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• Auto-identification of consecutive NA
via moving averages benefits interpola-
tion.

• Point-by-point weighed outlier re-
moval by conditional extremum
saves non-outliers.

• Auto-division of episodes via thresh-
old windows, durations, and trend
constraints

• Performance rank of source
apportionment models is
NMF N PMF N FA ≈ PCA N k-means.

• Traffic kept dominant while coal
heating decreased by 40%–86% over
recent 5 years.
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Number concentration is an important index to measure atmospheric particle pollution. However, tailored
methods for data preprocessing and characteristic and source analyses of particle number concentrations
(PNC) are rare and interpreting the data is time-consuming and inefficient. In thismethod-oriented study,we de-
velop and investigate some techniques via flexible conditions, C++ optimized algorithms, and parallel comput-
ing in R (an open source software for statistics and graphics) to tackle these challenges. The data preprocessing
methods include deletions of variables and observations, outlier removal, and interpolation for missing values
(NA). They do better in cleaning data and keeping samples and generate no newoutliers after interpolation, com-
pared with previousmethods. Besides, automatic division of PNC pollution events based on relative values suites
PNC properties and highlights the pollution characteristics related to sources and mechanisms. Additionally,
basic functions of k-means clustering, Principal Component Analysis (PCA), Factor Analysis (FA), Positive Matrix
Factorization (PMF), and a newly-introduced model NMF (Non-negative Matrix Factorization) were tested and
compared in analyzing PNC sources. Only PMF and NMF can identify coal heating and produce more explicable
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Number concentration
 results,meanwhileNMFapportionsmoredistinctly and runs 11–28 times faster than PMF. Traffic is interannually
stable in non-heating periods and always dominant. Coal heating's contribution has decreased by 40%–86% in re-
cent 5 heating periods, reflecting the effectiveness of coal burning control.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Particle number concentrations (PNC) can be used in describing at-
mospheric particle number size distributions (PNSD) (Brines et al.,
2015; Buseck and Adachi, 2008; Seinfeld and Pandis, 2006; Whitby,
1978), which have 4 modes: Nucleation (Dp ≤ 30 nm), Aitken
(30 nm bDp ≤ 100 nm), Accumulation (100 nmbDp ≤ 1 μm)and Coarse
(Dp N 1 μm) (Harrison et al., 2000; Hussein et al., 2005; Kulmala et al.,
2004; von Bismarck-Osten et al., 2013; Vu et al., 2015). Nucleation and
Aitken modes, namely ultrafine particles (UFP) whose mass is harder
to measure than their number (Baldauf et al., 2016), dominate the
total number and Accumulation and Coarse modes dominate the total
surface and volume or mass (Seinfeld and Pandis, 2006). Unfortunately,
the current mass-based regulations, standards, andmonitoring systems
fail in characterizingmost particles in number (Brines et al., 2015; Liang
et al., 2016a; Liang et al., 2016b).

PNSD are important to fully explain and assess particle pollution's
impacts on human health, climate, and visibility. PNC-dominant small
particles are more relevant to health effects due to their larger specific
surface area per mass and stronger biological activity (Baldauf et al.,
2016; Beaudrie et al., 2016; Meng et al., 2013; Oberdorster et al.,
2005; Stanier et al., 2004; Wichmann and Peters, 2000), demonstrating
the importance of PNC for health impact assessments (Buonanno et al.,
2008; Kulkarni et al., 2011; Tan et al., 2014). Moreover, people's expo-
sure to UFP has increased dramatically since the 20th century
(Oberdorster et al., 2005), especially in Asia (Kumar et al., 2014). The
United States Environmental Protection Agency (US EPA) (Baldauf
et al., 2016), the Health Impact Institute (HEI) (Frampton et al., 2013),
and the European Union (Bartczak and Goenaga-Infante, 2016; EU,
2012) have attached great importance to research and legislation on
UFP and PNC. PNSD are crucial in cloud condensation nuclei (CCN) esti-
mation (Dusek et al., 2006). Visibility is greatly affected by particle size
and mainly related to big particles above 300 nm (Baumer et al., 2008;
Chen et al., 2012; Kittelson, 1998; Sloane et al., 1991).

PNSD provide plentiful information on the sources and atmospheric
processes of particles (Vu et al., 2015). Particles of different modes come
from different sources or chemicophysical processes (Seinfeld and
Pandis, 2006; Vu et al., 2015). In turn, the specific shapes andmodal struc-
tures of PNSD contain valuable clues to sector sources, geographic origins,
and particle formation mechanisms (Charron et al., 2008; Tunved et al.,
2004; Vu et al., 2015). Some scientific and realistic fundamentals of source
apportionment based on PNSD include: 1) PNSD have tempo-spatial
quasi-stability (Kim et al., 2004; Mcelroy et al., 1982; Ogulei et al., 2006;
Zhou et al., 2005; Zhou et al., 2004); 2) advancedmeasurements can cap-
ture short-term dramatic changes in PNSD (Hameri et al., 2004;
Morawska et al., 1999; Weber et al., 2006; Wegner et al., 2012); 3) the
particle size spans multiple orders of magnitude (Beddows et al., 2015)
so the PNSD contain rich manifest (Charron et al., 2008; Hussein et al.,
2014) and latent (Masiol et al., 2017a; Masiol et al., 2016) fingerprints
(Morawska and Zhang, 2002) for distinguishing sources; 4) PNC have
large spatial heterogeneity and are very sensitive to emission sources
(Lianou et al., 2007; Price et al., 2014; Rodriguez et al., 2007; Weber
et al., 2013); 5) source apportionments of PNC are indispensable to
know the source contributions of PNC (Ogulei et al., 2007); 6) number
concentration supplements mass concentration (Pey et al., 2010);
7) source apportionments of PNC are cost-effective (Thimmaiah et al.,
2009; Yue et al., 2008).

Despite the extreme significance of PNSD in the above-mentioned
impact assessment and source apportionment, knowledge on PNC
pollution episodes and the source analysis based on PNC are still infant
because of lacking standards (Chen et al., 2017; Chen et al., 2018;
Mertens et al., 2020; Trojanowski and Fthenakis, 2019), insufficient
studies, and complex data. For example, preprocessing of PNC data is
much trickier than that of mass-based parameters due to the complex-
ity of often measured PNC variables of around 100 (16–158) size bins
(Friend et al., 2012; Vu et al., 2015), which are many more than often
measured chemical species (Liang et al., 2016a). Researchers
preprocessed their raw data by simply deleting abnormal (wrong) ob-
servations (Wiedensohler et al., 2012) and replacing missing data by
mean values (Gu et al., 2011) or temporal linear interpolation (Liu
et al., 2014). Masiol et al. (2017a) andMasiol et al. (2016) further stated
using the top 0.5% percentile to remove outliers and nearest size bins for
NA interpolation. Except new particle formation (NPF) events
(Carnerero et al., 2019; Dal Maso et al., 2005; Kulmala et al., 2004; Sun
et al., 2016;Wu et al., 2007), there are few descriptions of PNC pollution
events (Rodriguez et al., 2007) and their classification methods. NPF
event classifications are manual (Carnerero et al., 2019; Hussein et al.,
2020; Sun et al., 2016), semi-automatic (Gross et al., 2018;
Heintzenberg et al., 2007), or computation-consuming (Joutsensaari
et al., 2018). PNC source analysis techniques mainly include receptor
models Factor Analysis (FA) (Wåhlin et al., 2001), Positive Matrix Fac-
torization (PMF) (Ogulei et al., 2006; Zhou et al., 2004), Principal Com-
ponents Analysis (PCA) (Khan et al., 2015; Liang et al., 2013; Pey et al.,
2009), k-means clustering (Beddows et al., 2009), and source models
Potential Source Contribution Function (PSCF) and Concentration
Weighted Trajectory (CWT) (Bycenkiene et al., 2014; Bycenkiene
et al., 2013). In practical use, the receptormodels based on extractedfin-
gerprints are often combined with associated pollutants, time patterns,
meteorology, and source models (Beddows et al., 2015; Harrison et al.,
2011; Masiol et al., 2017a).

