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Ultrahigh-Resolution (250 m) Regional Surface
PM2.5 Concentrations Derived First From

MODIS Measurements
Jianjun Liu , Fuzhong Weng , Member, IEEE, and Zhanqing Li

Abstract— Aerosol optical depth from different satellite sen-
sors are widely used to estimate surface PM2.5 concentrations.
However, these products generally have coarse resolutions, lim-
iting the ability to evaluate PM2.5 concentrations in urban
regions where the human activities are relatively high. This
study first develops an ensemble machine learning approach to
produce PM2.5 concentrations with an extremely high spatial
resolution of 250 m, based on Moderate Resolution Imaging
Spectroradiometer (MODIS) measurements of top-of-atmosphere
reflectance and related meteorological variables. The Yangtze
River Delta region, with one of the highest levels of PM2.5

pollution in China, is the study region chosen. The model
shows a very high and stable performance with a coefficient of
determination (R2) of 0.90, a root-mean-square error (RMSE) of
12.0 µg/m3, a mean prediction error (MPE) of 7.8 µg/m3,
and a mean relative prediction error (RPE) 16.9% for sample-
based cross validation. The model can accurately capture the
distribution patterns and magnitudes of PM2.5 concentrations
over the study region for seasonal mean, daily variations, and
different levels of air pollution. The very high resolution of
the model has the advantage of capturing the uneven spatial
distribution of PM2.5 concentrations at small spatial scales and
identifying small areas with very high PM2.5 concentrations,
offering a possible approach for locating the sources of PM2.5

emissions. In general, the model developed here estimates very
well PM2.5 concentrations at a very high spatial resolution,
providing detailed information, useful for air-pollution-related
studies, as well as pollution monitoring and evaluation by
governments, especially in urban and urban-center areas.

Index Terms— 250-m ultrahigh-resolution, machine learn-
ing (ML), Moderate Resolution Imaging Spectroradiometer
(MODIS), regional PM2.5.

I. INTRODUCTION

PARTICULATE matter with an aerodynamic diameter less
than 2.5 µm suspended in the air (PM2.5) has become one

of the primary air pollutants, especially in rapidly developing
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megalopolises in developing countries (e.g., China and India).
PM2.5 is highly associated with human health due to its
harmful impact on the cardiovascular system [1], [2] and the
respiratory system [3], [4]. It can lead to high morbidity,
premature deaths, and ∼3.3 million deaths per year around
the world [5]. The spatiotemporal distribution of surface PM2.5

concentrations is critical for understanding the sources, trans-
portation, and diffusional behavior of regional air pollution
episodes and assessing the environmental and health effects as
well as pollution-controlling measures. Air quality monitoring
sites can accurately measure surface PM2.5 concentrations, but
their spatial resolution is limited, making it difficult to capture
in detail the distribution of PM2.5 concentrations, which have
large spatial variations.

Contrastingly, satellite remote sensing provides spatially
continuous observations and has been widely adopted to
estimate surface PM2.5 concentrations. The aerosol optical
depth (AOD), i.e., the total columnar light attenuation induced
by aerosols, is highly correlated with surface PM2.5 con-
centrations. A variety of satellite AOD products have thus
been used to derive surface PM2.5 concentrations, including
retrievals from instruments such as the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) [6], the Multi-
angle Imaging SpectroRadiometer (MISR) [7], the Visible
Infrared Imaging Radiometer Suite (VIIRS) [8], the Advanced
Himawari-8 Imager (AHI) [9], and the Geostationary Ocean
Color Imager (GOCI) [10]. The AOD products generated by
these instruments have the spatial resolutions of 3 and 10 km
for MODIS, 4.4 km for MISR, 6 km for VIIRS (750 m in
the VIIRS intermediate product), 5 km for AHI, and 6 km
for GOCI. These spatial resolutions are too coarse for use in
capturing spatial details about air pollution and in accurately
estimating air pollution concentrations at fine scales, such
as urban or smaller than urban scales. The high spatial
resolution (1 km) MODIS AOD is generated by the Multi-
Angle Implementation of Atmospheric Correction (MAIAC)
algorithm and has been used to generate high-resolution
PM2.5 concentration maps [11]–[13]. Zhang et al. [14] esti-
mated ultrahigh-resolution PM2.5 concentrations in an urban
region in China from 160-m Gaofen-1 (GF) AOD retrievals.
However, the GF AOD has a coarse temporal resolution of
four days. Zhang et al. [15] derived PM2.5 concentrations
from 30-m Landsat 8 Operational Land imager data, but its
application is limited due to its coarse temporal resolution
of 16 days.
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Multiple algorithms have been developed to derive surface
PM2.5 concentrations from satellite products using ancillary
data (e.g., meteorological variables and land use information),
including the combination of chemical transform model simu-
lations and satellite AODs [16], physical models [17], empir-
ical statistical models [18]–[20], and machine learning (ML)
models [12], [21]–[23]. Of these algorithms, ML, a subset of
artificial intelligence, offers the ability to automatically learn
and deal with nonlinear complex problems, showing superior
performance. Recently, multiple ML algorithms have been
used to estimate surface PM2.5 concentrations, such as the
neural network [15], [24], a back-propagation artificial neural
network (BP ANN) [25], deep learning [23], [26], Extreme
Gradient Boosting (XGBoost) [27], [28], the Bayesian ensem-
ble model [29], random forest (RF) [21], [30], and space–
time extremely randomized trees (STETs) [31]. The RF is an
ensemble ML algorithm, providing a nonparametric, nonlinear,
and multivariate regression analysis with very high perfor-
mance when estimating PM2.5 concentrations from satellite
remote sensing [9], [12], [21], [30].

