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An Improved Global Land Anthropogenic
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Abstract— Significant levels of aerosols originate from anthro-
pogenic activities, markedly influencing regional air quality
and, consequently, human health. Generally, fine-mode aerosol
optical depth (fAOD) data are used to evaluate the concentration
of anthropogenic aerosols. Although the moderate resolution
imaging spectroradiometer (MODIS) provides fine-mode fraction
(FMF) data that can be used to produce fAOD products, these
data remain highly uncertain over land, in terms of global
validation, relative to Aerosol Robotic Network (AERONET)
measurements. To overcome this limitation, we developed an
improved global land-scale fAOD product combining the lookup
table-spectral deconvolution algorithm (LUT-SDA), generalized
additive model (GAM), and MODIS Collection 6.1 aerosol
products. Validation of the improved product revealed that
over 63% of the fAOD values are within an expected error (EE)
envelope of ±(0.05 + 15%), with strong positive correlations
(R2 = 0.65) and low bias (root-mean-square error = 0.185; mean
absolute error = 0.104) compared to AERONET-observed fAOD
values. Furthermore, the fAOD developed eliminates the multiple
zeroes in the MODIS FMF-based fAODs. In the improved fAOD
product, eastern China and northern India exhibit the highest
9-year-mean fAOD loading, with values generally exceeding 0.6.
The improved global land fAOD product provides a new avenue
with which to obtain data on anthropogenic aerosols and can
also be useful in aerosol–climate interaction research.

Index Terms— Anthropogenic aerosols, fine-mode aerosol
optical depth (fAOD), lookup table-spectral deconvolution
algorithm (LUT-SDA), moderate resolution imaging spectrora-
diometer (MODIS).

I. INTRODUCTION

AEROSOLS commonly contain fine particles that
significantly impact the climate system and human

health [1], [2]. Many climate modeling studies in recent
decades reveal that aerosols probably have a critical effect on
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monsoonal precipitation [3]–[5], convective precipitation [6],
solar radiation [7]–[9], and tropical cyclones [10], [11].
Considering various effects of aerosols mentioned, obtaining
accurate aerosol data and the spatiotemporal characteristics is
crucial.

Lee and Chung [12] stated that the fine-mode aerosol
optical depth (fAOD) is useful for inferring the concentration
of anthropogenic aerosols. Although there have been some
regional-scale studies on fAOD in recent years [8], [13], [14],
global-scale studies of fAOD remain limited. Local fAOD
data can be achieved by means of in situ observation; how-
ever, the scarcity of global fAOD data is accentuated by
the lack of experimental data with adequate spatiotemporal
resolution. Currently, the two main ways of obtaining fAOD
data involve retrieval from satellite images and ground-based
measurements. Although the ground-based measurements like
the Aerosol Robotic Network (AERONET) guarantee the
accuracy of the fAOD data, measurement sites are sparse and
the data commonly lack a spatial view. Consequently, many
studies are conducted based on satellite remote sensing data
because these involve global-scanning coverage and higher
spatial resolutions [12].

In recent years, satellites including the moderate resolution
imaging spectroradiometer (MODIS), the multiangle imaging
spectroradiometer (MISR), and Himawari-8 released official
data on aerosol properties [15]–[17]. MODIS data, which
come from the Terra and Aqua spacecraft, provide numerous
global aerosol products on a daily, weekly, or even monthly
basis [18], [19]. It is the most popular source of AOD
information [18]–[20]. Kaufman et al. [21] used MODIS over-
ocean AOD measurements and the fine-mode fraction (FMF)
to evaluate the anthropogenic optical thickness over the oceans
and reported that the anthropogenic aerosol radiative forcing
is about −1.4 ± 0.4 W/m2. Kleideman et al. [22] compared
MODIS and AERONET retrieval of over-ocean aerosol FMFs
and found that MODIS slightly overestimated the FMFs for
dust-dominated aerosols. The most current MODIS AOD
product is Collection 6.1 (C6.1). This collection has already
been validated at the scale of global, regional, and individual
sites and proved to have a high accuracy over land [23], [24].
However, despite the high accuracy of MODIS AOD prod-
ucts, MODIS fAOD remains highly uncertain over land [19].
An important parameter for satellite-based fAOD calculation
is the FMF, which represents the fine-mode aerosol fraction
of the total AOD, i.e., FMF = fAOD/AOD. However, some
studies indicate that the land FMF retrieved from the MODIS
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is not credible [12], [19], [20], and thereby complicating the
use of MODIS fAOD products. Jethva et al. [14] compared
the MODIS fAOD and FMF with those from AERONET at
Kanpur, northern India, and reported an underestimation and
many zero values among most matched cases. In addition,
Lee and Chung [12] compared global fAOD products from
MODIS and MISR with AERONET observations, with the
results revealing a low bias in fAODs from MODIS and MISR
compared to AERONET. Yan et al. [25] also demonstrated that
MODIS C6 underestimated the FMF in most areas of Asia,
involving many zero values. Thus, the MODIS FMF product
remains limited and unable to provide accurate global fine
aerosol levels and spatial distribution characteristics.

In response, this research aims to develop an improved
global land fAOD product using 2008–2016 MODIS C6.1
satellite data, here termed Ensemble fAOD. This letter is a
continuation of our previous research [25], [26]. The fAOD
product will be validated by data from global AERONET sites.
A comprehensive comparison with MODIS FMF-based fAOD
will further highlight the utility of the product proposed in this
study.