Yet, it is unclear that if the traditional percentile-based method of
outlier removal needs improvement and, if yes, how to improve,
which ismore reliable for interpolation: in adjacent size bins or time se-
ries, andwhat else needs to be cared in data preprocessing for PNC. Fur-
thermore, it is unknown how to define and automatically divide PNC
pollution episodes and how to efficiently calculate geometric mean di-
ameter (GMD) and count median diameter (CMD). Besides, it remains
unresolved which source apportionment model is the most suitable
and if there is any new and more suitable model.

We try to solve these problems by using R (The R Core Team, 2019),
based on PNCobservations in Beijing during 2015–2019. Firstwe develop
a series of data preprocessing methods to prepare cleaned and reliable
data for research on characteristics, sources, andmechanisms of PNC pol-
lution. Then an automatic episode classification of PNC and simple algo-
rithms of GMD and CMD are designed and introduced. Moreover, we
establish source apportionmentmethodby comparingfive different tech-
niques k-means clustering (Hartigan and Wong, 1979), PCA (Pearson,
1901), FA (Spearman, 1904), PMF (Paatero and Tapper, 1994), and NMF
(Non-negative Matrix Factorization) (Lee and Seung, 1999). Afterwards
we apply the established method to different cases and test its ability in
identifying typical sources. In addition, the features of the typical sources
are examined and the actual impact of coal heating is assessed. In data
quality assurance, pollution characteristics analysis, and source analysis
of PNC, the series ofmethods exhibit more robust, smarter, more distinct,
and faster performance. These efficient analysis methods for PNC pollu-
tion characteristics and sources canpromote the establishment andactual
applications of PNC source apportionment and provide multi-faceted
support for the research and control of PNC pollution.
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2. Materials and methods

2.1. Sampling of particles

Three sampling sites are located at Tsinghua University (THU, lat =
40.003, lon = 116.32) (H.Y. Li et al., 2019; Li et al., 2016), Institute of At-
mospheric Physics, Chinese Academy of Sciences (IAP, lat = 39.974,
lon = 116.372) (Du et al., 2017; Wang et al., 2019), and Nanjiao Meteo-
rological Bureau (NJ, lat=39.807, lon=116.471, namelyMeteorological
Observatory in the southern suburb of Beijing) respectively (Fig. S1).
There are more mountains in the northwest and more main roads in
the southeast. All these sites are within central Beijing of 5 rings and
have no major industrial sources nearby. THU and IAP housed in Haidian
District are similar ordinary sites with moderate traffic volumes and the
distance between them is only 5 km. However, NJ housed in Daxing Dis-
trict which is an important transportation node for Beijing-Tianjin-Hebei
(Jing-jin-Ji) integration is surrounded by dense traffic. Many large trucks
are only allowed to pass nearby during 23:00–6:00 at nights. Moreover,
NJ is right beside the main road South Fifth Ring Road.

Scanning mobility particle sizers (SMPS, TSI, 3938) were deployed,
coupled with condensation particle counters (CPC, TSI, 3772, except
3787 from Sep., 2018 and 3787 and 3756 from Jan. 2019 in NJ) and dif-
ferential mobility analyzers (DMA, TSI, 3081, except 3081 and 3085
from Jan. 2019 in NJ), for observing PNSD at ground levels, successively
in the three sites (Table S1). The channel and time resolutions are all 64
per decade of particle size and 5-min respectively. A total of 259,604 ob-
servations of 102 size bins in the 14.1–532.8 nm range involving
33 months from 2015 to 2019 were synthesized as raw data.

2.2. Auxiliary data

The auxiliary data of PNSD here mainly consist of criteria pollutants
(CP), meteorological parameters (Met), and backward trajectories
(Traj) (Table S2). The distances between sites of PNSD and their nearest
sites of CP are around 2 km. There is around 25 km from the Met site to
each of the PNSD sites THU, IAP, and NJ.

2.3. Data handling tools

The R and its self-contained functions (The R Core Team, 2019), mul-
tiple packages provided by other developers, and EPA PMF 5.0 were used
to handle the data (Norris et al., 2014; Paatero, 1997; Paatero and Tapper,
1994). We selected and used about 30 high-performance R packages (in
user library only, excluding those in system library of R) to develop the
methods in this work (Table S3) (Bache and Wickham, 2014; Carslaw,
2019; Carslaw and Ropkins, 2019; Carslaw and Ropkins, 2012; Cheng
et al., 2019; Demin, 2019; Dowle and Srinivasan, 2019; Fellows and
Stotz, 2019; Gaujoux and Seoighe, 2010; Gaujoux and Seoighe, 2018;
Grolemond and Wickman, 2011; Iannone, 2018; Müller and Wickham,
2019; Revelle, 2020; Robinson and Hayes, 2019; Sarkar, 2008; Sarkar,
2018; Slowikowski, 2019; Spinu et al., 2018; Ushey, 2018; Wickham,
2007; Wickham, 2016; Wickham, 2017; Wickham, 2019a; Wickham,
2019b; Wickham et al., 2019a; Wickham et al., 2019b; Wickham and
Henry, 2019; Wickham and Seidel, 2019; Wilke, 2019; Yu, 2019; Zeileis
and Grothendieck, 2005; Zeileis et al., 2019).

2.4. Definition and classification of PNC pollution episodes

This work defines PNC pollution episodes as pollution events with
high PNC in a certain mode. For example, 3 kinds of episodes: Nucle-
ation (Dp ≤ 30 nm) episodes, Aitken (30 nm b Dp ≤ 100 nm) episodes,
and Accumulation (100 nm b Dp ≤ 1 μm) episodes are included here.
Percentile rank windows, minimum duration hours, and constraints of
trends were used as thresholds and conditions to classify the episodes.
In order to stably classify pollution episodes in different periods and
sites, we temporarily calculate (‘borrow’) 3-hour moving averages
with tidyr::complete (Wickham and Henry, 2019) and C++ optimized
RcppRoll::roll_mean (Ushey, 2018), normalize the moving averages by
percentile rank for convenient comparison among different sites, and
set three requirements (conditions) to detect and grab rising trends.
The first requirement for a pollution episode is the percentile rank nor-
malized moving averages (PRNMA) change from below 20 to above 80
and last for over 4, 8, and 16 h for Nucleation, Aitken, and Accumulation
respectively. The second major requirement is there are PRNMA b20 in
thefirst half and N80 in the secondhalf. The thirdmajor requirement in-
cludes: in time-series order, the PRNMA in the second half, middle half,
and 4th percentile interval are 50% greater than those in the first half,
1st percentile interval, and middle half respectively.

2.5. Principles and evaluation criteria of source apportionment receptor
models

Four previously reported receptor models k-means clustering
(Beddows et al., 2009), PCA (Khan et al., 2015; Liang et al., 2013; Pey
et al., 2009), FA (Wåhlin et al., 2001), and PMF (Ogulei et al., 2006;
Zhou et al., 2004) and one newly introduced receptor model NMF
(Gaujoux and Seoighe, 2010; Gaujoux and Seoighe, 2018; Lee and
Seung, 1999) are used for source apportionment of PNC in this study.

2.5.1. k-means clustering

ss kð Þ ¼ ∑n
i¼1∑

p
j¼0 xij−xkj

� �2 ð1Þ

where xij is the value of the j-th variable in the i-th observation, xkj is the
mean value of the j-th variable in the k-th cluster, n is the number of ob-
servations, p is the number of variables, and ss is the sum of squares
(Forgy, 1965; Hartigan and Wong, 1979; Kabacoff, 2015; Lloyd, 1982;
MacQueen, 1967; Morissette and Chartier, 2013).