Previous studies have generally used satellite products with
a high frequency (e.g., hourly and twice daily) and coarse spa-
tial resolution (1 km, 3 km, 10 km, and larger) or a high spatial
resolution (e.g., 30 m) and coarse frequency (e.g., 16 days).
The primary objective of this study is to develop a model
for deriving surface PM2.5 concentrations with the ultrahigh
spatial resolution of 250 m from MODIS measurements and
meteorological variables based on the RF algorithm. Fine-
resolution and high-frequency PM2.5 concentrations would
benefit such small-scale environmental and epidemiological
studies as in urban areas. The model is validated using the
cross-validation (CV) technique with several metrics. PM2.5

concentrations are estimated by the proposed model for several
clear and high pollution cases over the Yangtze River Delta
(YRD) region and metropolises in the YRD (e.g., Nanjing
and Shanghai). The advantages of the high-spatial-resolution
model are discussed through comparisons with previous stud-
ies and the model developed using MODIS 3-km AODs.
Section II describes the data and methods, and Section III
presents the results. Section IV discusses the advantages of
the high-spatial-resolution model and compares it with other
models reported in previous studies. Finally, conclusions are
given in Section V.

II. STUDY REGION AND DATA

A. Study Region

The YRD region was chosen as the testbed, covering several
cities south of Jiangsu Province, east of Anhui Province, north
of Zhejiang Province, and Shanghai city. The YRD is one of
the most developed regions in China with intensive human
activities and high amounts of complex aerosols in the air.
It is also one of the most densely populated regions in the
world.

B. Surface PM2.5 Concentrations

The China Environmental Monitoring Center (http://www.
cnemc.cn/) provided hourly surface PM2.5 concentrations from

Fig. 1. Distribution of the 274 PM2.5 observation sites used in the study. The
colored dots indicate the annual mean surface measured PM2.5 concentrations
(unit: µg/m3) in 2018. Black boundaries show the regions comprising the
YRD economic zone.

January 1, 2018 to December 31, 2018. A tapered element
oscillating microbalance measures PM2.5 concentrations with
an accuracy of ±1.5 µg/m3 for an hourly average. PM2.5 sites
in the latitude range of 27.5◦ N to 35◦ N and the longitude
range of 115.5◦ E to 122.5◦ E to eliminate the boundary
effect were included to develop the model. Fig. 1 shows
the distribution of the 274 sites selected for the study. The
colored dots indicate the annual mean surface measured PM2.5

concentrations in 2018. Annual mean PM2.5 concentrations
ranged from ∼20 to ∼70 µg/m3, with larger values occurring
over the central and western parts of the YRD region and
smaller values occurring over the southern and eastern coastal
parts of the YRD region.