II. DATA SETS AND METHODS

A. MODIS Data

The over-land MODIS AOD data used in this study are
from the MODIS C6.1 level-3 daily (MOD08_D3) product
from 2008 to 2016, with a 1◦ × 1◦ horizontal resolution, and
was acquired by the MODIS sensor aboard the National Aero-
nautics and Space Administration (NASA)-Electrical Optical
Systems Inc. (EOS) Terra spacecraft. The three AOD data
sets in the product include dark target (DT)-, deep blue
(DB)-, and DT–DB merged-based (DTDB)-AOD. The latest
C6.1 DT-AOD data were updated through a second-generation
operational DT algorithm developed by Levy et al. [19].
The latest DB data set was produced by the enhanced
DB algorithm [27], providing only the over-land product. The
combined DT and DB aerosol data set has the advantages
of both the DT and DB algorithms and the normalized
difference vegetation index (NDVI) was used to merge the
data sets [19]. The merged data set expanded the spatial
coverage over land mainly because of the improvements in
the DT algorithm over significantly dark regions of low
vegetation [19]. The names used for the MODIS data sets
are “AOD_Land_Mean,” “DB_AOD_550_Land_Mean,” and
“AOD_550_DT&DB_Combined_Mean”; these correspond to
the DT, DB, and DTDB data sets, respectively. In addition, all
three data sets are AOD values at 550-nm band.

B. AERONET AOD Data

The AERONET is a global ground-based aerosol observa-
tion network; it provides multiwavelength AOD from direct
solar radiation measurements, characterized by high accu-
racy and an uncertainty of 0.01–0.02 [28] and are used
as “ground truth” data for satellite product validation [20].
This study used AERONET version 2 L2.0 (cloud screened
and quality assured) AOD data product from 2008 to 2016.
The study area and the locations of the 171 AERONET sites

chosen for this study are shown in Supplementary Fig. S1.
The selected AERONET sites had continuous observation
data for the nine years investigated. The AERONET fAOD
observations were recorded within ±30 min of the MODIS
overpass. However, MODIS fAODs are associated with the
550-nm wavelength while AERONET measurements only
provide fAODs at 500 nm. Consequently, to compare fAODs
at the same wavelength, the AERONET 500-nm fAODs were
interpolated to 550 nm using their Ångström exponent (AE)
(“AE-Fine_Mode_500nm [αf ]”).

C. FMF Data and fAOD Retrievals From MODIS

As the global-scale FMF was removed from the
C6 MOD08 product [19], we obtained the MODIS global
FMF from NASA’s Earth Observations data (https://neo.sci.
gsfc.nasa.gov/), which are based on the Collection 5 aerosol
algorithm [15] (processing for the data set ended on
October 7, 2016). The MODIS FMF product over land is
produced only by the DT method.

Yan et al. [26] proposed an improved FMF retrieval
method termed the lookup table-spectral deconvolution algo-
rithm (LUT-SDA) using two wavelengths of MODIS-derived
AOD and AE data. A 4D LUT was created based on the
SDA method [29] to describe the relationship between the
AEs of the AOD and fAOD, the AE derivative, and FMF.
Yan et al. [25] updated the LUT-SDA for FMF retrieval by
considering seasonal AOD characteristics and validated it over
Asia. In this letter, we used MODIS C6.1 MOD08_D3 AODs
at wavelengths of 470 and 660 nm and employed the
LUT-SDA algorithm such as Yan et al. [25] to calculate FMFs
at 550 nm. Then, we extended it to a global scale and denoted
it LUT-SDA FMF.

The fAOD was then calculated according to Lee and
Chung [12] as follows:

fAOD = FMF × AOD (1)

with the AOD data obtained from MODIS C6.1 MOD08_D3
AOD products. According to (1), we applied the MODIS C5
FMF and LUT-SDA FMF for the global over-land
fAOD retrievals. The derived fAOD products are called
MODIS FMF-based fAOD and LUT-SDA FMF-based fAOD,
respectively.

D. Improved Global fAOD Ensemble Product

We clustered the study domain into nine regions
(Supplementary Fig. S2) based on Sayer et al. [24]. We then
used a generalized additive model (GAM) to generate a new
fAOD ensemble in each region. The GAM is a nonparametric
model in which the dependent variables depend linearly on
the smooth functions of the predictors [30]. The Ensemble
fAOD is expressed as

fAODi, j = α j,r + si

(
DTi, j

) + si
(
DBi, j

)

+ si
(
DTDBi, j

) + ei, j; ei, j ∼ N
(
0,σ 2

j,r

)
(2)

where fAODi, j represents the ensemble fAOD values at i =
1 ∼ ir grid cells in each of the 16 geographical regions indexed

Authorized licensed use limited to: Nanjing University of Information Science and Technology. Downloaded on May 15,2020 at 09:01:51 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: IMPROVED GLOBAL LAND ANTHROPOGENIC AEROSOL PRODUCT BASED ON SATELLITE RETRIEVALS 3

by r on day j ; α j,r is a daily intercept representing the mean
across all grid cells in region r , si () is a smooth function of
the corresponding parameter for the i th location, ei, j is an
error that can be determined by N(0, σ 2

j,r ), and DTi, j , DBi, j ,
and DTDBi, j are the LUT-SDA FMF-based fAOD products
on day j in grid cell i . A schematic describing the Ensemble
fAOD calculation is shown in Supplementary Fig. S3.

