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A B S T R A C T

Atmospheric particulate matter (PM) that have particle diameter less than 2.5 μm (PM2.5) are hazardous to
public health whose concentration has been either measured on the ground or inferred from satellite-retrieved
aerosol optical depth (AOD). The latter is subject to numerous sources of errors, making the satellite retrievals of
PM2.5 highly uncertain. This study developed an ensemble machine-learning (ML) algorithm for estimating
PM2.5 concentration directly from Advanced Himawari Imager satellite measured top-of-the-atmosphere (TOA)
reflectances in 2016 integrated with meteorological parameters. The algorithm is demonstrated to perform well
across China with high accuracies at different temporal scales. The model has an overall cross-validation
coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 17.3 μgm−3 for hourly PM2.5

concentration estimation. Such accuracies of the estimation on PM2.5 concentration by using TOA reflectance
directly are comparable with those of the common methods on estimating PM2.5 concentration by using satellite-
derived AODs, but the former has a relatively stronger predictive power relating to spatial-temporal coverages
than the latter. Annual and seasonal variations of PM2.5 concentration over three major the developed regions in
China are estimated using the model and analyzed. The relatively stronger predictive ability of developed model
in this study may help provide information about the diurnal cycle of PM2.5 concentrations as well as aid in
monitoring the processes of regional pollution episodes and the evolution of PM2.5 concentration.

1. Introduction

Atmospheric particulate matter (PM) that have diameters of less
than 2.5 μm (PM2.5) are air pollutant. Epidemiological studies have
revealed significant correlation between the PM2.5 concentration and
premature death, cardiovascular diseases, and respiratory diseases (e.g.
Kan and Chen, 2002; Lelieveld et al., 2015). Atmospheric aerosols
significantly affect Earth's climate by affecting radiation budgets, cloud
properties, precipitation and water cycle processes (e.g. Ramanathan
et al., 2001; Rosenfeld et al., 2008; Liu et al., 2012; Fan et al., 2015; Li
et al., 2016, 2017; Liu and Li, 2018). PM2.5 is one of the primary air
pollutants in the rapidly growing megacities of developing countries
such as China, garnering increasing attention from the government and
public alike (e.g. Ma et al., 2016; Yu et al., 2017). The sparse spatial
coverage of surface PM2.5 monitoring sites, especially in rural regions,
in China (MEPC, 2015), limits our ability to capture and evaluate the
dynamics of air pollution and pursue health- and environment-related
studies, as well for making sound policies.

In compensating for the inadequate spatiotemporal coverage of
PM2.5 monitoring sites, many attempts have been made for PM2.5 es-
timation from satellite-retrieved aerosol optical depth (AOD) with dif-
ferent approaches, including satellite AOD and atmospheric chemical
model simulations joint approaches (e.g. Liu et al., 2004; Geng et al.,
2015; Van Donkelaar et al., 2010; Van Donkelaar et al., 2013), statis-
tical approaches (e.g. Engel-Cox et al., 2004; Lee et al., 2011; Ma et al.,
2014) and physical methods incorporating aerosol particle size in-
formation (e.g., fine mode fraction, or FMF), aerosol vertical distribu-
tion and aerosol swelling effect, etc. (Lin et al., 2015; Zhang and Li,
2015). The performance of atmospheric chemical model simulations is
strongly affected by the meteorological dynamics that drive chemical
transport, emission inventory, and reaction mechanisms (Zhang and Li,
2015). The accuracy of physical models is strongly influenced by un-
certainties in the estimations of aerosol properties, such as hygroscopic
growth, the mass extinction efficiency, etc. Although statistical ap-
proaches have inherent problems (e.g. a model may not be applicable to
different locations), they can usually estimate the PM2.5 concentration
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with an acceptable accuracy (Liu, 2014; Li et al., 2017a). Previous
studies have attempted to predict surface PM2.5 concentration using the
linear/non-linear statistical models by directly establishing the PM2.5-
AOD relationship (e.g. Engel-Cox et al., 2004; Liu et al., 2007; Zhang
et al., 2009; Sorek-Hamer et al., 2013) and using the advanced statis-
tical models by incorporating satellite-derived AOD and more related
variables, such as meteorological parameters, land use information,
emission and so on (e.g. Liu et al., 2009; Lee et al., 2012; Xie et al.,
2015; Hu et al., 2013; Song et al., 2014; Ma et al., 2016; You et al.,
2016a, 2016b; Fang et al., 2016; Lv et al., 2016, 2017; Yu et al., 2017).

In addition to the conventional statistical models, machine learning,
a subdivision of artificial intelligence, is likely one of the best options to
address the complex nonlinear relationship among AOD, PM2.5 and
related variables, and generally achieve an outstanding predictive
performance (Breiman, 2001; Zhan et al., 2017). Recently, several
different machine learning algorithms have been applied on the sa-
tellite-based PM2.5 concentration estimation, including without limita-
tion, the artificial neural network model (e.g. Feng et al., 2015), the
back-propagation neural network (e.g. Gupta and Christopher, 2009),
the generalized regression neural network (e.g. Li et al., 2017b), the
geo-intelligent deep belief network (e.g. Li et al., 2017a), and support
vector regression (e.g. Hou et al., 2014). Random forests, a type of
ensemble machine learning algorithms, have been widely used for
nonparametric regression analysis with competitive accuracy (Hu et al.,
2017). Unlike many other machine learning algorithms (e.g., the deep
belief network, the gradient boosted machine), the random forest is
very user-friendly and has only two parameters to fine-tune to achieve
excellent performance (Liaw and Wiener, 2002).