C. Satellite Measurements and Retrievals

The MODIS instruments on board the Terra and Aqua
satellites provide measurements of the atmosphere, land, and
ocean in 36 spectral bands in the visible, near-infrared, and
infrared from 0.4 to 14.4 µm. Of the 36 spectral bands,
two visible bands have nominal resolutions of 250 m at
nadir, five bands have nominal resolutions of 500 m at
nadir, and the rest of the bands have nominal resolutions
of 1 km at nadir. The instrument collects the data once
or twice a day at a given location and views the entire
globe every one to two days. MODIS Terra and Aqua L1B
products (MOD02QKM and MYD02QKM) were used and
downloaded from the Atmosphere Archive and Distribution
System website (https://ladsweb.modaps.eosdis.nasa.gov). The
products include top-of-atmosphere (TOA) reflectances at
0.65 and 0.86 µm with a 250-m spatial resolution, primarily
used to derive land, cloud, and aerosol properties. MODIS
Level 2 cloud mask products (MOD35_L2 and MYD35_L2)
with a 1-km spatial resolution were used to remove cloud con-
tamination. Here, removed are pixels in the MOD02QKM and
MYD02QKM products located within cloud-masked pixels in
the MOD35_L2 and MYD35_L2 products. The MODIS cloud
mask products have four confidence levels, i.e., “cloudy,”
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“uncertain,” probably clear,” and “confident clear.” Only data
with the level of “confident clear” are used. L2 AOD products
with a 3-km spatial resolution (MOD04_3K and MYD04_3K)
and the newly released Terra and Aqua MODIS C6 MAIAC
1-km AOD products were also used to estimate surface
PM2.5 concentrations for comparison purposes. The MODIS
AOD retrievals have four quality flags, i.e., “bad,” “mar-
ginal,” “good,” and “very good.” Only data flagged “very
good” were used. The quality assurance (QA) flags were
provided in MAIAC to indicate the retrieval quality. Only
data flagged “best quality” were used. MODIS L3 normalized
difference vegetation index (NDVI) products with a tempo-
ral resolution of 16 days and a 250-m spatial resolution
(MOD13Q1 and MYD13Q1) were downloaded from the web-
site https://search.earthdata.nasa.gov/search, providing surface
cover and reflectance information. The NDVI values flagged
“good quality” were used.

D. Meteorological Variables

Meteorological variables were obtained from the
ERA5 reanalysis [32] and include surface atmospheric
pressure (Pa), 2-m air temperature (K), total columnar water
(kg · m−2), relative humidity (%), the 10-m u-component
of wind (ms−1), the 10-m v-component of wind (ms−1),
and the planetary boundary layer height (PBLH, km). These
meteorological variables have known influences on the
relationship between AOD and surface PM2.5 concentrations
and have been widely used in other studies [12], [22].
The ERA5 is the latest climate reanalysis produced by the
European Centre for Medium-Range Weather Forecasts,
providing hourly simulations of many atmospheric, terrestrial,
and oceanic meteorological variables with a 0.25

◦× 0.25
◦

resolution and at 37 pressure levels from the surface to 80 km.

E. Elevation Data

A digital elevation model (DEM), derived from the Shut-
tle Radar Topography Mission (SRTM) with a 90-m spatial
resolution, was used.

III. METHODOLOGY

A. Data Integration

Due to the different spatial resolutions of the
ERA5 reanalysis, NDVI, DEM, and MODIS measurements,
all meteorological parameters, NDVI and DEM, were
interpolated onto the grids of the MODIS 3-km AOD,
MAIAC 1-km AOD, and 250-m L1B products using a
kriging method. The meteorological variables and measured
PM2.5 concentrations have the same time stamps of hour as
the MODIS Terra and Aqua overpass over the surface PM2.5

sites were used. MODIS-measured 250-m TOA reflectances
and four observation angles [solar zenith angle (SOZ), solar
azimuth angle (SOA), satellite zenith angle (SAZ), and
satellite azimuth angle (SAA)] of pixels without clouds,
NDVI, DEM, and meteorological variables were averaged
over a 1-km buffer zone centered on each PM2.5 site.

Fig. 2. Tuning parameters for (a) Ref250-PM2.5, (b) MxD3km AOD-PM2.5,
and (c) MAIAC AOD-PM2.5 model.

For comparison purposes, MODIS-retrieved 3-km AODs
(MxD3km) and MAIAC 1-km AODs and associated observa-
tion angles, NDVI, DEM, and meteorological variables were
averaged over a 5- and 1-km buffer zone centered on each
PM2.5 site, generating the data set for developing the models
to estimate PM2.5 concentrations from AODs, referred to as
the MxD3km AOD-PM2.5 and MAIAC AOD-PM2.5 model,
respectively.