E. Validation Methods

We referred to some statistical metrics to assess the quality,
performance, and uncertainty of fAOD retrievals, including the
Pearson’s linear correlation coefficient (R), root-mean-square
error (RMSE), mean absolute error (MAE), and expected
error {EE = [±(0.05 + 15%)] [19]}. When the MODIS
AOD falls within the EE envelope, it is considered accurate.
The R, RMSE, and MAE calculation formula are shown as
follows (3)–(5), as shown at the bottom of this page.

In these formulas, fAODi refers to MODIS FMF-based
fAOD or Ensemble fAOD and fAOD(AERO)i refers to
AERONET fAOD measurements at the i th AERONET site.

III. RESULTS

A. Spatial Characteristics of the MODIS-FMF-Based fAOD
and the Developed fAOD Ensemble

The spatial characteristics of the nine-year (2008–2016)
means from the MODIS FMF-based fAOD are displayed
in Fig. 1(a), where the spatial distribution is based on only
those pixels having daily fAOD samples of over 80 days per
year. These data were retrieved from the MODIS C5 FMF and
MODIS C6.1 DTDB AOD products. The over-land MODIS
FMF product is produced by the DT algorithm, and the
MODIS AOD product used here is based on the DT and DB
algorithms. We showed a MODIS FMF-based DTDB fAOD
product here due to its high accuracy and good performance
in most regions; detailed information regarding data selec-
tion is provided in Supplementary Section S1. The MODIS
FMF-based fAOD high-value regions (with values > 0.4)
in Fig. 1(a) are primarily in the Amazon region and Laos.
The MODIS FMF-based fAODs display highest values, those
exceeding 0.6, over Laos. The low-value regions are mainly on
the west coast of the USA and in Europe, Australia, the Middle
East, and North Africa, with values generally below 0.1.
We thoroughly verified the LUT-SDA FMF-based fAOD prod-
uct as shown in Supplementary Section S2. We found that
the LUT-SDA FMF-based DTDB fAODs exhibited the best

Fig. 1. Global spatial distribution of mean values for (a) MODIS FMF-based
fAODs and (b) Ensemble fAODs from 2008 to 2016 (the spatial distribution
is based on only those pixels having daily fAOD samples of over 80 days per
year).

performance. However, its performance in Asia was worse
than the performance of LUT-SDA FMF-based DB fAOD; it is
therefore unsatisfactory for that reason. Therefore, by directly
adopting the LUT-SDA FMF-based DTDB fAOD product,
the spatial accuracy in Asia will worsen despite the overall
performance of the DTDB fAOD being the best. Thus, based
on the method detailed in Section II-D, we developed a new
fAOD product termed Ensemble fAOD which showed an over-
all improvement based on the LUT-SDA FMF-based fAODs.

The mean spatial distribution of the Ensemble fAOD prod-
uct from 2008 to 2016 is shown in Fig. 1(b), where the spatial
distribution is based on only those pixels having daily fAOD
samples of over 80 days per year. The high-value regions are
concentrated in eastern China, north India, and central Africa.
The highest-value region is in eastern China, exceeding 0.6 in
the Beijing–Tianjin–Hebei region. In addition, two other high-
value regions are present in the southwest and south China.
Conversely, the low-value areas are on the west coast of the

R =
∑n

i=1 (fAODi − fAOD)(fAOD(AERO)i
− fAOD(AERO))√∑n

i=1 (fAODi − fAOD)
2
√∑n

i=1 (fAOD(AERO)i
− fAODAERO)

2
(3)

RMSE =
√√√√ 1

n

n∑
i=1

(
fAODi − fAOD(AERO)i

)2
(4)

MAE = 1

n

n∑
i=1

∣∣fAODi − fAOD(AERO)i

∣∣ (5)
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Fig. 2. Density scatterplots of (a) MODIS fAOD and (b) Ensemble fAOD
against AERONET fAOD from 2008 to 2016 for 171 AERONET sites.
The solid and dotted lines are, respectively, the 1:1 line and the EE for
fAOD ±(0.05 + 15%).

USA and in Europe, Australia, the Middle East, and southern
South America, with fAOD values of about 0.1 and below.
The distribution characteristics of Ensemble fAOD are quite
different from those based on the MODIS FMF. In the Amazon
region, the fAOD values in the Ensemble fAOD range from
about 0.1 to 0.3, whereas in the MODIS FMF-based fAODs,
these vary from 0.5 to 0.6.