2.5.2. PCA

PCi ¼ ai1V1 þ ai2V2 þþainVn ð2Þ

where PCi is the i-th principal component, Vj is the j-th observation var-
iable, and aij is the load, that is, the linear correlation coefficient between
PCi and Vj (Hotelling, 1933; Pearson, 1901; Rao, 1964; Statheropoulos
et al., 1998). Principal components are linear combinations of observed
variables and are obtained by maximizing the variance explained by
each principal component (Kabacoff, 2015).

2.5.3. FA

Xi ¼ a1 F1 þ a2 F2 þ⋯ap Fp þ Ui ð3Þ

where Xi is the ith observable variable (i=1… k), Fj is the common fac-
tor (j=1… p), and p b k.Ui is a unique part of the Xi variable (cannot be
explained by common factors) (Bartholomew, 1995; Kabacoff, 2015;
Spearman, 1904). ai can be considered as the contribution value of each
factor to the composite observable variable.

2.5.4. PMF

Q ¼
Xn
i¼1

Xm
j¼1

E
U

� �2
ð4Þ

or

Q ¼
Xn
i¼1

Xm
j¼1

xij−∑p
k¼1 gik f kj
uij

" #2

ð5Þ
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whereU (uij) is the uncertainty of the PNC of particle size bin j in sample
i (Kim et al., 2004), E is the residual error (Krecl et al., 2015), n is the total
number of samples, andm is the total number of particle size bins (Krecl
et al., 2008). For a given number of factors, PMF (Paatero and Tapper,
1994) adjusts the values of fkj and gik by the method of least squares
(with the constraint that fkj and gik values are non-negative) until the
minimum Q value is found (Krecl et al., 2008; Norris et al., 2014).

2.5.5. NMF

X ≈ WH ð6Þ

where X is the M-variable and N-observation matrix (Lee and Seung,
1999). The goal of NMF is to find the non-negative M × L base matrix
W and the L × N coefficient matrix H so that X ≈ WH (Gaujoux and
Seoighe, 2010; Gaujoux and Seoighe, 2018). Because EPA PMF lacks al-
ternativematrix factorization algorithms anduses serial computing that
is slow, NMF that hasmultiple factorization algorithms and uses parallel
computing is introduced.

The performance of the basic functions of thesemodelswill be tested
and compared in this work. The evaluation criteria include: 1) Discrimi-
nation of concentrations; 2) Discrimination of peak particle sizes; 3) Ra-
tios of species; 4) Contribution moment.

To more conveniently and efficiently compare the impact of param-
eters such aswind and trajectory, contributionmoment (CM) is put for-
ward. CM is the value of a normalized parameter with an average value
of 1multiplied by a normalized contributionwith an average value of 1.

CMParm ¼ ParmMean
1 � CMean

1 ð7Þ

where Parm is the parameter, Parm1
Mean is the normalized parameter

with an average value of 1, and C1
Mean is the normalized contribution

with an average value of 1. It is expressed as CM followed by the sub-
script or lowercase letters of the parameter, such as the wind speed
(WS) contribution moment CMWS, the trajectory pressure contribution
moment CMtp, and the trajectory height contribution moment CMth.

2.6. Source profiles

The general law of the sources of PNC is summarized in Table 1 (de-
tails in Table S4) based on the 30 results (29 publications): 24 of PMF
(Al-Dabbous and Kumar, 2015; Beddows et al., 2015; Dall'Osto et al.,
2012; Friend et al., 2013; Friend et al., 2012; Gu et al., 2011; Harrison
et al., 2011; Kasumba et al., 2009; Krecl et al., 2008; Krecl et al., 2015; Z.
Liu et al., 2017; Liu et al., 2014; Liu et al., 2016; Masiol et al., 2017a;
Masiol et al., 2016; Ogulei et al., 2007; Sowlat et al., 2016; Squizzato
et al., 2019; Thimmaiah et al., 2009; Wang et al., 2013; Yue et al., 2008;
Zhou et al., 2005; Zhou et al., 2004; Zong et al., 2019); 4 of k-means clus-
tering (Charron et al., 2008; Dall'Osto et al., 2012; Hussein et al., 2014;
Wegner et al., 2012); 2 of PCA (Cusack et al., 2013; Pey et al., 2009).

3. Results and discussion

3.1. Data preprocessing

3.1.1. Dispersedness and NA of raw data
The exemplary original data of THU in January and July of 2015 are

very dispersed but outliers are not toomany (Fig. 1a, b, and d). The hid-
den distribution of the low-value area with ordinary coordinates
(Fig. 1a) can be seen in logarithmic scales (Fig. 1b). Inspired by the pre-
viouswork (Masiol et al., 2017a;Masiol et al., 2016)which excluded the
highest 0.5% of values and because there are outliers in the bottom
(Fig. 1c and d), we deleted the 0.5% of values both at the head and tail
(Fig. 1c). However, such an outlier removal method simply based on
the percentiles would deletemany values that are not outliers (Fig. 1d).
The basic descriptive statistics (Fig. S2) show that NA aremainly dis-
tributed at both ends of size bins, especially small size bins.

3.1.2. Variable deletion
To avoid information distortion (Fig. S2), unqualified size bin vari-

ables with too many NA were removed (Fig. S3), which are the first 4
small bins 14.1, 14.6, 15.1, and 15.7 nm. These NA originate from instru-
ments (SMPS). If these 4 variables are not removed first and the obser-
vations with too many consecutive NA in time series are directly
deleted, therewill be only 141,617 observations left. However, if we de-
lete these 4 variables and then delete the observations with too many
NA in time series, we can retain 19,640 (= 161,257–141,617) more
observations.

3.1.3. Observation deletion
Observationswith at least one variable containing toomany consec-

utive NA in time series are not reliable (Fig. S3), which cannot be prop-
erly interpolated temporally because of producing new outliers, need to
be deleted. The observations were deleted based on consecutive NA.

To delete observations based on consecutive NA, it is necessary to re-
move observations that have incomplete half-hour averages in all size
bins, namely observations with any bin(s) containing consecutive NA
for more than half an hour. We achieve it by ingeniously ‘borrowing’
hourly moving averages around a center of two neighboring half-hour
sides to capture the cases of continuous NA for more than half an hour
(Figs. S4 and S5 and KC S1) (KC: Key codes). The key points are: tempo-
rarily (recovery afterwards) expand the complete time period with
tidyr::complete (Wickham and Henry, 2019) and calculate hourlymov-
ing averages with C++ optimized RcppRoll::roll_mean (Ushey, 2018)
(much faster than ordinary functions) to detect consecutive NA. It is
called ‘borrowing’ because instead of calculating the moving averages
on the columns of the original data, it calculates the moving averages
of the original data temporarily in columns other than the original
data. Based on the completeness of the calculated moving averages,
whether the original data is missing consecutively for more than half
an hour (nomatter one size bin ormultiple size bins) is logically judged.
The centered 59-min moving average is not used to judge one side but
both sides that are missing continuously for more than half an hour,
namely whether there is any effective value within half an hour either
before or after a point for interpolation. This method continuously ap-
plies to the deletion of outliers thatmay cause such observations, ensur-
ing the rationality of NA interpolation in time series. Grouping by year
and month and ‘borrowing’ hourly moving averages correct and im-
prove previous time series interpolation that did not consider time
span and easily brought new outliers.

3.1.4. Outlier removal
As can be seen from Figs. S4 and S5, after deleting the observations

with incomplete half-hour averages in all size bins, there are still out-
liers that need to be removed. Outlier removal consists of traditional
percentile removal (Masiol et al., 2017a; Masiol et al., 2016) (Figs. S6
and S7) and conditional extremum removal (Figs. S8 and S9 and KC
S2). The percentile of the top is 0.5% which is the same as the reports
(Masiol et al., 2017a; Masiol et al., 2016), while the bottom is 0.25% be-
cause it is not so dispersed nor influential as the top. The difference in
concentrations among different months can be relatively large. If the
outliers are removed together without being grouped by month, there
will be overdone removals and unclean removals in different months,
so the removals are grouped by month. During the removal, observa-
tions with incomplete half-hour averages in all size bins were deleted.