B. Model Development and Validation

A model to estimate surface PM2.5 concentrations based
on an RF algorithm was developed, which has been used
in several related studies and has shown high performance
in comparison with surface PM2.5 observations [21], [30].
Mathematical details, the structure of the RF algorithm, and
how it works have been discussed in previous papers [21],
[30], so a brief review of the RF algorithm is given here.
The RF is a type of supervised ensemble ML technique using
multiple decision trees and the bootstrap aggregation tech-
nique, providing a nonparametric, multivariable, and nonlinear
regression. The “k” features are first randomly selected from
the total features and used to calculate the root node via the
best split approach. Then, the tree is constructed with a root
node. Multiple randomly constructed trees generated from the
above process are used to build multiple decision trees. Finally,
each prediction from the multiple trees is merged to obtain the
final prediction [33].

Here, surface-observed PM2.5 concentrations, TOA
reflectances at 0.65 and 0.86 µm, SOA, SOZ, SAA, and
SAZ, the locations of the PM2.5 sites (longitude and latitude),
observation times (month, day, and hour), NDVI, and all
meteorological variables mentioned in Section II are used as
input variables to develop the RF model for estimating surface
PM2.5 concentrations with a 250-m spatial resolution (referred
to as the Ref250-PM2.5 model). The locations of the sites
and observation times are included so that spatiotemporal
variations in PM2.5 concentration are considered. A grid
search on hyperparameters with tenfold sample-based CV
was used to find the best model performance based on R2

metrics for different settings of ntree (200, 500, 800, 1000,
and 1500) and mtry (3–16 with step 1). The optimum values
of ntree and mtree are set to 1000 and 13 for Ref250-PM2.5

model, 1000 and 12 for MxD3km AOD-PM2.5 model, and
1000 and 4 for MAIAC AOD-PM2.5 model (as shown
in Fig. 2).

The tenfold CV technique is commonly used to check the
model robustness and the overfitting problem. In this study,
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Fig. 3. Probability distributions and means and standard deviations of the variables of the training data set. R065: reflectance at 0.65 µm. R086: reflectance
at 0.86 µm. PRES: surface pressure. TEMP: surface temperature. TCW: total column water. U10: 10-m u-component of wind. V10: 10-m v-component of
wind. RH: relative humidity. PBLH: planetary boundary layer height. NDVI: normalized difference vegetation index. DEM: digital elevation model.

sample- and site-based CVs are both used. For the sample-
based CV, training data were randomly split into ten equal
subsets based on all data samples, and for the site-based CV,
training data were randomly split into ten equal subsets based
on the surface observation stations. Nine of the subsets were
used for the model fitting, and the remaining one was used
for model validation. This process was repeated ten times
until all the subsets were tested. The sample-based CV is
a common approach to evaluate the overall accuracy of the
model, and the site-based CV is used to evaluate the spatial
performance of the model. The coefficient of determination
(R2), the root-mean-square error (RMSE, µg/m3), the mean
prediction error (MPE, µg/m3), and the mean relative predic-
tion error (RPE, %) between CV-model-estimated and surface-
measured PM2.5 concentrations were used to quantitatively
evaluate the model performance.

IV. RESULTS

A. Descriptive Statistics of the Training Data

Fig. 3 shows the probability distributions of the variables
in the training data set. The mean and standard deviation of
the PM2.5 concentration are 46 and 37 µg/m3, respectively,
with ∼70% of the values smaller than 50 µg/m3 and peak val-
ues ranging from 15 to 35 µg/m3. The reflectance at 0.65 µm
ranges from 0.03 to 0.3, with a peak value of ∼0.1 and a
mean and standard deviation of 0.11 and 0.05, respectively.
The mean and standard deviation of reflectance at 0.86 µm is
0.17 and 0.07, respectively, with overall values ranging from
0.05 to 0.3. The distributions of the model variables are broad,

indicating that the model training data cover different levels
of pollution and different meteorological conditions.

B. Evaluation of the Model Performance

Fig. 4 shows the density scatterplots of the sample- and
site-based CV results of the Ref250-PM2.5 model. For the
sample-based CV [see Fig. 4(a)], the overall R2, RMSE,
MPE, and RPE are 0.90, 12.0 µg/m3, 7.8 µg/m3, and 16.9%,
respectively. By comparison, R2 of the site-based CV [see
Fig. 4(b)] slightly decreased by 0.04–0.86, and the RMSE,
MPE, and RPE slightly increased by 1.7 µg/m3, 1.1 µg/m3,
and 2.5% to 13.7 µg/m3, 8.9 µg/m3, and 19.5%, respec-
tively. Overall, the Ref250-PM2.5 model performs well. The
slopes of the sample- and site-based CVs are 0.86 and 0.83,
respectively, indicating that the model tends to underestimate
surface PM2.5 concentrations, especially for extremely heavy
pollution episodes. Such an underestimation is consistent with
most previous studies reporting that PM2.5 concentrations
were underestimated by ∼10%–30% based on different ML
algorithms [12], [34].