B. Validation of the New Global Ensemble fAOD

This study collected nine-year AERONET data (N = 9674)
at 171 global sites for validation. A comparison of the overall
validation between the MODIS FMF-based fAOD products
and the Ensemble fAOD for 2008–2016 is depicted in Fig. 2.
By contrast, the square of the correlation coefficient (R2)
for the Ensemble fAOD is 0.65 while that for the MODIS
FMF-based fAOD is 0.34, indicating an improvement of
nearly 0.3 associated with the Ensemble fAOD. The RMSE
(0.185) and MAE (0.104) values of the Ensemble fAOD are
also significantly lower than those of the MODIS DB fAOD
(RMSE of 0.284 and MAE of 0.177). Approximately 63.3%
of the Ensemble fAOD values are within the EE and the
improved values in Fig. 2 show that the Ensemble fAOD
overcomes the incidence of zero or close-to-zero values in
the MODIS fAOD. A comparison of the spatial improvement
between the Ensemble fAOD and the MODIS FMF-based
fAOD is shown in Supplementary Fig. S4. Noticeably, most

sites around the world show improved data based on the
Ensemble fAOD compared data based on the MODIS FMF,
especially in Asia, where the RMSEs decreased by 0.05 and
the fraction within the EE increased by 10%–15% averagely.
Detailed information on the evaluation of the Ensemble fAOD
for the 171 AERONET sites for 2008–2016 is presented in
Supplementary Table S1.

IV. DISCUSSION

Kaufman et al. [2] presented a global distribution of fAODs
derived from MODIS measurements and confirmed the dis-
tribution using aerosol model results. The data presented in
Kaufman et al. [2] from MODIS measurements and aerosol
models revealed fAODs above 0.45 mainly in the south
and east Asia, central South America, and central Africa.
Myhre [31] used global aerosol model and combined ground-
based measurement and satellite observations to produce two
AOD distributions. The high fAOD loadings in these areas
are attributed to human activity including fossil fuel and
biomass combustion [32]. The Ensemble fAOD developed in
this study displays the highest values, generally above 0.5,
in eastern China; this is consistent with these studies [2], [31].
Che et al. [8] measured AOD in situ over eastern China and
reported AOD values of 0.68–0.76 at urban and rural sites
with an FMF value of about 0.9. Therefore, we infer fAODs of
about 0.6 over eastern China, which is also consistent with our
Ensemble fAOD results. In addition, two additional high-value
areas in Ensemble fAOD are in southwestern and southern
China. One example is the Sichuan Basin. Because of the
lower topography of the basin and its relatively humid climate,
aerosols there with strong hygroscopicity can easily form
regional pollution and do not spread much [33]. The Ensemble
fAOD values in the Amazon region, which reach 0.3, are
attributed to frequent forest fires in the Amazon region. It is
estimated that about 20% of biomass burning originates from
wildfires [34]. As such appearances of fine organic particle
occurrences are mainly caused by natural sources that are
less hygroscopic than regional pollution aerosols, their fAOD
values are lower than those from anthropogenic sources. This
is consistent with the conclusion of Kaufman et al. [2].

The Ensemble fAOD was derived from satellite data based
on the LUT-SDA and GAM, rather than from simulations like
in Lee and Chung [12], Chung et al. [7], and Myhre [31];
therefore, daily real-time fAODs were obtainable. As illus-
trated in Jiang et al. [4], anthropogenic aerosols affect radia-
tion budgets and changes in the spatial distribution of AODs.
The distribution of AODs and the shortwave flux changes
exhibited, induced by anthropogenic aerosols, likely resemble
the distribution of the Ensemble fAODs, with the higher
value regions concentrated in eastern China and northern
India. Therefore, the Ensemble fAOD has higher accuracy
than the MODIS-derived fAODs and provides more accurate
information as a global over-land fAOD product. This would
be useful for future research on radiation balance, monsoonal
precipitation, and tropical storms related to anthropogenic
aerosols. Moreover, the Ensemble fAOD seems to be an
effective auxiliary tool for estimating ambient fine particle
matter such as the surface PM2.5 concentrations [26].
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V. CONCLUSION

In this letter, a new global-scale fAOD over-land prod-
uct termed Ensemble fAOD was developed and validated.
The Ensemble fAOD overcame limitations exhibited by the
MODIS FMF-based fAODs including high uncertainties in
magnitude and many zero values. The Ensemble fAOD dis-
played high-value regions mainly in eastern China, north India,
and central Africa, with values generally above 0.4. The fAOD
value was the highest in eastern China, especially in the
Beijing–Tianjin–Hebei region where it exceeded 0.6. Based
on the nine-year data of 9674 colocations at 171 AERONET
over-land sites worldwide, validation of the Ensemble fAOD
revealed >63% of the fAOD values were within the EE
envelope of ±(0.05 + 15%), with high correlation (R2 = 0.65)
and low bias (RMSE = 0.185; MAE = 0.104). Regarding
the improved accuracy compared to the MODIS FMF-based
fAODs, the Ensemble fAOD reduced the RMSE by almost
0.1, MAE by 0.073, and increased the values within the EE
by 25.1% and R2 by 0.31.
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Figure S1. Map of the study area, with blue dots representing the locations of the 171 AERONET 

sites used. The sites provided over-land data for more than a year’s observations. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 

 

 
Figure S2. Geographical bounds of regions used in this study for grouping the MODIS and 

AERONET fAODs. The locations of AERONET sites are represented by the red dots. The names 

of regions and associated abbreviations are: Eastern North America (ENA), Western North America 

(WNA), Central/South America (CSA), Eurasia (EUR), North Africa/Middle East (NAME), 

Southern Africa (SA), North-East Asia (NEA), South-East Asia (SEA), and Oceania (OCE) (Sayer 

et al., 2014). 
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Figure S3. Schematic diagram describing the technical route for deriving the Ensemble fAOD 

product proposed in this study. 
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Figure S4. The RMSEs ((a) and (b)) and the percentages within the EE ((c) and (d)) for the Ensemble fAOD products and MODIS DB fAOD products. 
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Section S1. MODIS FMF-based fAOD spatial distribution and validation 