The above studies generally use satellite-retrieved AOD integrated
the other variables, such as meteorological variables, land-cover in-
formation, road information, emission, etc. as additional predictors.
AOD is retrieved from satellite-measured top-of-the-atmosphere (TOA)
reflectances based on different methods such as the Dark Target (Levy
et al., 2013). Ristovski et al. (2012) retrieved AOD from MODIS ob-
servations using a neural network with a satisfactory accuracy. The
results suggest the possibility of estimating PM2.5 concentrations using
TOA reflectances directly rather than AOD retrievals, which possibly
circumvent many sources of retrieval uncertainties in the retrievals of
AOD (Li et al., 2009).

This study aims to develop a model based on random forest algo-
rithm by incorporating TOA satellite reflectances from a geostationary
satellite and meteorological parameters for estimating hourly PM2.5

concentration. Given the heavy and highly variable air quality condi-
tion in China, it is an ideal testbed and we thus choose the region for
our study. The model is evaluated using cross validation and several
statistical indicators, and the spatial distribution and seasonal varia-
tions in PM2.5 concentration in three developed regions of China are
examined. In the following sections, data and methods are described
first. The results and discussion follow. Conclusions are given in last.

2. Dataset and methodologies

2.1. Data

2.1.1. Satellite products
The Advanced Himawari Imager (AHI) onboard the Himawari-8 sa-

tellite, the eighth satellite in a series of Himawari geostationary weather
satellites of Japan, can measure the TOA reflectances at six visible/near-
infrared wavelengths and brightness temperatures at ten infrared wave-
lengths over the East Asia. Level 1B full-disk calibrated reflectance pro-
ducts and Level-2 AOD products with 5-km spatial and 10-min temporal
resolutions were downloaded from the Japan Aerospace Exploration
Agency P-Tree system (ftp://ftp.ptree.jaxa.jp/). Compared with the polar-
orbiting satellites (e.g. Terra and Aqua), which only supply the “snapshot”
observations once or twice per day over a particular location, the high
temporal resolution of AHI satellite measurements is useful for capturing

the diurnal cycle and general evolution of PM2.5. TOA reflectances at
0.47 μm, 0.64 μm, and 2.3 μm are typically used to retrieve AOD through
an atmospheric radiative transfer model based on the Dark
Target algorithm (Kaufman et al., 1997). The satellite-measured TOA
spectral reflectance at a given wavelength is mainly attributed to the re-
flection of radiation from the surface and scattering of radiation within the
atmosphere without interaction with the surface. The latter is related to
the aerosol type and loading (AOD). A lookup table (LUT) which contains
pre-computed TOA reflectances is derived using an atmospheric radiative
transfer model for a set of aerosol and surface parameters. Surface re-
flectance in the short-wavelength infrared (e.g., 2.11 μm), the scattering
angle, and the “greenness” of the surface in the mid-IR spectrum de-
termines the surface contribution at visible wavelengths. The AOD is de-
rived by finding the best match between the spectral reflectance from the
LUT and the satellite-measured reflectance. In this study, TOA reflectances
at these three wavelengths and four observation angles (solar zenith angle
(SZA), solar azimuth angle (SOA), satellite zenith angle (SAZ), and satellite
azimuth angle (SAA)) are used to initially build the random forest model
to calculate surface PM2.5 concentration. For comparison purposes, AODs
with the highest confidence (“very good” of confidence levels) from the
Himawari-8 level 2 product are also used to build the random forest
model. Level-2 AOD products also contain cloud mask information which
is used to remove cloud-contaminated TOA reflectances.

2.1.2. Surface PM2.5 concentration
PM2.5 concentration at ∼1500 sites over mainland China from

January 1, 2016 to December 31, 2016 (Fig. S1) are extracted from the
website of China National Environmental Monitoring Center (CNEMC).
PM2.5 mass concentrations were measured with a tapered element os-
cillating microbalance with an accuracy of± 1.5 μgm−3 and± 0.5
μgm−3 for hourly and daily averages, respectively. The minimum
detectable limit of the hourly averaged PM2.5 concentration is
0.06 μgm−3. Hourly averaged PM2.5 concentrations are used and
missing data (values recorded as NA) and values lower than the de-
tectable limit are removed.