Fig. 5 shows the spatial distributions of sample-based CV:
R2, RMSE, MPE, and RPE. The number of samples from
each surface site varies from 42 to 360, with an average
of 252. R2 [see Fig. 5(a)] varies from 0.48 to 0.98, with a
mean and standard deviation of 0.87 and 0.09, respectively,
and is generally greater than 0.75 (∼82% of the sites have R2

greater than 0.8). The RMSE [see Fig. 5(b)] at each site ranges
from 5.5 to 25.2 µg/m3, with an average value and standard
deviation of 11.4 and 3.1 µg/m3, respectively. About 90% of
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Fig. 4. Density scatterplots of (a), (c), (e), and (g) sample-based and (b), (d),
(f), and (h) site-based CV results for (a) and (b) Ref250-PM2.5 model, (c) and
(d) MxD3km AOD-PM2.5 model, (e) and (f) MAIAC AOD-PM2.5 model, and
(g) and (h) daily Ref250-PM2.5 model. Dashed lines are the 1:1 lines. Solid
lines are the best-fit lines from linear regression. N : number of samples. R2:
coefficient of determination. RMSE: root-mean-square error (µg/m3). MPE:
mean prediction error (µg/m3). RPE: mean relative prediction error (%).

Fig. 5. Spatial distributions of sample-based CV. (a) R2. (b) RMSE. (c) MPE.
(d) RPE. R2: coefficient of determination. RMSE: root-mean-square error
(µg/m3). MPE: mean prediction error (µg/m3). RPE: mean relative prediction
error (%).

the sites have RMSE values smaller than 15 µg/m3. Fig. 5(c)
shows that ∼90% of the stations have MPE values smaller than
10 µg/m3, with values ranging from 3.8 to 14.3 µg/m3. The
mean and standard deviation of MPE for all sites are 7.6 and
1.9 µg/m3, respectively. At the majority of the sites, the RPE is
smaller than 30%, with a mean and standard deviation of 25%
and 16%, respectively [see Fig. 5(d)]. Overall, the model
estimates PM2.5 concentrations well, although a few of the
sites have relatively low R2 and high RMSE, MPE, and RPE.

C. Spatial Distribution of the Seasonal Mean Estimation of
PM2.5 Concentrations

Fig. 6 shows the spatial distribution of the seasonal mean
PM2.5 concentration from Ref250-PM2.5 model-estimated and
surface-measured over the YDR region in 2018. It shows that
the spatial pattern of the seasonal mean PM2.5 concentration
from model-estimated is highly consistent with surface
measured. PM2.5 concentration varies seasonally, with the

Fig. 6. Spatial distribution of the seasonal mean PM2.5 concentration from
Ref250-PM2.5 model estimated (background shading) and surface measured
(color dots) for (a) spring (MAM: March–April–May), (b) summer (JJA:
June–July–August), (c) autumn (SON: September–October–November), and
(d) winter (DJF: December–January–February) in 2018 over YRD region.

highest concentration in winter, followed by spring and
autumn, and the lowest concentration in summer. The mean
and standard deviation of model-estimated (surface-measured)
PM2.5 concentration is 38.8 ± 7.3 (40.4 ± 10.2) µg/m3

for spring, 26.1 ± 4.9 (24.2 ± 7.1) µg/m3 for summer,
32.8 ± 7.8 (22.3 ± 11.2) µg/m3 for autumn, and 49.8 ± 10.3
(51.6 ± 14.4) µg/m3 for winter. In winter and spring, more
than 97% and 70% of YRD are exposed to high seasonal mean
PM2.5 levels > 35 µg/m3. In contrast, about 98% and 73% of
YRD are exposed to seasonal mean PM2.5 levels < 35 µg/m3

in summer and autumn. Meanwhile, for all seasons, higher
PM2.5 concentrations are seen in the central and the northern
region, and lower concentrations are seen in the southern
region.