Fig S5 shows the 9-year averaged global spatial distributions of the MODIS C6.1 Daily DT 

(Fig. S5(a)), DB (Fig. S5(b)), and DTDB (Fig. S5(c)) fAOD products from 2008–2016, where the 

spatial distribution is based on only those pixels having daily fAOD samples of over 80 days per 

year. The MODIS FMF-based fAODs of the three products are high in most parts of central South 

America (mainly the Amazon zone) and Laos. Although the general distribution characteristics for 

the three fAOD datasets are comparable, the values for the MODIS DB are slightly lower. Also, the 

DT fAODs are significantly higher than the DB fAODs in Southeast China, central Congo, and the 

region near the Amazon of South America, with a maximum difference of 0.25. Overall, the MODIS 

FMF-based fAODs are certainly inaccurate, with obvious underestimation due to many zero or 

close-to-zero values. 
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Figure S5. 9-Year average spatial distributions for the MODIS C6.1 DT, DB, DTDB, and DT-DB 
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fAOD products for the years 2008-2016 (the spatial distribution is based on only those pixels having 

daily fAOD samples of over 80 days per year). 

 

The overall performances of the MODIS FMF-based DT, DB, and DTDB fAOD retrievals 

against AERONET fAOD measurements from 2008-2016 are displayed in Figure S6. We picked 

out 10,805 collocated matchups for the 171 available sites for all three products. All three MODIS 

fAOD products are somewhat correlated with AERONET ground-based fAOD measurements, with 

R2 values generally around 0.30. The MODIS DB fAOD products show the highest R2 value of 0.33. 

Meanwhile, the DB fAOD also yields the least MAE value (0.176) compared to 0.185 and 0.180 

for the DT and DTDB products, respectively. Approximately 32.8%, 37.8%, and 35.2% of the DT, 

DB, and DTDB fAOD collections, respectively, fall within the EE. However, many zero or close-

to-zero values are present for all three MODIS fAOD products. The main reason for this 

phenomenon is that the MODIS-derived FMF also contains some zero or close-to-zero values. 

Therefore, a significant underestimation is evident in the MODIS fAOD retrievals compared to 

AERONET measurements. Similar observations are reported in Jethva et al. (2010) and Yan et al. 

(2019). 
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Figure S6. Density scatterplot of MODIS C6.1: (a) DT, (b) DB, and (c) DTDB fAODs against 

AERONET fAOD products for 2008-2016 over land. These fAODs were derived using the MODIS 

C5.2 DT-based FMF according to Eq. (3). The dashed, black solid, and red solid lines represent the 

expected error range, 1:1 line, and linear regression of the scattered dots, respectively. 

(Comparison of AERONET fine-mode AOD (fAOD) and MODIS) 
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Section S2. LUT-SDA FMF-based fAOD spatial distribution and validation 

Figure S7 shows the 9-year mean LUT-SDA FMF-based fAOD spatial distributions for 2008-

2016, where the spatial distribution is based on only those pixels having daily fAOD samples of 

over 80 days per year. In general, the high value areas are mainly in southeast China and northern 

India, with fAOD loadings commonly exceeding 0.5. In addition, fAOD values are also relatively 

high in Russia, central Africa, and the Amazon region, with values of 0.2-0.3. Low fAOD loads of 

less than 0.1 are seen in western North America, southeastern South America, northern Europe, 

Australia, and southern Africa. These results are consistent Lee and Chuang (2013), although in 

China, our high value areas cover a relatively smaller area. However, the distributions of the LUT-

SDA FMF-based DT fAODs is significantly overestimated compared to others. Especially, in central 

Africa, eastern America, and central Asia, the LUT-SDA FMF-based DT fAOD values are higher 

than those from other products by about 0.1. Moreover, compared to three other products, the 

distribution characteristics of the DT product in the Xinjiang Uygur Autonomous Region, China 

differs significantly with the incidence of fAOD values exceeding 0.5 in the region. In addition, the 

LUT-SDA FMF-based DT and DB fAOD products differ regarding magnitude. 
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Figure S7. Global spatial distributions of the 9-year annual mean fAOD for the LUT-SDA FMF-
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based fAOD (a, b, and c) products and (d) the newly merged fAOD product for 2008–2016 (the 

spatial distribution is based on only those pixels having daily fAOD samples of over 80 days per 

year). 

 

Figure S8 displays the overall performance of the LUT-SDA FMF-based fAOD from DT, DB, 

and DTDB methods for 2008-2016 including all 93,172 matched samples collected from 171 

AERONET sites for validation. The R2 values of the LUT-SDA FMF-based DT, DB, and DTDB 

fAOD are 0.59, 0.57, and 0.61 while the RMSEs are 0.130, 0.121, and 0.119, respectively. 

Compared with the MODIS FMF-based fAOD, the accuracy of the LUT-SDA FMF-based fAOD 

significantly improves the R2 values by 0.29, 0.24, and 0.3 while the RMSEs decreased by 0.162, 

0.162, and 0.17 for the DT, DB, and DTDB fAOD products, respectively (Fig S8 (a) - (c)). 