2.1.3. Meteorological variables
The surface atmospheric pressure (P, hPa), total column water

(TCW, kg m−2), 10-m u-wind (U10) and v-wind (V10) component, air
temperature at an altitude of 2m (T, K), total column ozone (kg m−2),
relative humidity (RH, %), and planetary boundary layer height (PBLH,
m) were obtained from the ERA-Interim reanalysis. The meteorological
variables were selected based on many previous studies (e.g., Ma et al.,
2014; Li et al., 2017; Su et al., 2018, etc.) that have revealed those
factors having a significant influence on PM2.5 and its relationship with
AOD. Also considered where the physical mechanisms of AOD retrievals
from satellite TOA reflectances (e.g., Kaufman et al., 1997; Levy et al.,
2013). Most of the variables are routinely observed and easy to acquire.
PBLH, P, and T are related to atmospheric stability, which influences
the vertical distribution of pollution. Temperature also affects the
physical properties and chemical composition of aerosols by influencing
the aerosol formation (Price et al., 2016). Wind can influence the
horizontal transport of pollution, and RH can affect the particle size and
the extinction of radiation in the atmosphere. The total column ozone
and total column water are considered because of their potential in-
fluence on the AOD retrievals from TOA reflectance (e.g. Levy et al.,
2013). Except for the PBLH, which is available at 00:00 and 12:00 UTC,
all other data are operationally produced four times daily starting at
00:00 UTC in six-hourly intervals. These data are gridded in the
0.125°× 0.125° spatial resolution.

2.2. Methods

We first collocated AHI measurements, surface PM2.5 concentra-
tions, and meteorological variables to generate the training dataset.
Then the random forest model was fitted by applying it to the training
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dataset. In model fitting, the modeling dataset was used in both the
model fitting and the model validation. The best parameters of the
model were determined by adjusting them until the best prediction
accuracy was achieved. This procedure does not account for the over-
fitting problem. Ten-fold cross validation (CV) was then used to further
adjust the model to avoid the over-fitting problem. The resulting model
was finally used to estimate hourly surface PM2.5 concentrations at the
AHI pixel level.

2.2.1. Data processing
We collocated AHI reflectance measurements, AOD, cloud mask

data, and ECMWF meteorological variables at each surface PM2.5 site
falling within intersecting AHI and ECMWF grids. The reflectance and
AOD under cloud-free conditions are averaged over the same hourly
observational period at each PM2.5 site. Daytime samples with SZAs less
than 80° and the reflectance at all six wavelengths ∈ (0, 1) are collected.

The surface reflection of radiation significantly contributes to the
TOA reflectance. The normalized difference vegetation index (NDVI)
can reflect the land surface properties and is heavily affected by aerosol
loading. The NDVISWIR, the difference between reflectance at 1.24 and
2.12 μm divided by the sum of reflectance at 1.24 and 2.12 μm, which is
less affected by aerosols than the traditional NDVI, is used in the MODIS
Dark Target algorithm (Gupta et al., 2016). Since AHI lacks a 1.24-μm
channel, the 0.86-μm reflectance is used instead to calculate NDVISWIR

as follows:

=
+

NDVI 0.86 2.26
0.86 2.26SWIR (1)

where 0.86 and 2.26 are the AHI-measured reflectances in the 0.86-
μm and 2.26-μm channels under cloud-free conditions (Aerosol Product
Application , 2012).

2.2.2. Model development and validation
Random forest algorithms create multiple decision trees by means of

extracting the bootstrap samples from the whole training dataset. At
each node of tree, the best split is chosen from among a random subset
of all predictors at that node, and then used to construct that tree.
Finally, a majority vote or average is applied to the prediction. At each
bootstrap iteration, the algorithm uses the predictions of out-of-bag
(OOB) samples (i.e., data not in the bootstrap samples) to calculate the
error rate (Liaw and Wiener, 2002).

The random forest model used here was developed by incorporating
TOA reflectances, observation angles, and meteorological variables to
simulate the PM2.5 concentration (referred to as the Ref-PM2.5 model).
For comparison purposes, a random forest model was also developed
based on the AOD and meteorological variables (referred to as the AOD-
PM2.5 model). The input variables for the Ref-PM2.5 model are PM2.5

concentrations (as the “true value”), AHI-measured TOA reflectances at
three wavelengths (0.47, 0.64, and 2.3 μm), observation angles (SZA,
SOA, SAZ, and SAA), the latitudes and longitudes of monitoring sites,
all meteorological variables from the ERA-Interim reanalysis, NDVIS-
WIR, and dummy variables (month, day, and hour of observations).
Latitudes, longitudes, and dummy variables were included to capture
the spatial-temporal variations in the Ref-PM2.5 and AOD-PM2.5 re-
lationship due to meteorological conditions (Hu et al., 2017).

Other than other machine learning algorithms (e.g., the deep belief
network, the gradient boosted machine), the random forest algorithm
has only a few parameters to fine-tune to achieve optimal performance.
The most important parameters are the number of trees to grow (ntree),
and the number of variables randomly sampled as candidates at each
split (mtry). The best parameters of the model were determined by
changing the values of ntree and mtry until achieving the best prediction
accuracy. Comparisons of results generated by the different settings
showed that the best performance was achieved when ntree and mtry

were assigned values of 1000 and 11, respectively. These values were
thus used in the study.