D. Daily Variations in Estimation of PM2.5 Concentrations

Fig. 7 shows the daily variations of the Ref250-PM2.5 model-
estimated (PPM2.5) and surface observed (OPM2.5) PM2.5

concentration and the differences between PPM2.5 and OPM2.5

in 2018 over the YRD region. It indicates that the daily
variation of the model estimated PM2.5 concentration is highly
consistent with surface observed. R2 and RMSE between
model-estimated and surface-observed daily PM2.5 concen-
tration are 0.83 and 14.3 µg/m3, respectively. The model-
estimated (surface-observed) daily PM2.5 concentration varies
from 8.2 (4.0) to 225.5 (232.0) µg/m3 with the mean and
standard deviation of 45.3 ± 30.8 (44.3 ± 35.1) µg/m3,
respectively. The higher (lower) PM2.5 concentrations are usu-
ally seen on days in winter (summer). The difference between
model-estimated and surface-measured PM2.5 concentration
changes from −45.2 to 71.5 µg/m3 with ∼87% and ∼67%
of the values ranging from −20 to 20 and −10 to 10 µg/m3,
respectively. This indicates that the Ref250-PM2.5 model can
accurately capture the temporal variations in the surface PM2.5

concentration.

Authorized licensed use limited to: Beijing Normal University. Downloaded on December 15,2021 at 16:10:09 UTC from IEEE Xplore.  Restrictions apply. 



4101312 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 7. Daily variations of (a) model estimated (PPM2.5) and surface
observed (OPM2.5) PM2.5 concentration and (b) differences between PPM2.5
and OPM2.5 in 2018 over the YRD region.

E. Estimation of PM2.5 Concentrations for Days With
Different Pollution Levels

To verify the performance and the power of the Ref250-
PM2.5 model, PM2.5 concentrations using the model for four
MODIS overpass (mainly cloudless) cases in each season for
different pollution levels were estimated [see Fig. 8(a)–(d);
background shading). The corresponding surface-observed
PM2.5 concentrations for the same four cases are also shown
[see Fig. 8(a)–(d); color dots]. Relative to the whole region,
higher model-estimated PM2.5 concentrations were seen in the
center of the YRD region for case (a), the north and northwest
for case (b), the northwest for case (c), and the center and
north for case (d), and relatively low model-estimated PM2.5

concentrations were generally found in the south and eastern
coastal areas of the YRD region, consistent with the distribu-
tion patterns of surface-observed PM2.5 concentrations for all
cases. The means and standard deviations of model-estimated
(surface-observed) PM2.5 concentrations over the whole YRD
region are 38.0 ± 7.3 (39.9 ± 14.5) µg/m3 for case (a), 16.7 ±
4.8 (15.8 ± 7.4) µg/m3 for case (b), 30.4 ± 6.8 (30.6 ±
11.9) µg/m3 for case (c), and 72.7 ± 23.4 (80.0 ± 33.0) µg/m3

for case (d). These results suggest that the model can accu-
rately capture the spatial distributions of PM2.5 concentrations
and the mean status of PM2.5 concentrations for different air
pollution conditions. The near-complete spatial coverage and
extremely high spatial resolution of the model reveal locations
where the surface-observed PM2.5 concentration is high.

V. DISCUSSION

A. Comparison With the Performance of the AOD-PM2.5

Models

Many pollution studies focused on China have estimated
surface PM2.5 concentrations from satellite AOD retrievals
based on different models due to the heavy PM2.5 pollution
levels in that country. AOD, a measure of columnar aerosol
loading, is widely used as the primary predictor in these
models. Thus, the AOD-PM2.5 models were also developed
using the MODIS L2 3-km AOD (MxD3km AOD-PM2.5) and
MAIAC 1-km AOD (MAIAC AOD-PM2.5) products as the
primary predictor based on the same RF algorithm as the

Fig. 8. Ref250-PM2.5-model-estimated (background shading) and surface-
observed (color dots) PM2.5 concentrations (unit: µg/m3) for four MODIS
overpass (mainly cloudless) cases in each season. Low (b), moderate
(a) and (c), and high (d) pollution level cases are shown. The dates of the
four cases are (a) May 4, 2018, 03:00 UTC, (b) July 14, 2018, 03:05 UTC,
(c) October 27, 2018, 03:00 UTC, and (d) January 15, 2018, 05:05 UTC.

Ref250-PM2.5 model. The predictors of the MxD3km AOD-
PM2.5 and MAIAC AOD-PM2.5 model are the same as the
predictors of the Ref250-PM2.5 model except that AOD was
used to replace TOA reflectances at 0.65 and 0.86 µm.