Advantages of conditional extremum removal (Figs. S8–S10) over tra-
ditional percentile removal (Figs. S6 and S7) include: 1) Reduced number
of removed values that are not necessary to be removed:
210819–159,812 = 51,007; 2) Increased number of retained observa-
tions that should be kept: 159732–159,485 = 247; 3) Cleaner data after
removal, especially at the tops in January and July 2015 and January



Table 1
General PNSD source profiles.

Sources Peaks (nm) Associated pollutants Diurnal patterns

Nucleation b20 O3 Daytime
Fresh traffic b50 NO2 Morning/evening rush hour
Aged traffic 30–100 NO2 Morning/evening rush hour
Coal heating 100–200 (or 300) SO2 Nighttime
Regional accumulation/secondary N200 (or 300) PM2.5 Nighttime
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2017 (Figs. S7, S9, and S10). These differences aremainly because the per-
centile basedmethod is “one size fits all” and does not judgewhether the
values may be deleted excessively or insufficiently; while the conditional
extremum based method considers point by point and judges each po-
tentially to-be-deleted value whether it is really an outlier that should
be deleted. The proportion of identified outliers from both the top and
the bottom is very limited in PNC data, namely (159812–126,060) /
(159,732 ∗ 98) ≈ 0.2% (0.2156%), about 56.9% (= (0.5–0.2156) / 0.5)
less than the previously proposed top-only 0.5% (Masiol et al., 2017a;
Masiol et al., 2016). The conditional extremum based method may also
fit well with other huge datasets by adjusting constraints and times (KC
S2) in batch processing for studies like monthly, seasonal, (non-)
heating-period, or yearly PNC source apportionments. Outliers should
be removed with more caution or even not be removed for individual-
episode studies or short-term observations.

3.1.5. NA interpolation
The reasons why the nearest bin interpolation (Masiol et al., 2016)

should be discarded include: 1) Simple nearest bin interpolation pro-
duces many new outliers (Fig. S11); 2) Many new outliers are still gen-
erated after improving nearest bin interpolation: neighboring size bin
based NA interpolation (Fig. S12) and middle (as starting point) neigh-
boring size bin based NA interpolation (Fig. S13); 3) The number of ob-
servations is also reduced by hundreds (462 = 159,732–159,270,
Fig. 1. 3D and logarithm normalized PNSD
Figs. S10 and S11) or even more (4189 = 159,732–155,543 and
1322 = 159,732–158,410, Figs. S10, S12, and S13).

Different from the nearest bin interpolation that generates new out-
liers and retains fewer observations (Masiol et al., 2016), temporal in-
terpolation is used here (Fig. 2): 1) No new outliers are generated.
This is mainly due to the key steps in the aforementioned process of de-
leting observations and outliers: observation deletion based on hourly
moving averages; and the use of time period grouping during interpola-
tion: dividing the time betweenmissing observations up to half an hour
into periods, and group interpolation by the time periods. This makes
the cleaned data frame without any variable that is missing for half an
hour or more and confines the interpolation to a relatively continuous
period of time, ensuring the robustness and rationality of time series in-
terpolation. It's different from simple time series interpolation that does
not consider consecutive NA, time span, and period grouping. 2) Main-
tain number of observations as the original cleaned data contains.

3.2. Episode classification

3.2.1. PNSD and temporal variation
The 5-min concentration distribution and cumulative mean of

sorted number concentrations in each bin and temporal (hourly) varia-
tion of size distribution can be seen from Figs. S14 and S15. A common
feature of the three different sites THU, IAP, and NJ within the Beijing
of THU in January and July of 2015.



Fig. 2. Top and bottom percentiles after conditional extremum based outlier removal and NA interpolation in time series in linear y-axis scales.
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Fifth-Ring Road is that the concentrations of particles above 100 nm do
not exceed 10*10^4. However, the concentrations of particles below
100 nm (UFP) are very different between ordinary sites (THU and
IAP) and transportation sites (NJ).

Fig. 3 also shows the difference of UFP between ordinary sites (THU
and IAP) and transportation site (NJ). The proportion of UFP in NJ is
13%–15% higher than those in THU and IAP (Fig. 3a). This is mainly
caused by the distinction of particles below 50 nm. Besides the ordinary
traffic peaks at around 7:00 and 18:00, there is a more obvious high-
value platform in NJ during 23:00–6:00 (Fig. 3b) when a large number
of big trucks are allowed to pass nearby. The calculation methods of
GMD and CMD (KC S3) are very efficient and useful especially after
data preprocessing the original GMD and CMD from the instruments
need to be recalculated. Thesemethods may also find their applications
in NPF research besides the study of ordinary pollution characteristics
here.

3.2.2. Pollution episodes
Details of automatically classifying PNC pollution episodes are at-

tached in KC S4. Figs. S16–S18 show the temporal variations of the
pollution episodes. Applications can be extended by adjusting the per-
centile rank window and minimum duration hours. For example,
more episodes are expected to be classifiedwhenwidening thewindow
from 20/80 to 30/70 or lowering the minimum duration.

Nucleation episodes didn't occur in THU and occurred only once in
IAP, while almost all this kind of episodes were observed only in NJ
(Fig. S16). The PNC of Nucleation mode are very high in the transporta-
tion site (NJ), hence NJ owned almost all the Nucleation episodes. Peaks
of Nucleation episodes appeared at both afternoons and midnights. Af-
ternoon Nucleation episode peaks indicate the impact of photochemical
Nucleation process (Tan et al., 2018) that is regarded as a source, while
midnight Nucleation episode peaks indicate the impact of traffic source.

Peaks of Aitken episodes appeared at nights and afternoons
(Fig. S17), indicating the impact of particle growth (Liu et al., 2008;
Meier et al., 2009). This kind of episodes occurred only in IAP and NJ
but didn't occur in THU. It is mainly because among the three sites,
the number of observations is the most limited and the distance from
the main road is farthest in THU.

Peaks of Accumulation episodes appeared at nights and mornings
(Fig. S18). Accumulation episodes occurred in all sites, indicating



Fig. 3. Averaged and cumulative hourly PNSD and diurnal variation of size-segregated PNC and GMD. Calculation methods of GMD and CMD are achieved in R and can be found in KC S3.
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regional impact. Night and morning Accumulation episode peaks indi-
cate the impact of RH (Zhao et al., 2020). Accumulation episodes oc-
curred once in THU (with least observations among the three sites)
and occurred more in IAP (with medium number of observations)
than in NJ (with most observations), therefore recent cleaner atmo-
sphere corresponded to less Accumulation episodes than previous dirt-
ier atmosphere did. The automatic episode classification makes
pollution characteristics clearer and offers basics to infer sources.

There were 25 Nucleation episodes, 23 Aitken episodes, and 11 Ac-
cumulation episodes (Fig. S19a). And these episodes lasted for around
11, 13, and 24 h respectively. Since the thresholds and constraints are
set strictly here, the numbers of episodes are small. Numbers of epi-
sodes can be changed by adjusting the percent rank windows, themin-
imum duration hours, and trend constraints (KC S4). For example, if the
window is expanded from 20/80 to 30/70 and the minimum duration
hours are reduced from 4, 8, and 16 h to 3, 6, and 12 h, more (46 Nucle-
ation, 51 Aitken, and 23 Accumulation) episodes will be classified, al-
most doubled (Fig. S19b).