The 10-fold cross-validation (CV) method was then used to check
the over-fitting problem and to assess the robustness of the model and
its dependence on the subset of training data as used in the many
previous studies (e.g. Ma et al., 2016; Li et al., 2017a, etc.). The training
dataset was first randomly split into 10 subsets with ∼10% of the
training data in each subset. Then 9 of the 10 subsets were used for the
model training, and the remaining subset was used to validate the
model performance. This procedure was repeated 10 times so that every
subset was tested. The model performance is then quantitatively eval-
uated using several statistical indicators, including the coefficient of
determination (R2), the root-mean-square error (RMSE, μg m−3), and
the mean prediction error (MPE, μg m−3), between CV estimated and
surface-observed PM2.5 concentrations. The indicators are calculated as
follows:

= =

=

R
PM i PM i

PM i PM
1

( ( ) ( ))

( ( ) )
i
n obs mod

i
n obs obs

2 1 2.5 2.5
2

1 2.5 2.5
2

(2)

=
=
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n

PM i PM i1 ( ( ) ( )
i

n
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2

(3)

and

=
=

MPE
n

PM i PM i1 ( ) ( )
i

n
obs mod

1
2.5 2.5

(4)

where n is the total number of samples; PMobs
2.5 and PMmod

2.5 are the sur-
face-observed and model-estimated PM2.5 concentrations, respectively.
PMobs

2.5 is the mean value of the surface-observed PM2.5 concentration.

3. Results

3.1. Statistical characteristics

Table S1 lists the seasonal and annual statistical properties of the
Ref-PM2.5 modeling variables in the training dataset. The PM2.5 con-
centration ranges from 1 to 1000 μgm−3 with annual mean and stan-
dard deviation of 49 μgm−3 and 45 μgm−3, respectively. Annual mean
(standard deviation) of TOA reflectances at 0.47 μm, 0.64 μm, and
2.3 μm are 0.28 (0.10), 0.20 (0.08), and 0.15 (0.06), respectively.
Wintertime mean PM2.5 concentration and TOA reflectance values are
the highest values. Spring and fall mean values are similar, and sum-
mertime values are the lowest values. Since the spatial and temporal
variabilities of the samples are very larger, the range in magnitude of
the model variables is also broad.

The Pearson correlation coefficients for all variables are calculated
to examine the potential correlation between the predictors and the
prediction (Table S3). Results show that the correlation between most
of the variables is relatively weak. Note that the random forest algo-
rithm can cope with the problems of complex interactions and is ap-
plicable to highly correlated predictor variables (Strobl et al., 2008; Hu
et al., 2017).

3.2. Model performance

Fig. 1 gives the model fitted and CV results of the Ref-PM2.5 (top
panels) and AOD-PM2.5 models (low panels). The observed and Ref-
PM2.5-model-estimated hourly PM2.5 concentration is highly correlated
(p value < 0.01), which accounts for 86% of the variability
(R2= 0.86) in the model fitting (Fig. 1a). The RMSE and MPE of the
model fitted results are relatively low with the value of 16.8 μgm−3

and 10 μgm−3, respectively. The CV results seen in Fig. 1b suggest no
substantial overfitting of the Ref-PM2.5 model (R2= 0.86). Comparing
to the model fitting results, the RMSE and MPE of CV results only in-
crease by 0.4 μgm−3 and 0.3 μgm−3 with the values of 17.2 μgm−3

and 10.3 μgm−3, respectively. The R2 of the model fitting and CV for
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the AOD-PM2.5 model (Fig. 1c and d) is also 0.86. The overall RMSE and
MPE are 17 μgm−3 and 10 μgm−3 for model fitting and 17.3 μgm−3

and 10.3 μgm−3 for model CV, respectively. The performances of Ref-
PM2.5 model is highly consistent with that of AOD-PM2.5 model, sug-
gesting that PM2.5 concentrations can be estimated accurately from
TOA reflectances in the Ref-PM2.5 model.

Table 1 gives the CV results of the Ref-PM2.5 model for each season,
which indicated that the model prediction accuracy varies by season. In
terms of CV R2 values, the model has the best performance in winter
(December, January, and February, or DJF), followed by fall (Sep-
tember, October, and November, or SON) and spring (March, April, and
May, or MAM), and the worst in summer (June, July, and August, or

JJA) with values of 0.86, 0.85, 0.83, and 0.72, respectively. The
smallest (largest) RMSE and MPE values are found in summer (winter),
partly because PM2.5 concentrations are at their lowest (highest) then
(Li et al., 2015; Ma et al., 2014). The seasonal mean CV-model-simu-
lated PM2.5 concentration is highly comparable to the seasonal mean
surface PM2.5 concentration.

The spatial distributions of the CV R2 and RMSE of the Ref-PM2.5

model are shown in Fig. 2. The probability density functions (PDFs) and
cumulative density functions (CDFs) of the CV R2 and RMSE are shown
in Fig. 3. Fig. 2a shows that CV site-specific R2 are generally high with
most of the values higher than 0.8 over east/central-east China and are
low over western China where surface PM2.5 sites are scarce, especially

Fig. 1. Scatter plots of the results of the model fitting and cross validation (CV) using the Ref-PM2.5 model (top panels) and the AOD-PM2.5 model (bottom panels).
The color bar shows the counts of data points. The dashed line is the 1:1 line. N: number of samples; R2: coefficient of determination; RMSE: root-mean-square error
of the predictions (μg m−3); MPE: mean prediction error (μg m−3). (For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Table 1
Results from the ten-fold cross validation of the Ref-PM2.5 model for different seasons and for different times (local) of the day.