Fig. 4 shows the density scatterplots of the sample- and site-
based CV results of the MxD3km and MAIAC AOD-PM2.5

models. The results indicate that the sample- and site-based
CV-R2 of the MxD3km and MAIAC AOD-PM2.5 models are
both lower than the sample- and site-based CV-R2 of the
Ref250-PM2.5 model [as shown in Fig. 4(a) and (b), respec-
tively]. In addition, the number of samples in the training
data set of the Ref250-PM2.5 model is more than that of the
MxD3km and MAIAC AOD-PM2.5 models, indicating the
higher performance on spatial–temporal coverage of Ref250-
PM2.5 model than that of MxD3km and MAIAC AOD-PM2.5

models.
To better comparisons in the PM2.5 estimations from the

TOA reflectance and the AODs, the Ref250-PM2.5 model
was also developed with uniform conditions of MAIAC
AOD-PM2.5 model, except the reflectance and AOD. The
sample-based CV result indicates that the performance of
the Ref250-PM2.5 model is comparable to that of the MAIAC
AOD-PM2.5 model (as shown in Fig. 9). Overall, results here
suggest that the performance of the Ref250-PM2.5 model shows
a comparable performance to the AOD-PM2.5 method. The
Ref250-PM2.5 model has a relatively stronger predictive power
with greater spatiotemporal coverage than the AOD-PM2.5

model.

B. Variable Importance Assessment

Fig. 10(a)–(c) shows the contribution of each predic-
tor to the model performance for Ref250-PM2.5, MxD3km
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Fig. 9. Sample-based CV result of Ref250-PM2.5 model developed with both
TOA reflectance and MAIAC AOD available.

Fig. 10. Importance assessment for predictors of (a) Ref250-PM2.5,
(b) MxD3km AOD-PM2.5, and (c) MAIAC AOD-PM2.5 model.

AOD-PM2.5, and MAIAC AOD-PM2.5 models, respectively.
The %IncMSE indicates the increase in mean square error
of the prediction if that predictor is not involved in training
data. The higher the %IncMSE for a predictor, the more
important is that predictor. The results showed that the spatial–
temporal information (e.g., SOZ and month) is important to
all models. For the Ref250-PM2.5 model, the reflectance @
0.65 µm shows large influences on model performance and is
more important than the reflectance @ 0.86 µm, which is rea-
sonable since the reflectance @ 0.65 µm is more sensitive to
aerosol particles than that of reflectance @ 0.86 µm. However,
the reflectance @ 0.86 µm is also important. For the MxD3km
and MAIAC AOD-PM2.5 model, AOD is among the top three
most important predictor variables. Contrastingly, DEM and
NDVI are relatively less important than other predictors for
all models.

C. Performance of the Daily Ref250-PM2.5 Model

The Ref250-PM2.5 model was developed based on PM2.5

concentrations measured the same to the hour of the MODIS
Terra and Aqua overpass times over the surface PM2.5 sites.
Many previous studies developed models to estimate the daily
mean surface PM2.5 concentration by matching measured daily
mean surface PM2.5 concentrations with the AODs retrieved
when the MODIS Terra or Aqua platforms overpassed the
surface stations. For comparisons with previous studies, a daily
Ref250-PM2.5 model was also developed to estimate daily mean

PM2.5 concentrations based on the same algorithms using a
combination of daily mean surface-observed PM2.5 concen-
trations, daily mean meteorological variables, and MODIS
Terra measurements of reflectance. Fig. 4 shows the density
scatterplots of the sample- and site-based CVs of the daily
Ref250-PM2.5 model. The model performs well in estimating
daily mean PM2.5 concentrations with R2 values of 0.91 and
0.90 for sample- and site-based CVs, respectively, and RMSE
(MPE and RPE) values of 8.4 µg/m3 (5.5 µg/m3 and 12.7%)
for the sample-based CV and 8.6 µg/m3 (5.7 µg/m3 and
13.2%) for the site-based CV. These results suggest that the
Ref250-PM2.5 model can be used to accurately estimate surface
PM2.5 concentrations at the MODIS Terra and Aqua overpass
times and on a daily mean basis as well.