Meanwhile, the percentages of the LUT-SDA FMF-based DT, DB, and DTDB fAOD falling within 

the EE envelope are 64%, 73.3%, and 72.4%, respectively, also highlighting major improvement. 

Obviously, the LUT-SDA FMF-based DTDB fAOD product exhibits the best performance for all 

three. 

Figure S9 displays the percentages of the LUT-SDA FMF-based fAOD retrievals falling within 

the expected error (EE) envelopes at each AERONET site around the world. Most areas in the world 

show data with over 50%  within the EE, especially in America, Europe, and South America, where 

the percentages  within the EE exceed over 70%. The performances in Asia and Africa are 

relatively poor, with percentages within the EE hardly surpassing 60% in most areas. Similar 

observations are evident in Figure S10 for the RMSEs of the LUT-SDA FMF-based fAODs at each 

site. The RMSEs in Asia are relatively higher than those in other areas with values close to 0.2, 

while in America, Europe, and South America, the values are generally less than 0.1. By contrast, 

the LUT-SDA FMF-based DTDB fAOD product performs poorly in Asia, even poorer than the DB 

in southern Asia. For example, in Beijing, China, the percentage within the EE of the DB fAOD is 

higher than that of the DTDB in Beijing. In Taihu, China, the RMSEs of the LUT-SDA FMF-based 

DB fAODs are indeed lower than those of the DTDB. Therefore, by directly adopting the LUT-SDA 

FMF-based DTDB fAOD product, the spatial accuracy in Asia will be worse, even though the 

overall performance of the DTDB fAOD is the best according to Figure S8. Consequently, we used 

the algorithm in Section II D for a new fAOD ensemble, minimizing the limitation. 
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Figure S8. Improved density scatterplots of the MODIS C6.1: (a) DT, (b) DB, and (c) DTDBs fAOD 

over-land products after using the LUT-SDA FMF for 2008-2016 at 171 AERONET sites. The 

dashed, black solid, and red solid lines represent the expected error range, 1:1 line, and linear 

regression of the scattered dots, respectively. 
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Figure S9. Percentage of fAOD retrievals within the expected error (EE) envelopes (%) for the LUT-

SDA FMF-based DT, DB, DTDB, and newly merged fAOD retrievals against AERONET fAODs 

for each site from 2008-2016. 
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Figure S10. RMSEs for fAOD retrievals of the LUT-SDA FMF-based DT, DB, DTDB, and newly 

merged fAOD retrievals against AERONET fAODs for each site from 2008-2016. 
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TABLE S1. Evaluation of Ensemble fAOD at 171 AERONET sites during 2008-2016  

Site Name Number of 

Matchups

RMSE Between EE 

(%) 

R Mean Absolute 

Error (MAE) 

ATHENS-NOA 799 0.079726 70.71339 0.248631 0.498629 

Alta_Floresta 704 0.140878 71.875 0.58535 0.765082 

Ames 606 0.074273 80.033 0.462429 0.680021 

Arcachon 803 0.07115 78.58032 0.204526 0.452245 

Arica 619 0.076217 78.02908 0.009571 0.09783 

Aubiere_LAMP 576 0.047366 87.84722 0.594243 0.770872 

Autilla 838 0.050564 78.75895 0.38794 0.622848 

Avignon 910 0.093779 74.83516 0.221407 0.470539 

BONDVILLE 611 0.09199 79.86907 0.39602 0.629301 

BSRN_BAO_Boulder 1026 0.058782 86.74464 0.404271 0.635823 

Banizoumbou 168 0.111372 63.09524 0.082753 0.287668 

Beijing 1060 0.220373 58.86792 0.792112 0.890007 

Belsk 645 0.07144 79.53488 0.475084 0.689263 

Billerica 760 0.061376 80.39474 0.606825 0.77899 

Birdsville 777 0.031375 93.30759 0.08857 0.297607 

Blida 471 0.052891 84.71338 0.265934 0.515688 

Bonanza_Creek 454 0.079123 79.29515 0.767477 0.876058 

Bozeman 936 0.088663 72.32906 0.614874 0.784139 

Bratts_Lake 475 0.06045 86.10526 0.446976 0.668562 

Brussels 311 0.060453 81.35048 0.637484 0.798426 

Burjassot 130 0.063306 81.53846 0.31471 0.56099 

CARTEL 582 0.075934 77.14777 0.348623 0.590443 

CCNY 1025 0.116843 67.5122 0.106083 0.325704 

CEILAP-BA 1209 0.051394 84.53267 0.109909 0.331526 

CEILAP-RG 318 0.04841 83.33333 3.72E-05 -0.0061 

COVE_SEAPRISM 598 0.070875 80.26756 0.567779 0.753511 

CUIABA-MIRANDA 1189 0.111477 74.68461 0.395827 0.629147 

CUT-TEPAK 1038 0.060651 83.62235 0.290488 0.538969 

Cabauw 441 0.087537 74.82993 0.322906 0.568249 

Cabo_da_Roca 623 0.068265 76.40449 0.138357 0.371963 

Caceres 488 0.04282 90.57377 0.252708 0.502701 

Cairo_EMA_2 962 0.100163 62.16216 0.09869 0.31415 

Camaguey 924 0.091282 64.50216 0.069282 0.263216 

Campo_Grande_SONDA 619 0.07286 78.51373 0.230059 0.479644 

Canberra 973 0.03607 93.8335 0.124221 0.352449 

Carpentras 1755 0.059875 79.37322 0.518092 0.719786 

Cart_Site 1247 0.060021 82.9992 0.370983 0.609084 

Chapais 217 0.07383 76.95853 0.505963 0.711311 

Chen-Kung_Univ 422 0.180981 53.08057 0.67071 0.818969 

Chiang_Mai_Met_Sta 831 0.22733 56.79904 0.68282 0.826329 

Chilbolton 357 0.129969 69.46779 0.189833 0.435698 
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Cordoba-CETT 210 0.050951 87.14286 0.158133 0.397659 