Fig. 4 summarizes the characteristics of episodes in combination
with criteria pollutants and meteorology that would be selected as a
driving variable by their respective percentile rank maxima within a
set. The colors only represent the PNC levels of a certain mode and
should be compared inside individual modes. We cut hours into inter-
vals that are open on the left and closed on the right, specifically
5:00–10:00 (namely (5:00, 10:00]) and 15:00–20:00 are morning and
evening rush hours, 10:00–15:00 are midday, and 23:00–5:00 are
nighttime. TheNucleation episodemainly occurred at night at the traffic
site (NJ). The highest PNC level corresponds toNO2,which indicates that
there is a synergistic relationship with NO2. This type of pollution event
is mainly caused by fresh traffic (Z. Liu et al., 2017; Liu et al., 2016; Rivas
et al., 2020) at short distance (a few line sources, Fig. S1) at night. The
Aitken episode is similar to the nucleation mode in terms of main geo-
graphical location (NJ) and synergistic pollutant (NO2), but the highest
PNC level appeared mainly at rush hours. It's related to urban commut-
ing, namely a large number of morning and evening traffic line sources
constitute an approximate area source. Compared with a small number
of line sources (fresher particles) that allow large trucks to pass near NJ
during nights, the area source is farther on average, so the impact is
mainly Aitken (older thanNucleation)mode. TheAccumulation episode
is different from both the Nucleation and Aitken episodes, and mainly
occurred at ordinary sites (IAP). Its high PNC levels only appeared at
night, indicating its dependence on RH (Figs. 4 and S18).

The robustness in data preprocessing and automation in episode
classification are achieved by designing flexible and fastidious condi-
tions (constraints) such as period grouping and extending, moving av-
erage borrowing, and value normalization and comparison (one by
one in conditional extremum outlier removal and interval by interval
in episode classification) and by using efficient calculating methods
such as C++ optimized algorithms.

3.3. Establishment of source apportionment method

3.3.1. Case division
We divided a certain annual period into a heating period (HP) and a

non-heating period (NHP) for source apportionment (Table S5). HP is
from November 15 of the previous year to March 15 of the current
year. NHP is from August of the previous year to July of the current
year excluding HP. The observations of THU, IAP, and NJ involve years
from 2015 to 2019 (12,966 h after the 13,555-hour PNSD merge with
criteria pollutants and meteorology) that are divided into 8 cases
(12,033 h): 4 HPs and 4 NHPs. Therewere 933 h that were not classified
into any cases in NJ due to inconsistent sites and time range issues.



Fig. 4. Episodic parallel sets plot of modes, criteria pollutants, and meteorology.
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3.3.2. Number of factors and declarations
To test and compare the performance of the basic functions of differ-

ent models, considering the actual situation (three previous studies in-
cluded 8 factors for each case in Beijing, but there are repeated or
duplicate sources in the 8 factors) (Z. Liu et al., 2017; Liu et al., 2014;
Liu et al., 2016), and according tomany other practices that 5–6 clusters
or factors could well cover most major sources (Table S4) (Brines et al.,
2015; Masiol et al., 2017a; Masiol et al., 2016; Vu et al., 2015), we uni-
formly set the number of clusters, components, or factors for every
case as 6. It's rational to cover most major sources and very convenient
to test and compare the basic functions of different models. Although
every model has advanced functions or/and can be optimized, basic
functions (such as base run in PMF) are core for each model and thus
are valuable and necessary to be compared. This is one of the goals in
the present study. In deep investigation of PNC sources with a single
receptor model, it might be better to further use optimization tools to
find the “best” number of cluster, components, or factors. Appropriate
optimization tools should fully consider both the nature of PNC data
and the specific emissions around sites to reduce the gap between
mathematical results and real situations. Factor analysis itself is a com-
bination of art (user's understanding (Norris et al., 2014)) and science
(Teetor, 2011), the results of aerosol source apportionment with factor
analysis can be used as a limited but useful reference rather than being
completely trusted because of the gap just mentioned.

It should first be pointed out that the source apportionment results
obtained by k-means clustering and factor analysis models (PCA, FA,
PMF, and NMF) are mainly the artificially named sources. Such a source
of them is determined according to the characteristics of PNSD peaks,
time patterns, correlations, and CWT. It is generally the main source of
the factor or type, not the only actual source.
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Fingerprints of PNSD, coupled with associated pollutants, time pat-
terns, etc., can give information on sector sources and chemicophysical
processes (Harrison et al., 2011; Hussein et al., 2014; Masiol et al.,
2017b). The association offingerprintswith certain pollutantswould re-
veal specific sector sources. By combining fingerprints with local winds
and regional backward trajectories, the relationship between each fin-
gerprint and atmospheric conditions and geographical origins can be
determined. To distinguish the effects of photochemistry and liquid
chemistry, meteorological parameters such as solar radiation, tempera-
ture and humidity need to be supplied.

3.3.3. Shortcomings of k-means clustering
We used original prepared data and its various transformed data

(centering scaled, 0–100 normalized, and percent rank normalized) to
test k-means clustering. k-means clustering yields “regular” PNSD
peaks (Figs. S20 and S21), but firstly, the concentration discrimination
is several orders of magnitude worse than a usual peak by PMF. Sec-
ondly, although the linear scale PNSD is better distinguished, its peak
values are more concentrated in the Aitken mode, so it has little practi-
cal significance. Thirdly, criteria pollutants cannot be distinguished due
to their too small values and need to be normalized, while normaliza-
tion cannot fundamentally solve its limitations. Fourthly, the apportion-
ment of sources by time series clustering does not match the objective
situation that multiple sources generally exist concurrently. To conve-
niently test and compare the performance of different models, we
used 6 clusters. The best number of clusters found by R package NbClust
(Charrad et al., 2014) is 3 according to its judgement based on 26 indi-
ces. However, the limitations of k-means clustering are almost the same
for both 6 clusters and the best 3 clusters (Figs. S22 and S23). Therefore,
the well-recognized k-means clustering (Beddows et al., 2009; Charron
et al., 2008; Dall'Osto et al., 2012; Hussein et al., 2014; Masiol et al.,
2017a; Masiol et al., 2016; Wegner et al., 2012) is not good and needs
to be discarded for the cases here. We had to turn to other methods
such as factor analyses including PCA and FA in addition to PMF. k-
means clustering can be good for cases near sources such as airports
(Masiol et al., 2017a) and for identifying groups of samples with similar
size distribution spectra.

3.3.4. Results and shortcomings of PCA and FA
PCA and FA combine the PNSD peaks, correlations of component

loadings with CP, time patterns, correlations of standardized scores
and meteorology, and CWT to apportion the traffic sources, Accumula-
tion process (hereinafter the mode names in sources are for processes
not for modes) and Nucleation (Figs. S24 and S25). During heating pe-
riod, CWT and wind speed complement each other: it corresponds to
Nucleation and fresh traffic sources when the CM of trajectory pressure
is small, while those of trajectory height and wind speed are large. Oth-
erwise, it generally corresponds to Accumulation source. However, PCA
and FA cannot apportion coal heating. Moreover, they produce ‘mixed’
(mixed source) that is difficult to be determined as a certain major
source. Furthermore, there are negative numbers in the loadings of
PCA and FA, making the percentages of species, trimodal ratio (Nucle-
ation:Aitken:Accumulation,N/A/A), and SO2/NO2 ratio difficult to be de-
termined. Consequently, PCA and FA are useful but not so suitable for
PNC source apportionment.

3.3.5. Results and comparison of PMF and NMF
For PMF, we computed the uncertainty according to a published

method (Thimmaiah et al., 2009). The units of PNC andmass concentra-
tion of CP are # cm−3 and μg m−3 respectively. Specifically, the uncer-
tainties of PNC (x represents concentration) are determined by
1 + x^0.5 + 0.1*x. The uncertainties of CP (O3, SO2, NO2, and PM2.5)
are determined by 0.5*min(x) + 0.1*x. The uncertainty of CO is calcu-
lated from 0.5*100 + 0.1*x. It should have been 0.5*min(x) + 0.1*x
for CO, but its concentration in the raw data is in mg m−3 and only
has one digit after the decimal point. Its minimum is 0, but actually
the true value would be around 0.1. Therefore, we set the minimum of
CO as 0.1 mg m−3, namely 100 μg m−3. The data are processed all to-
gether for uncertainties but are processed separately case by case for
base model runs. We set variables (size bins and CP) with S/N b 6 and
the total variable TPNC (namely total particle number concentrations,
generally with S/N N 6) as weak for all cases. There are around 10
weak variables out of the total 104 variables in each case. No extra
modeling uncertainty is added.