N R2 RMSE (μg m−3) MPE (μg m−3) Slope Estimated PM2.5 (μg m−3) Observed PM2.5 (μg m−3)

MAM 400996 0.83 16.0 10.2 0.78 48.5 ± 33.3 48.0 ± 38.9
JJA 367704 0.72 11.4 7.4 0.73 31.5 ± 16.2 31.2 ± 21.1
SON 311912 0.85 16.3 10.1 0.79 49.0 ± 35.6 48.5 ± 41.3
DJF 399861 0.86 22.7 13.1 0.82 67.9 ± 54.0 67.3 ± 61.1
08:00–09:00 133116 0.84 17.2 10.7 0.81 54.7 ± 37.7 54.0 ± 42.7
09:00–10:00 155430 0.85 19.0 11.1 0.81 58.3 ± 43.3 58.4 ± 49.4
10:00–11:00 158646 0.87 19.0 11.3 0.81 58.8 ± 44.8 58.6 ± 51.2
11:00–12:00 155206 0.84 20.4 12.1 0.80 57.6 ± 44.4 56.8 ± 51.1
12:00–13:00 153382 0.85 19.7 11.5 0.79 53.3 ± 43.0 53.4 ± 49.8
13:00–14:00 146520 0.89 16.3 9.8 0.83 49.6 ± 42.1 49.4 ± 47.4
14:00–15:00 146474 0.88 15.7 9.4 0.84 46.9 ± 40.5 45.8 ± 45.0
15:00–16:00 136342 0.86 15.5 9.4 0.82 43.2 ± 36.6 42.4 ± 41.3
16:00–17:00 109711 0.81 14.0 8.6 0.77 36.5 ± 27.2 35.7 ± 31.8
17:00–18:00 60454 0.75 12.1 7.6 0.74 28.3 ± 19.8 27.7 ± 23.9

MAM: March, April, May; JJA: June, July, August; SON: September, October, November; DJF: December, January, February; N: number of samples; R2: coefficient of
determination; RMSE: root-mean-square error; MPE: mean prediction error.
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over the Tibetan region. The CV R2 of all sites varies from 0.25 to 0.97
with more values located between 0.8 and 0.95. The CDF of R2 shows
that approximately 70% of the sites have CV R2 values higher than 0.8
(Fig. 3a). Fig. 2b shows that CV RMSE values are less than 20 μgm−3 at
most sites. Relatively high RMSE values are found over northern China,
such as in Hebei, Shanxi, Henan, and Shandong provinces, where PM2.5

concentrations are generally high. The PDF and CDF of site-specific CV
RMSEs of hourly PM2.5 concentrations (Fig. 3b) show that values range
from 4.7 to 51.8 μgm−3. More than 80% of PM2.5 sites have CV RMSE
values lower than 20 μgm−3. The histogram of the bias of model CV
estimated PM2.5 concentration, defined as the model-estimated PM2.5

concentration minus surface-measured PM2.5 concentration, shows that
the distribution of the bias is centered on ∼0 μgm−3 (Fig. S2). About
88% and 66% of monitoring sites have an absolute bias of less than
20 μgm−3 and 10 μgm−3, respectively. It suggests that the predication
accuracy of the Ref-PM2.5 model is relatively high in the central-eastern
of China and low in southwest China, which is consistent with the
previous studies from other machine learning models (e.g. Ma et al.,
2014; Fang et al., 2016; Li et al., 2017a). Overall, the Ref-PM2.5 model
has high performance on PM2.5 prediction for the most surface sites.

Table 1 gives the CV results of Ref-PM2.5-model-simulated and
surface-observed PM2.5 concentration for hours from 8:00–18:00 local
time (LT). The CV R2 ranges from 0.75 to 0.89 for different hours with
the highest R2 occurring from 13:00 to 14:00 LT and the lowest R2

occurring from 17:00 to 18:00 LT. During the day, CV RMSE values vary
from 12.1 to 20.4 μgm−3 and MPE values vary from 7.6 to
12.1 μgm−3. The results indicate that mean value of CV Ref-PM2.5-
model-estimated and surface-observed PM2.5 concentrations are con-
sistent at all hours. The high R2 and low RMSE and MPE values for all
hours during the day suggest that the Ref-PM2.5 model can estimate

hourly PM2.5 concentrations well, offering a way of examining the
diurnal cycle of PM2.5 concentration so that its evolution over time can
be better understood.

The model performance at different timescales is also evaluated.
Fig. 4 shows the cross validation of model-estimated PM2.5 concentra-
tions as a function of ground-measured PM2.5 concentration at different
timescales. At the daily timescale, the Ref-PM2.5 model explains 93%
(R2= 0.93) of the variability in PM2.5 concentration (Fig. 4a). Fig. 3a
shows that the CV site-specific R2 at the daily timescale ranges from
0.40 to 0.98 with nearly 80% of PM2.5 sites having CV R2 values higher
than 0.8. The overall RMSE and MPE values for daily PM2.5 con-
centrations are 11.8 μgm−3 and 7.6 μgm−3, respectively. The PDF and
CDF of the site-specific RMSE of daily PM2.5 concentrations (Fig. 3b)
show that the RMSE changes from 3.5 μg m-3 to 40.0 μg m-3 with ∼93%
of monitoring sites having RMSE values lower than 20 μgm−3 at this
timescale. Fig. S2b supports this, showing that ∼93% and 76% of PM2.5

sites have absolute biases lower than 20 μgm−3 and 10 μgm−3, re-
spectively. The CV R2 (RMSE, MPE) at monthly, seasonal, and annual
timescales are 0.94 (6.7 μgm−3, 4.9 μgm−3), 0.95 (5.4 μgm−3,
4 μgm−3), and 0.93 (4.3 μgm−3, 3.2 μgm−3), respectively. This sug-
gests that the Ref-PM2.5 model showed a strong power in estimating
PM2.5 concentrations at all timescales well.