Dakar 1165 0.069636 74.24893 0.360547 0.600456 

Dalanzadgad 560 0.041506 93.03571 0.483343 0.695229 

Davos 366 0.098833 52.45902 0.066594 0.258058 

Dunkerque 495 0.086261 67.47475 0.344952 0.587326 

Dushanbe 1134 0.082195 75.92593 0.191055 0.437099 

EVK2-CNR 326 0.287362 15.33742 0.287256 0.535963 

Egbert 908 0.073315 80.72687 0.534548 0.731128 

El_Arenosillo 636 0.08429 66.98113 0.062575 0.25015 

Ersa 1264 0.057262 78.56013 0.434129 0.658885 

Evora 1137 0.050083 87.95075 0.264366 0.514166 

FORTH_CRETE 946 0.088096 65.4334 0.06631 0.257507 

Fort_McMurray 622 0.100894 80.22508 0.507532 0.712413 

Frenchman_Flat 872 0.079222 54.70183 0.10975 0.331286 

Fresno 439 0.065356 75.62642 0.413246 0.642842 

GSFC 1308 0.079824 77.37003 0.665017 0.815486 

Gandhi_College 757 0.286771 55.21797 0.46181 0.679566 

Goldstone 778 0.029556 94.98715 0.048381 0.219956 

Granada 1808 0.080895 67.97566 0.065508 0.255945 

Gwangju_GIST 649 0.146923 62.86595 0.559221 0.747811 

HJAndrews 207 0.048174 87.92271 0.219458 0.468463 

Halifax 649 0.11582 77.9661 0.240975 0.490892 

Hamburg 331 0.081317 74.92447 0.368054 0.606674 

Harvard_Forest 620 0.068215 80 0.560643 0.748761 

Hong_Kong_PolyU 428 0.179712 54.43925 0.630663 0.794143 

ICIPE-Mbita 960 0.093093 69.79167 0.405058 0.636442 

IER_Cinzana 1327 0.086501 74.15222 0.259499 0.50941 

IMAA_Potenza 1324 0.073816 74.32024 0.107283 0.327541 

IMS-METU-ERDEMLI 1773 0.091799 68.07671 0.280656 0.52977 

Ilorin 666 0.202106 51.2012 0.374125 0.611658 

Ispra 1332 0.108837 63.96396 0.329714 0.574207 

Issyk-Kul 1065 0.091645 66.57277 0.054844 0.234187 

Izana 1033 0.121426 34.26912 0.021205 0.145619 

Jabiru 978 0.052396 86.80982 0.394047 0.627732 

Jaipur 1188 0.15163 61.53199 0.539573 0.734556 

Ji_Parana_SE 809 0.162299 65.14215 0.699223 0.836196 

KONZA_EDC 586 0.090848 79.35154 0.196739 0.443552 

Kanpur 1386 0.240444 55.19481 0.594259 0.770882 

Karachi 1187 0.225665 51.22157 0.089347 0.29891 

Kyiv 656 0.106071 67.9878 0.237067 0.486895 

La_Jolla 307 0.047324 86.64495 0.240739 0.490651 

La_Laguna 1188 0.107863 58.83838 0.020329 0.14258 

La_Parguera 788 0.080389 57.1066 0.055267 0.23509 

La_Paz 643 0.047658 89.11353 0.006263 0.079137 
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Laegeren 422 0.07914 76.06635 0.187504 0.433017 