Recommended number of runs (20) in PMF (Norris et al., 2014) is
used for every case. Generally, the number of absolute scaled residuals
beyond 3 is very limited in size bin variables but relatively greater in
CP (Table 2). This reflects the ability of PMF in distinguishing sources
of PNC and mass concentrations of CP. A major PNC source sometimes
could be an infrequent source for someCP. For the regressions, the aver-
age values of R2 are not lower than 0.96 for size bins andnot higher than
0.65 for CP respectively. For 6 factors of each case, at least 52.9% and 80%
of the run profiles are inside of the bootstrap (n = 200) interquartile
range for size bins and CP respectively. Mapping of bootstrap factors
to base factors in 8 periods is generally over 95%. There are no factor
swaps. The decreases in Q are all much b1%. The displacement range
of mixed sources is relatively larger than that of non-mixed sources.
Specifically, the average ratios of displacement range difference (DISP
Max - DISP Min) to contribution (Base Value) are 0.81 and 0.3 for
mixed sources and non-mixed sources respectively. G-space is helpful
to distinguish factors and verify optimal solutions. It is always consistent
with the differences of PNSD peaks of factors. For different numbers of
factors (4–10 factors) of THU-15, only the solution with 10 factors con-
tains swaps that are relatively huge compared with other solutions
without swaps and among five factors instead of only between two
factors.

For NMF, we used default parameters andmethods in the R package
NMF (Gaujoux and Seoighe, 2010; Gaujoux and Seoighe, 2018) except
setting 6 factors and 20 runs.

Unlike PCA and FA, PMF can apportion coal heating (Fig. S26). Spe-
cies percentages, trimodal ratio N/A/A and SO2/NO2 ratio can be deter-
mined as auxiliary. However, PMF still has more mixed sources than
NMF (Figs. 5 and 6). Besides, the operation speed of PMF is 11–28
times slower than NMF with ability of parallel computations (Gaujoux
and Seoighe, 2010; Gaujoux and Seoighe, 2018). True uncertainties
would really help in accounting for the confidence in measurement by
weighting individual points (Norris et al., 2014). For example, points
below detection would have less influence on the solution. However,
uncertainties input into PMF are artificially estimated (calculated) and
vary along with different estimation formulae or equations proposed
by different researchers. These estimated uncertainties themselves are
uncertain, can be higher or lower than the true uncertainties, and thus
could bring invisible or unquantifiable side effects. Therefore, the uncer-
tainties of species calculated for PMF (Thimmaiah et al., 2009) may
cause complexity because of the side effects, producing mixed sources.
For the 8 cases, uncertainty-input PMF produced 8 mixed sources
while non-uncertainty-input NMF produced nomixed sources. Actually
every source identified by receptormodelswouldmore or less contain a
fraction of other sources. It is the dominant source in a factor or type
that is named. When the dominant source is hard to determine or
the factor obviously contains multiple dominant sources, it is a mixed
source. The difference between PMF and NMF in the heating period is
slight (Fig. S27). The differences in traffic and Accumulation can be
explained by the mixed source. The main difference between the two
methods in non-heating period is Nucleation. In 2015 and 2017,
Nucleation processes could not be apportioned by PMF but would be
explained by mixed sources. Changing the number of factors
may avoid the mixed sources. For example, decreasing the number
from 6 to 4 or 5 will avoid the mixed source (F6) for the case THU-
H15 (Fig. 5).

The bases for naming the factors N1 to N6 (Fig. 6) are specified as
follows.



Table 2
Diagnostics and error estimations of PMF results.

Cases Number of
factors

Percent (%)
of absolute
scaled
residuals N3

Regression
R2

Percent (%) of
base run
profile within
bootstrap IQR

Mapping (%) of
bootstrap factors
to base factors

Counts of factor
swaps

Decrease in
Q (%)

Contribution and
displacement ranges (%)

Size
bins

CP Size
bins

CP Size
bins

CP

THU-H15 6 0.18 0.72 0.99 0.65 54.2 96.7 99.7 0 −0.001132 4.3–29.4 (0.6–41.7)
THU-NH15 6 0.39 0.74 0.96 0.43 63.6 93.3 98.2 0 −0.000944 1.6–28.8 (0.7–32.3)
IAP-H17 6 0.28 1.45 0.98 0.42 81.8 96.7 95.6 0 0 2.3–28.7 (2.1–29.8)
IAP-NH17 6 0.22 0.75 0.96 0.58 83.7 93.3 99.3 0 0 9.1–32.4 (7–33.5)
NJ-H18 6 0.12 1.07 0.99 0.35 75.1 90 95.6 0 0 5.8–25.9 (5.6–26.7)
NJ-NH18 6 0.32 1.16 0.97 0.42 100 100 100 0 0 8–24.7 (7.9–25)
NJ-H19 6 0.08 0.9 0.99 0.41 60.6 80 92 0 −0.000031 4.1–34.7 (3.4–36.3)
NJ-NH19 6 0.36 1.98 0.96 0.18 52.9 83.3 87.1 0 0 5.2–27.6 (4.4–29)
THU-H15 4 0.95 2.07 0.96 0.46 78.3 95 99.5 0 −0.000231 13.4–34.7 (9.5–39.2)
THU-H15 5 0.37 1.44 0.98 0.55 40.2 44 96.6 0 0 8.5–30.1 (7.1–34.1)
THU-H15 7 0.12 0.7 0.99 0.66 70 85.7 94.6 0 −0.002067 3–24.9 (0.5–37)
THU-H15 8 0.12 0.28 0.99 0.78 58.3 75 94.7 0 −0.279801 1.8–22.9 (0.3–35.9)
THU-H15 9 0.1 0.07 1 0.81 69.9 84.4 94.9 0 −0.002547 1.7–22.1 (0.8–35.9)
THU-H15 10 0.06 0.06 1 0.81 60.2 86 93.7 294 −0.002563 0.3–19.6 (0.1–35.2)

- Size bins include TPNC here.
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N1 is coal heating, which ismainly based on: 1. The peak of PNSD ap-
pears in the range of 100–300 nm; 2. The ratio of sulfur and nitrogen
(SO2/NO2) is high; 3. The peak of normalized contribution appears at
night; 4. The normalized contribution and the temperature are mainly
inversely correlated. The wind direction and backward trajectory
show the factor is mainly from Beijing-Tianjin-Hebei and the air mass
migration distance is short.

N2 is fresh traffic, mainly based on: 1. The peak of PNSD appears at
about 30 nm; 2. The ratio of sulfur and nitrogen (SO2/NO2) is low; 3.
The peak of normalized contribution appears at morning and evening
rush hours; 4. CMWS is high, conducive to the rapid spreadof fresh traffic
particles to the monitoring site. Longer trajectories and stronger winds
bring more fresh emissions, while shorter trajectories and weaker
winds allow emissions more aging time. Therefore, regionally, there
are much less short trajectories from west for fresh traffic than for the
two aged traffic factors (N3 and N4). Directionally, with stronger north-
west winds, the normalized contributions (NC) of fresh traffic are the
most obvious (dark red) in northwest. With weaker winds, the NC of
the two aged traffic factors are themost obvious in southeast, reflecting
the impact of the whole urban Beijing on the aged traffic in THU.

N3 is aged traffic 1. It is mainly based on: 1. The peak of PNSD ap-
pears at about 100 nm; 2. The ratio of sulfur and nitrogen (SO2/NO2)
is low; 3. The peak of normalized contribution appears at the morning
and evening rush hours; 4. The normalized contribution from the
main urban (southeast) area is strong (darker color of the rose chart)
despite low wind frequency; 5. CMWS is small, so the traffic particles
have aging time during the diffusion process.