3.3. Model estimated PM2.5 concentration over three developed regions

The regions of the Beijing-Tianjin-Hebei (BTH), the Yangtze River
Delta (YRD), and the Pearl River Delta (PRD) are three major mega-
lopolises of China, where heavy pollution episodes frequently and
periodically occur. Fig. 5 gives the spatial variations of PM2.5 con-
centration from Ref-PM2.5 model-calculated and surface-observed over

Fig. 2. The cross-validation (a) coefficient of determination (R2) and (b) root-mean-square error (RMSE; μg m−3) of the Ref-PM2.5 model at each site over mainland
China.

Fig. 3. Probability density functions (PDFs, bars) and cumulative density functions (CDFs, lines) of the hourly (blue) and daily (orange) cross-validation (a) coef-
ficient of determination (R2) and (b) root-mean-square error (RMSE). (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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the three regions for annual and each season. It indicated that annually
and seasonally average PM2.5 concentrations from model-simulated are
highly consistent with those from the surface-measured in all three
regions. Among the three regions, BTH has the highest PM2.5 con-
centration with a mean estimated PM2.5 concentration of 50.1 μgm−3,
followed by the YRD region with an averaged PM2.5 concentration of
46.8 μgm−3. The PM2.5 concentrations in the PRD region are relatively
lower than those in other two regions with annually average value of
34.5 μgm−3. High PM2.5 concentrations occur in southern BTH with
annual mean values greater than 60 μgm−3 and low in northern BTH,
especially the mountainous area of northern Beijing City, with annual
means less than 40 μgm−3. The highest PM2.5 concentrations are found
in winter with an average of 67.2 μgm−3. The seasonal mean PM2.5

concentration in autumn and spring is similar with values of
50.3 μgm−3 and 47.8 μgm−3, respectively, whereas the lowest value
(36.5 μgm−3) is seen in summer. In the YRD region, higher PM2.5

concentrations are seen in the north. Lower concentrations are seen in
the hilly southern part of the region where human influences are low.
The annual mean value is ∼60 μgm−3 in the north and is less than
45 μgm−3 in the south. PM2.5 concentration is the largest in winter,
followed by spring and autumn, and summer has the lowest PM2.5

concentration with mean values of 63.4, 50.8, 41.8, and 31.6 μgm−3,
respectively. PM2.5 concentrations over PRD show that the higher
concentrations occur over the northwest region, e.g., western
Guangzhou, with annually average value of ∼40 μgm−3 and lower in
the eastern coastal region with annual mean values less than 30 μgm−3

on average. The seasonal variations over PRD are similar to those over
the BTH region, i.e., the highest concentration occurs in winter, fol-
lowed by autumn and spring, and the lowest mean PM2.5 concentration
occurs in summer. The average values of PM2.5 concentration from

spring to winter are 33.5, 25.7, 37.8, and 41.2 μgm−3, respectively.
The highest (lowest) PM2.5 concentrations over three regions in winter
(summer) can be partly attributed to the higher (lower) atmospheric
stability and less (more) precipitation. The emission from the winter
heating over BTH region is also one of the reasons for the highest PM2.5

concentrations in winter. The distributions of variation in predicted
PM2.5 concentrations by our model are in agreement with previous
related studies from the satellite-derived AOD with different models
over these three megalopolises (Ma et al., 2016; Zheng et al., 2016; Xiao
et al., 2017; Lv et al., 2017; He and Huang, 2018).

4. Discussion

Different from the most of published studies for estimating surface
PM2.5 concentrations based on statistical models that use different sa-
tellite-retrieved AODs as the primary predictor, this study presents a
model for estimating surface PM2.5 concentrations using a machine
learning algorithm, i.e., the random forest, that directly uses satellite-
measured TOA reflectances as the primary predictor (Ref-PM2.5 model).
We also built a model for PM2.5 estimation from AOD (AOD-PM2.5

model) using the same algorithm behind the Ref-PM2.5 model. The
overall cross validation shows that the R2 (RMSE, MPE) of PM2.5 con-
centration from the Ref-PM2.5 model is 0.86 (17.2 μgm−3,
10.3 μgm−3) at hourly scale and that the model performance is com-
parable to the capability of the AOD-PM2.5 model which has a cross
validation R2 (RMSE, MPE) of 0.86 (17.3 μgm−3, 10.3 μgm−3). We
have also summarized some previous relative studies using satellite-
derived AODs based on different statistical models applied over the
national scale of China (Table 2). In terms of CV R2 and RMSE, our Ref-
PM2.5 model better predicts PM2.5 concentrations than most of the

Fig. 4. The cross-validation (CV) results of the Ref-PM2.5 model at (a) daily, (b) monthly, (c) seasonal, and (d) annual timescales. The color bars in (a) and (b) show
the counts of data points. The dashed line is the 1:1 line. N: number of samples; R2: coefficient of determination; RMSE: root-mean-square error of the predictions (μg
m−3); MPE: mean prediction error (μg m−3). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)