Lahore 871 0.352261 43.97245 0.251952 0.501948 

Lake_Argyle 1506 0.06984 84.26295 0.436118 0.660393 

Lecce_University 864 0.095949 68.1713 0.185727 0.430961 

Leipzig 511 0.11627 65.55773 0.351177 0.592602 

Lille 511 0.081931 73.58121 0.535158 0.731545 

Lulin 138 0.195168 21.73913 0.088406 0.297331 

MD_Science_Center 1011 0.090431 73.98615 0.484521 0.696075 

Madrid 604 0.072674 72.68212 0.138043 0.371541 

Mainz 599 0.073101 76.29382 0.276811 0.526128 

Malaga 1315 0.069787 69.58175 0.140038 0.374217 

Manila_Observatory 188 0.120003 59.57447 0.140549 0.374899 

Mauna_Loa 184 0.108138 45.1087 0.000245 -0.01564 

Messina 476 0.07814 71.63866 0.201112 0.448455 

Mexico_City 569 0.157302 46.57293 0.180362 0.424691 

Minsk 557 0.084286 78.27648 0.356004 0.596661 

Missoula 646 0.112747 80.18576 0.473277 0.687952 

Modena 1022 0.124599 66.04697 0.299619 0.547375 

Moldova 930 0.090963 69.24731 0.293071 0.54136 

Mongu_Inn 677 0.110533 66.32201 0.711373 0.843429 

Monterey 1136 0.092189 92.07746 0.326374 0.571292 

Moscow_MSU_MO 535 0.119187 71.40187 0.468144 0.68421 

Munich_University 567 0.104516 78.83598 0.199118 0.446226 

ND_Marbel_Univ 224 0.077822 82.58929 0.549291 0.741142 

Nes_Ziona 724 0.132831 50.69061 0.099966 0.316174 

OHP_OBSERVATOIRE 1498 0.077225 68.02403 0.288563 0.537181 

Oostende 266 0.151884 58.27068 0.066437 0.257754 

Osaka 603 0.10341 65.67164 0.40443 0.635948 

Ouarzazate 522 0.047096 76.81992 0.409055 0.639574 

Palaiseau 692 0.071381 76.5896 0.513472 0.71657 

Palencia 1079 0.070295 73.58665 0.204958 0.452722 

Palma_de_Mallorca 839 0.060568 79.02265 0.135822 0.36854 

Paris 669 0.082457 77.27952 0.342057 0.584857 

Petrolina_SONDA 248 0.0825 86.29032 0.032716 0.180875 

Pickle_Lake 149 0.092394 84.56376 0.477173 0.690777 

Pokhara 1304 0.286178 49.69325 0.336675 0.580237 

Pretoria_CSIR-DPSS 1034 0.068166 80.46422 0.523827 0.723759 

Pune 960 0.120188 62.1875 0.472521 0.687401 

QOMS_CAS 660 0.236906 26.21212 0.000615 -0.0248 

REUNION_ST_DENIS 931 0.057379 73.79162 0.117922 0.343398 

Railroad_Valley 1547 0.052761 88.62314 0.173687 0.416757 

Red_Mountain_Pass 966 0.045434 86.64596 0.144838 0.380576 

Rimrock 823 0.105448 80.68044 0.396697 0.629839 

Rio_Branco 870 0.16445 56.32184 0.297844 0.545751 
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Rome_Tor_Vergata 1474 0.060508 82.56445 0.275073 0.524474 

SEDE_BOKER 211 0.081745 66.82464 0.204875 0.452632 

SERC 1021 0.09159 67.48286 0.528752 0.727153 

Saada 1711 0.044721 90.00584 0.358234 0.598526 

Santa_Cruz_Tenerife 1756 0.086445 63.09795 0.153054 0.391222 

Sao_Paulo 588 0.085888 61.90476 0.110514 0.332436 

Saturn_Island 720 0.116785 84.72222 0.393109 0.626984 

Sevastopol 871 0.059738 86.22273 0.336438 0.580032 

Sevilleta 1366 0.043855 92.82577 0.130955 0.361877 

Shirahama 320 0.08707 71.5625 0.697846 0.835372 

Silpakorn_Univ 1013 0.169396 48.56861 0.697568 0.835205 

Singapore 166 0.291024 51.20482 0.247522 0.497515 

Sioux_Falls 611 0.093597 86.41571 0.729757 0.854258 

Skukuza 611 0.101505 61.21113 0.160888 0.401109 

Songkhla_Met_Sta 444 0.301813 46.3964 0.23069 0.480302 

TABLE_MOUNTAIN_CA 1228 0.077255 80.45603 0.01791 0.133828 

Tabernas_PSA-DLR 281 0.067906 69.03915 0.314217 0.560551 

Table_Mountain 1186 0.059942 84.40135 0.352068 0.593353 

Taihu 317 0.329326 35.01577 0.412739 0.642447 

Thessaloniki 1540 0.085487 70.25974 0.323585 0.568845 

Thompson_Farm 917 0.068627 75.57252 0.417957 0.646496 

Toravere 520 0.068778 77.11538 0.367262 0.606022 

Toronto 918 0.078465 81.80828 0.545201 0.738377 

Trelew 1267 0.05716 89.66062 0.013526 0.1163 

Trinidad_Head 940 0.140097 75.21277 0.156748 0.395914 

UCSB 412 0.079886 65.04854 0.114796 0.338815 

Ubon_Ratchathani 471 0.181061 66.02972 0.72169 0.849523 

Univ_of_Houston 1121 0.081338 66.63693 0.255237 0.50521 

Ussuriysk 537 0.125521 75.41899 0.541175 0.735646 

Venise 1127 0.087211 68.41171 0.347807 0.589752 

Villefranche 809 0.087861 68.60321 0.378182 0.614965 

Walker_Branch 140 0.068973 80 0.749826 0.865925 

Waskesiu 406 0.260735 72.16749 0.313877 0.560247 

White_Sands_HELSTF 1417 0.044437 90.19054 0.237537 0.487378 

XiangHe 1096 0.217564 61.49635 0.841397 0.917277 

Yakutsk 564 0.177712 80.85106 0.57197 0.756287 

Yekaterinburg 435 0.198222 65.05747 0.409185 0.639676 

Yonsei_University 742 0.145178 68.59838 0.729166 0.853912 

Note: Units for RMSE (Root Mean Squared Error), Between EE, R (correlation coefficient) and 

MAE (Mean Absolute Error) are shown in the first column below each parameter’s name.  
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