N4 is aged traffic 2. It is mainly based on: 1. The peak of PNSD ap-
pears in the range of 30–100 nm; 2. The peak of normalized contribu-
tion appears in the morning and evening rush hours; 3. The
normalized contribution from the main urban area is strong despite
low wind frequency; 4. CMWS is small, hence there is aging time for
the traffic particles during diffusion.

N5 is Accumulation (process source), which is mainly based on: 1.
The peak of PNSD appears at above 300 nm or even 500 nm; 2. The
peak of normalized contribution appears at night; 3. The positive corre-
lation between normalized contribution and relative humidity and the
negative correlations of normalized contribution with air pressure and
wind speed are very regular in diurnal changes; 4. CMtp is the highest,
while CMth and CMWS are the lowest, indicating stagnant meteorologi-
cal condition that facilitates the Accumulation process of particles; 5. Its
contributions to CO and PM2.5 is the largest, which confirms the Accu-
mulation process.
N6 is Nucleation (process source), mainly based on: 1. The peak of
PNSD appears below 20 nm; 2. The peak of normalized contribution ap-
pears at noon; 3. The negative correlation of normalized contribution
with relative humidity and the positive correlation of normalized con-
tributions with air pressure and wind speed are diurnally regular; 4.
CMtp is the lowest, CMth and CMWS are the highest. It is a typical
windyweather with active air massmigration, which promotes the Nu-
cleation process; 5. It contributes the most to O3, which confirms the
Nucleation process.

Among these 6 sources, the particle size peak of fresh traffic is
smaller than that of aged traffic, which is consistent with the aging pro-
cess of vehicle emissions accompanied by particle growth (Liu et al.,
2020). According to CWT and wind rose, coal heating mainly comes
from neighboring cities and local areas (outside the Fifth-Ring Road),
especially in areas to southwest and southeast of Beijing. The results
of the Pollution Permeation Index (PPI) in 2015 also verified the input
of SO2 (important marker of coal burning) from these directions to Bei-
jing, namely Baoding (to the southwest of Beijing) and Tangshan (to the
southeast of Beijing) are the donors of SO2, while Beijing is the SO2 re-
ceptor (Liang et al., 2016b).

Considering time cost, the PMF calculation program
me2gfP4_1345c4.exe is not as reasonable as the nmf function of R's
NMF package. NMF is the best and advised to be adopted in PNC source
apportionment because NMF produces more certain results and runs
significantly faster than PMF that is better than k-means clustering,
PCA, and FA.

3.4. Source apportionment

Results of NMF applied to the other 7 cases are shown in Figs. S28–
S34. N/A/A ratio complements the shortcomings of PNC peaks in quan-
tifying the structures of three modes. SO2/NO2 ratios are generally
higher in heating periods than in non-heating periods. In heating pe-
riods, SO2/NO2 ratios of coal heating are generally the highest among
all sources.

The contributions of NMF factors are between 8.9% and 22.6%
(Fig. S35). The contributions of traffic vary much more in heating pe-
riods (54.4%–78.5%) than in non-heating periods (68.1%–74.4%)
(Fig. 7). Coal heating generally contributes less and less year by year
from 2015 to 2019. The change of coal heating contribution between
2017 and 2018 is the most obvious, demonstrating the efficiency of ro-
bust measures such as “2+ 26 cities” taken since 2017 (Chen and Chen,
2019). One of the goals of this measure is to shift coal to gas and



Fig. 5. PMF results in heating period of 2015 with different numbers of factors.
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electricity. At ordinary sites THU and IAP, daytime Nucleation can be ap-
portioned, while at NJ it cannot, indicating the difficulty of daytime new
particle formation (NPF) at traffic site. However, nighttimepeaks of par-
ticles below 20 nm are easy to occur at NJ (Figs. S31–S34). We set high
requirements for episode classification in the examples, which can be
changed to get more episodes. THU and IAP have much lower PNC of
Nucleation (Fig. 3b), so the Nucleation episodes (can occur in both day-
time and nighttime) are many fewer (only one) in THU and IAP
(Fig. S16), compared with NJ.

With the increase of the sample size, the advantages of NMF in factor
discrimination and parallel computing running speed becomemore ob-
vious and important, making NMF suitable for popularization.

3.5. Typical sources in heating periods

3.5.1. Traffic and coal heating
Traffic correlatesmost stronglywith particles of 30–100 nmand coal

heating correlates most strongly with particles of 100–300 nm (Fig. 8).
In the transportation site (year 2019), traffic also correlates most
strongly with particles below 30 nm. The correlation of traffic with
NO2 is much weaker than the correlation of coal heating with SO2

(Fig. S36). Meanwhile, coal heating is more positively correlated with
SO2/NO2 than traffic is. Coal heating and traffic are approximately sym-
metric about the line R=0, indicating the distinct types of the sources.

3.5.2. Nucleation and Accumulation
Comparedwith ordinary sites (years 2015 and 2017), the correlation

of O3 with particles below 30 nm in the transportation site (year 2019)
is much weaker (Fig. S37). As its counterpart, there is no Nucleation
source (for the particles below 30 nm) in transportation site. Only day-
time Nucleation concentration peaks are regarded as the result of Nu-
cleation source in this work. However, the strong correlations of PM2.5

with particles above 100 nm are very alike among the three cases in-
cluding ordinary and transportation sites. Correspondingly, there are
Accumulation sources in the three different sites. In transportation
site, PM2.5 is partially strongly correlatedwith particles below30 nmbe-
sides above 100 nm, suggesting the partial homology (same source
type) of emitting small particles and big particles in transportation
site. Nucleation is much more positively correlated with O3 and Accu-
mulation is much more positively correlated with PM2.5 (Fig. S38). The



Fig. 6. NMF results in heating period of 2015.
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correlation coefficients of Accumulation and Nucleation with O3 and
PM2.5 are generally opposite numbers, showing that Accumulation
and Nucleation represent different sources and processes in ordinary
sites.
Fig. 7. Variation of sources by NMF.
3.5.3. Actual impact of coal heating
Coal heating is regional for its wide use in north China and contribu-

tion to particles bigger than 100 nm, so its interannual trend from the
three sites within a 15 km radius is convenient to assess. For the three
modes, both coal heating and PM2.5 are most relevant to the Accumula-
tionmode (Figs. S39 and S40). According to these realities, the impact of
coal heating from the perspective of big particles can be investigated.
Specifically, the contributions can be normalized by big particles.

Based on the fraction of Accumulation FAccu and the contribution
percentage to total concentration TPNC (PTPNC), the normalized contri-
bution percentages are defined as follows:

Accumulation normalized contribution percentage:

FAccu ¼ Accu=TPNC ð8Þ

PAccu ¼ PTPNC � FAccu=mean FAccuð Þ ð9Þ

PM2.5 normalized contribution percentage:

PPM2:5 ¼ PAccu � PM2:5=mean PM2:5ð Þ ð10Þ



Fig. 8. Hour of day variation of correlation of size bins with SO2, NO2, traffic and coal heating in heating periods.
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In terms of PTPNC, the contribution of coal heating decreased by 40.2%
from 20.4% in 2015 to 12.2% in 2019 (Fig. 9). While according to PAccu,
the contribution of coal heating decreased by 74.4% from 27% in 2015
to 6.9% in 2019. Furthermore, referring to PPM2.5, the contribution of
coal heating decreased by 85.5% from 35.8% in 2015 to 5.2% in 2019.
These decreases suggest the coal control for winter particle pollution
has been very effective in recent years.