J. Liu, et al. Atmospheric Environment 208 (2019) 113–122

118



previous studies summarized in Table 2 and is comparable to some
machine-learning approaches (e.g. Li et al., 2017a). AOD retrievals
from satellite measurements have some inherent challenges such as the
quantification of the contribution of surface reflectances to TOA re-
flectances over bright surfaces and the accurate assignment of aerosol
type, etc. (Li et al., 2015). This study proposes a short-cut solution for
PM2.5 concentration estimations from satellite observations by directly
using TOA reflectance which can circumvent the numerous sources of
errors in the retrievals of AOD. Another advantage of the Ref-PM2.5

model is that the sample size of the TOA reflectance is much higher
than that of the retrieved AOD. The Ref-PM2.5 modeling dataset has a

total of 1,480,473 samples (Fig. 1) which is more than three times the
number of samples from the AOD-PM2.5 modeling dataset
(N= 489,653). This is mainly because satellite AOD retrieval algo-
rithms cannot accurately retrieve AODs over bright surfaces (Levy
et al., 2007). Fig. S3 shows the cross-validation results of the Ref-PM2.5

model for samples (a) with TOA reflectance but without AOD available
and (b) with both AOD and TOA reflectance available. Pixels without
AOD available are associated with high surface reflectance or a low
retrieval confidence level or both. Fig. S3a shows that the model esti-
mates PM2.5 concentrations well for pixels where AOD cannot be re-
liably retrieved. Fig. S3b shows that the performance of the Ref-PM2.5

Fig. 5. Spatial variation of annually and seasonally average PM2.5 concentrations from the Ref-PM2.5 model-estimated and surface-measured in the Beijing-Tianjin-
Hebei region (BTH, two left columns), the Yangtze River Delta region (YRD, two middle columns), and the Pearl River Delta region (PRD, two right columns). Model
estimates (observations) are shown in the left (right) column of each set of two columns. Units: μg m−3. MAM: March, April, May; JJA: June, July, August; SON:
September, October, November; DJF: December, January, February.

Table 2
Summary of estimates of PM2.5 concentration from satellite-retrieved AOD based on statistical models applied on the national scale of China.

Reference Model R2, RMSE (μg m−3), and Slope (sample-based CV) Time Scale Study Period Source of AOD

Ma et al. (2014) GWR 0.64, 32.98, 0.67 daily 2000–2013 MODIS and MISR
Fang et al. (2016) TSAM 0.80, 22.75, 0.79 daily Jun. 2013–May. 2014 MODIS
Ma et al. (2016) LME

LME + GAM
0.78, 27.99, 0.77
0.79, 27.42, 0.79

daily Jan. 2004–Jun. 2014 MODIS

Li et al. (2016) GRNN 0.67, 20.93, 0.62 daily Feb.2013–Dec. 2014 MODIS
You et al. (2016a) GWR 0.79, 18.6, 0.83 daily 2014 MODIS
You et al. (2016b) GWR MODIS: 0.79, 20.85, 0.82

MSIR: 0.85, 24.86, 0.87
daily 2014 MODIS

MISR
Li et al. (2017a) DBN 0.88, 13.03, 0.88 daily 2015 MODIS
Yu et al. (2017) Gaussian process 0.81, 21.87, 0.73 daily 2013 MODIS
Zhan et al. (2017) GW-GBM 0.76, 23.0, 0.77 daily 2014 MODIS
This study RF 0.86, 17.2, 0.81 hourly 2016 AHI

CV: cross validation.
MODIS: Moderate Resolution Imaging Spectroradiometer.
MISR: Multi-angle Imaging Spectro Radiometer.
AHI: Advanced Himawari Imager.
GWR: geographically weighted regression model; LME: linear mixed effects model.
GAM: generalized additive model; TSAM: Timely structure adaptive modeling.
GRNN: generalized regression neural network (GRNN) mode; DBN: deep belief network.
GW-GBM: geographically weighted gradient boosting machine. RF: random forest.
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model is comparable or slightly better than that of the AOD-PM2.5

model (as shown in Fig. 1d). In general, estimates of PM2.5 concentra-
tion based on TOA reflectances and based on AOD retrievals have
comparable accuracies. However, the Ref-PM2.5 model has a relatively
stronger predictive power than the AOD-PM2.5 model when it comes to
the spatiotemporal coverage of PM2.5 concentration estimates.

Underestimations of PM2.5 concentrations at national and regional
of China were reported with magnitude of ∼10%–30% in most pre-
vious studies used satellite-retrieved AOD based on different algorithms
(e.g. Lin et al., 2015; You et al., 2016a; Zheng et al., 2016; Ma et al.,
2016; Li et al., 2017a; Yu et al., 2017) and are seen in the results from
AOD-PM2.5 models in the current study. Such an underestimation is also
seen in the results from the Ref-PM2.5 model whose hourly CV slope
ranges from 0.74 to 0.84 at different local hours (the overall CV slope is
0.81). This underestimation was mitigated for averaging PM2.5 con-
centration estimations at daily, monthly, seasonal, and annual time-
scales with CV slope values of 0.87, 0.91, 0.92, and 0.87, respectively.
Possible reasons were discussed in previous works (e.g. Li et al., 2017a),
e.g., the model training using site-based PM2.5 measurements possibly
can not completely represent the whole satellite pixel. Due to the si-
milar spectral reflectance characteristics of haze and low clouds, dis-
tinguishing between the two using passive sensors is very challenging,
especially in China where hazy weather and high pollution cases are
common. Studies have indicated that the current cloud mask algorithms
tend to mistake haze for clouds under heavily polluted conditions
(Shang et al., 2017; Tan et al., 2018). This misclassification leads to lack
the severe polluted cases in the model training dataset can possibly
partly contribute to the underestimation of PM2.5 concentration under
heavy pollution conditions.

