbon cycling. To reach a 
closure in carbon balance, we need a full and accurate accounting of carbon 
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emissions due to fire activities. Remote sensing is the only feasible means of 
monitoring fires around the globe. Maximum usage of satellite data is thus highly 
desired to achieve this goal. However, none of the emission related fire attributes 
are measured directly by any satellite sensors. Inversion algorithm and modeling 
are required to estimate fire emissions using satellite data.  

This chapter provides an extensive review of remote sensing data and 
methods that could be brought to bear on fire emission estimation in terms of 
their information content, extraction method, strengths and limitations. These 
parameters include burned area, burning fragmentation and spreading, fuel 
loading, fraction of fuel consumed by fire, and emission factors for different 
gases. In general, satellites can provide good information on burned area by 
combined use of hot spot data together with changes in vegetation indices. Fire 
fragmentation and/or severity depend critically on satellite sensor resolution. For 
moderately coarse resolution data like MODIS and AVHRR, unburned fire 
islands inside the fire polygons provided by forest agencies may be singled out, 
but little can be gained concerning inhomogeneous degree of burning. Limited 
information may be extracted on fuel loading in terms of forest regrowth age, 
fraction of tree coverage by using a combination of measurements from several 
passive channels, especially NIR and SWIR data. Vegetation height detected by 
space-borne lidar may be linked to biomass content. Satellite-based land cover 
classification on continental scale may help refine fuel type classification. 
Determination of the fraction of fuel consumption (crown and surface) usually 
requires modeling, except for a short-cut approach that links radiation emission 
with fuel consumption.  
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