3.5.4. Abundance of Nucleation episodes and absence of Nucleation sources
in transportation site

There are Nucleation sources in ordinary sites with no (THU) or few
(IAP) Nucleation episodes but no Nucleation sources in transportation
site with almost all Nucleation episodes (Figs. S35, 7, S37, S38, and
S16). On the one hand, the PNC were uniformly percent rank normal-
ized in all sites, while the PNC of Nucleation mode in transportation
site ismuch higher than those in ordinary sites (Fig. S40). Consequently,
Nucleation episodes based on percent rank normalization almost only
exist in transportation site. If the normalization is grouped by sites,
namely separately normalized for individual sites (one by one), there
will be 13 more Nucleation episodes in ordinary sites while only 7
more Nucleation episodes in transportation site (Figs. S41 and S16).
Fig. 9. Big particle normalized contributions of coal heating to TPNC in heating periods.
On the other hand, concentrations of Nucleation mode in ordinary
sites peak atmidday and rush hours,while in transportation site theNu-
cleation concentration peaks at nights (Fig. 3b). However, only daytime
(photochemical) Nucleation concentration peaks are regarded as the re-
sult of Nucleation source here and nighttime (aqueous, heterogeneous
or hygroscopic) ones are not, therefore Nucleation sources were not ap-
portioned in the transportation site.

There could be NPF (noontime Nucleation process) sources in the
transportation site (NJ). However, comparedwith nighttimeNucleation
process, the noontimeNucleation process ismuchweaker since the Nu-
cleation concentrations are lowest at noontime and the GMD peaks at
noontime in NJ (Fig. 3b). In NJ, the highest PNC levels of Nucleation par-
ticles from big trucks at night are further supplemented by commuting
vehicles during rush hours. Therefore, when they hit bottom at noon-
time, the remaining traffic Nucleation particles are still so abundant
that they could largely conceal NPF. In other words, the noontime Nu-
cleation process is relatively (compared with traffic Nucleation parti-
cles) so weak that observing NPF is difficult in NJ. Besides, high PNC
levels of pre-existing particles have high condensation and coagulation
sinks that can suppress NPF (Kulmala et al., 2004; Nie et al., 2014). Con-
sequently, the remaining traffic Nucleation particles are still so abun-
dant at noontime that they could suppress NPF.

3.6. Methodological implications for further PNC source apportionment
studies

The contributions of this work to further PNC source apportionment
studies may include:

1) Introduction of NMF with fast speed and obvious discrimination of
factors. The volume of long-term PNC data with around 100 size
bins is huge, especially when the time resolution is 5min or so. Run-
ning speed of receptor model for PNC source apportionment is vital.
NMF is qualified in speed for its parallel computing. Moreover, NMF
shows advantage in factor discrimination that is also important for
PNC source apportionment.

2) Proposals of concepts of contribution moment and big particle nor-
malized contribution. Contribution moment quantifies the impact
of meteorological parameters such as wind and trajectory. It explic-
itly shows the degree of meteorological effect onmidday Nucleation
and nighttime Accumulation processes. Big particle normalized con-
tribution quantitatively links TPNC with number concentrations of
different modes and particle mass concentrations (PMC) regarding
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the contributions of sources. The PM2.5 normalized contribution is
highly consistent with the published results of studies based on
chemical composition and mass contribution (Chen et al., 2019;
P.F. Liu et al., 2017).

3) Comparison of advantages and disadvantages of 5 receptor models.
Based on the actual performance of basic functions of each source
apportionment receptor model, their advantages and disadvantages
can be compared (Table 3). This would be helpful to future PNC
source apportionment studies. Combining the advantages of NMF
in speed and discriminating factors and the advantages of PMF in so-
lution optimization is ideal. More ideally, the speed of NMF could
also be improved to meet the future requirement from real-time
PNC source apportionment. Besides, the solution optimization tools
should be improved by thoroughly considering the features of PNC
data and the specific emissions around sites to narrow the gap be-
tween mathematical results and real situations.
4. Conclusions

Based on the PNC data of 3 sites in Beijing involving 33months from
2015 to 2019 and auxiliary data of CP, Met, and Traj, we developed a se-
ries of efficient methods for data preprocessing, episode classification,
and source apportionment of PNC.
Table 3
Comparison of 5 receptor models for PNC source apportionment.

Models Advantages Disadvantages

k-means
clustering

- Ratios of species can be
calculated;
- Extremely fast.

- Very low discrimination of
concentrations;
- Low discrimination of peak particle
sizes;
- Source apportionment by time
classification is not practical.

PCA - Extremely fast. - Cannot apportion coal heating;
- Ratios of species cannot be calculated
(contains negative component
loadings);
- Produces mixed source(s).

FA - Extremely fast. - Cannot apportion coal heating;
- Ratios of species cannot be calculated
(contains negative factor loadings;
- Produces mixed source(s).

PMF - High discrimination of
concentrations;
- High discrimination of
peak particle sizes;
- High discrimination of
ratios of species;
- High discrimination of
contribution moments;
- Can apportion coal
heating;
- Multiple solution
optimization tools.

- Produces mixed source(s);
- Lacks alternative matrix factorization
algorithms;
- Base run is very slow;
- BS-DISP (Bootstrap-Displacement) is
extremely slow.

NMF - High discrimination of
concentrations;
- High discrimination of
peak particle sizes;
- High discrimination of
ratios of species;
- High discrimination of
contribution moments;
- Can apportion coal
heating;
- Produces no mixed
source(s);
- Multiple alternative
matrix factorization
algorithms;
- Very fast (parallel
computing).

- Lacks some of the solution
optimization tools that PMF has.
For data preprocessing, we developed newmethods such as the au-
tomatic identification of consecutive NA for more than half an hour
based onmoving averages and the point-by-point considered outlier re-
moval based on conditional extremum, after overcoming the shortcom-
ings of previous methods that delete too many values, delete
inadequately, or generate new outliers. In the original data, there are
too many NA at both ends of the particle size, observations with too
many consecutive NA in time series, and outliers in each particle size
bin. Our developed preprocessing method worked well by firstly delet-
ing unqualified variables and observations, then removing outliers, and
finally interpolating for NA. They delete less values, delete more
completely, and generate no new outliers.

For characteristics analysis (mainly episode classification), we put
forward the definition and automatic division method of PNC pollution
episodes, revealed the pollution law involving all parameters, and com-
piled simple algorithms of GMD and CMD. The episode classification is
very flexible. Concentration thresholds are based on percent ranks,
which allow convenient comparisons of PNC despite the lack of stan-
dards. According to the general situations of pollution, users can get dif-
ferent numbers (vary with strictness) of episodes by adjusting
threshold windows, duration hours, and trend constraints.

Based on NMF, coupled with the newly-proposed contribution
moment and big particle normalized contribution, an efficient PNC
source apportionment and assessment system has been established.
For source apportionment of hourly averaged PNC here, k-means
clustering, PCA, and FA are not so suitable, while PMF and NMF are
both suitable. NMF is more certain in results and runs much faster
than PMF. Typical sources of heating periods in Beijing include Nu-
cleation, traffic, coal heating, and Accumulation. The PNC source ap-
portionment can well reflect the sources of particles below 100 nm,
especially traffic sources. In 2017, the contribution of traffic to
TPNC was 68%, which was 23% (relatively 51%) higher than the
local contribution of traffic to PM2.5, namely 45% (Hou, 2018). From
the perspective of TPNC that mainly represent the total concentra-
tion of small particles below 100 nm, the contribution of coal heating
has decreased by a small part (40%) from 2015 to 2019. However,
from the perspectives of Accumulation mode and PM2.5 that mainly
represent big particles above 100 nm, the contribution of coal
heating has decreased by amajor part (around 80%). These decreases
suggest the effectiveness of coal burning control for winter particle
pollution in recent years. Overall, this method system can not only
apportion the sources of PNC that mainly represent particles below
100 nm, but also help to explain the sources of PMC that mainly rep-
resent particles above 100 nm. The general suggestion for future
studies is to take full advantage of NMF's matrix factorization and ab-
sorb PMF's self-evaluation tools (diagnostics and error estimation)
in parallel computing, especially in the continuously perfected
open source platform R since it includes abundant and powerful
functions for developing efficient and tailored methods for PNC
data. Similarly, the EPA PMF can be improved by absorbing the ad-
vantages of NMF's matrix factorization and parallel computing.
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