In the current study, reanalysis meteorological field data are used to
improve the model performance. Reanalysis meteorological data have
coarse temporal resolutions (two times or four times per day), and their
accuracy still needs more validation. The coarse temporal resolution of
meteorological variables can result in a temporal mismatch among
meteorological data, satellite measurements, and PM2.5 concentrations,
which may incur uncertainties in estimating the PM2.5. The proposed
model performance may possibly be improved if high temporal ground
meteorological observations over the sites were used. For example, Su
et al. (2017) showed that lidar-derived PBLHs were more effective for
PM2.5 remote sensing than climatologies of radiosonde- and reanalysis-
derived PBLHs.

More predictor variables, including without limitation land-use
variables (e.g. coverage of agriculture, urban, rural areas, etc.), popu-
lation data, and elevation data have been shown to contribute toward
the performance of PM2.5 prediction models (Ma et al., 2016). The
column amounts of nitrogen dioxide (NO2) can represent the strength of
anthropogenic emissions such as fossil fuel consumption (Zhang et al.,
2012), so they may reflect the strong relationship between ambient
PM2.5 concentrations and local emitting sources. Moreover, since NO2

concentrations are commonly used to correct atmospheric gas absorp-
tion and scattering in AOD retrieval algorithms, the NO2 concentration
may also contribute to the magnitude of the TOA reflectance. It is noted
that even without the inclusion of those variables, our Ref-PM2.5 model
predicted PM2.5 concentration well.

Understanding the results is still a major challenge when de-
termining the effectiveness of machine learning algorithms. The pre-
diction performance of machine learning algorithms is acceptable and
relatively static over the observation time period of the training dataset
but deteriorates after application beyond the realm of the training data.
Machine learning algorithms, therefore, have some limitations when it
comes to extrapolation (Reichstein et al., 2019). The model can be
updated simultaneously by intaking real-time satellite measurements,
surface PM2.5 observations, and related meteorological variables to
predict PM2.5 concentrations over regions without surface PM2.5 mea-
surements.

There are many machine learning algorithms that can be used for

such studies. Unlike many other machine learning algorithms (e.g., the
deep belief network, the gradient boosted machine), the random forest
is user-friendly and has only two parameters to fine-tune to achieve
optimal performance. The random forest algorithm is also one of the
most effective machine learning algorithms for a wide variety of re-
gression tasks. It can cope with the problem of complex interactions and
is applicable to highly correlated predictor variables (Strobl et al.,
2008; Hu et al., 2017). Systematic comparisons of the applicability and
performance of different machine learning algorithms on PM2.5 esti-
mations need to be done. Although not beyond the scope of this study,
this will be considered in future work.

5. Conclusions

Different from commonly used methods which predict PM2.5 con-
centrations from satellite-retrieved AOD, the current study developed a
model based on an assemble learning algorithm for predicting PM2.5

concentrations using TOA reflectances as inputs instead of AODs, to-
gether with meteorological variables. CV results indicated that the Ref-
PM2.5 model explain 86% (R2= 0.86) of the overall hourly variability
in PM2.5 concentration. The distribution of R2 showed that approxi-
mately 70% of PM2.5 monitoring sites had CV R2 values greater than
0.8. The overall CV RMSE was 17.2 μgm−3 with more than 80% of the
values less than 20 μgm−3. The Ref-PM2.5 model predicted PM2.5 well
for daily, monthly, seasonal, and annual timescales with R2 of 0.93,
0.94, 0.95, and 0.93, respectively. The performance of PM2.5 con-
centrations estimated directly from satellite TOA reflectances is com-
parable with the performance of PM2.5 concentration predication by
using the satellite retrieved AODs in the current study and most pre-
vious studies. Compared with the AOD-PM2.5 model, the Ref-PM2.5

model had a relatively stronger predictive power in terms of spatio-
temporal coverage. Using the Ref-PM2.5 model, PM2.5 concentrations
over three developed regions, BTH, YRD, and PRD, were estimated and
analyzed. The Ref-PM2.5 model can capture spatial variations of PM2.5

at different timescales. This may provide information about the diurnal
cycle of PM2.5 concentrations as well as aid in monitoring the process of
regional pollution episodes and the evolution of PM2.5 concentrations.

Traditionally, compared with the TOA reflectance, the AOD is re-
garded as more related with the surface PM2.5 concentration. This study
proposes a short-cut solution for PM2.5 concentration estimations from
satellite observations by using TOA reflectance. The result implies that
the machine learning algorithms can possibly capture the complicated
relationship between the initial predictors and the final predictions,
which possibly simplify and improve the solutions for the questions by
avoiding the complicated intermediated processing.
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