D. Comparison With Recent Studies

Table I summarizes the model performances of different
algorithms reported in previous studies on PM2.5 concentration
estimations from satellite retrieved AOD over the YRD region.
The spatial resolutions of the different models range from
1 to 10 km, with most of the studies having coarse spatial
resolutions of greater than 3 km. The CV-R2 of the different
models varies from 0.67 to 0.88, with most R2 values less than
0.85. The Ref250-PM2.5 model captures 90% of the variability
in PM2.5 concentrations in the sample-based CV, which is
larger than the sample-based CV-R2 of the other models. The
RMSE, MPE, and RPE values of the Ref250-PM2.5 model are
generally lower than those of the other models. Overall, the
Ref250-PM2.5 model has a robust and superior performance in
estimating PM2.5 concentrations with an extremely high spatial
resolution of 250 m.

E. Advantages of the Ref250-PM2.5 Model

The greatest advantage of the proposed model developed in
this study is its high spatial resolution of 250 m. The annual
mean PM2.5 concentrations derived from the Ref250-PM2.5

model in Nanjing and its central district and Shanghai and its
central district are, respectively, shown in Fig. 11(a-1)–(a-4).
Also, the annual mean PM2.5 estimation in these two cities and
their central district based on the MxD3km AOD-PM2.5 and
MAIAC AOD-PM2.5 models are shown in Fig. 11(b-1)–(b-4)
and (c-1)–(c4), respectively. The annual mean PM2.5 concen-
tration derived from the three models possessed approximately
similar spatial distributions. The MAIAC AOD-PM2.5 model
tends to overestimate the PM2.5 concentration along the river-
bank and over the coastal region. Compared with the PM2.5

concentration estimated from the MxD3km AOD-PM2.5 and
MAIAC AOD-PM2.5 models, the PM2.5 concentration estima-
tions from the Ref250-PM2.5 model have an obvious advantage
in the spatial resolution, especially in the urban central district
of Nanjing and Shanghai city with more population (as shown
in Fig. 12). For instance, the Ref250-PM2.5 model estimations
have a better illustration of the gradual variation in the spatial
distribution of PM2.5 concentration than the MxD3km AOD-
PM2.5 and MAIAC AOD-PM2.5 model estimations, especially
in the small areas. In addition, the Ref250-PM2.5 model could
capture the highest PM2.5 concentrations over the relatively
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TABLE I

MODEL PERFORMANCES REPORTED IN SOME PREVIOUS STUDIES ON PM2.5 ESTIMATIONS FROM SATELLITE RETRIEVALS OVER THE YRD REGION

Fig. 11. PM2.5 concentration estimated from (a-1)–(a-4) Ref250-PM2.5 model,
(b-1)–(b-4) MxD3km AOD-PM2.5 model, and (c-1)–(c-4) MAIAC AOD-
PM2.5 model in Nanjing (a-1), (b-1), and (c-1), urban central district of
Nanjing (a-2), (b-2), and (c-2), Shanghai (a-3), (b-3), and (c-3), and urban
central district of Shanghai (a-4), (b-4), and (d-4).

small areas, whereas MxD3km AOD-PM2.5 and MAIAC
AOD-PM2.5 models could not detect these small areas. These
small areas with high PM2.5 concentration could be considered
possible sources of PM2.5 point emissions. Therefore, the
Ref250-PM2.5 model with higher spatial resolution can provide
more details in spatial variations of PM2.5 than MxD3km
AOD-PM2.5 and MAIAC AOD-PM2.5 models.

To further examine the performance of the Ref250-PM2.5

model at urban scales, Fig. 13 shows the Ref250-PM2.5-model-
estimated PM2.5 concentrations over Nanjing city, Shanghai

Fig. 12. Distribution of population in (a) Nanjing city and (b) Shang-
hai city in 2018. Data are obtained from the NASA Socioeconomic
Data and Applications Center (Gridded Population of the World, v4;
http://sedac.ciesin.columbia.edu/) with approximately 1-km resolution.

city, and their urban central districts for low and high air
pollution cases. PM2.5 concentrations were also estimated by
the MxD3km AOD-PM2.5 and the MAIAC AOD-PM2.5 model
over Nanjing and Shanghai for the same low and high air
pollution cases. PM2.5 concentrations measured in the central
districts of the two cities are also shown. For the case with low
PM2.5 pollution in Nanjing city [Fig. 13(a-1)–(a-4)], the mod-
els estimated PM2.5 concentration possessed almost the same
spatial distribution, but the Ref250-PM2.5 estimations have a
more complete spatial coverage than the MxD3km AOD-
PM2.5 model estimations. The PM2.5 concentration generally
ranges from ∼30 to ∼55 µg/m3 with a relatively higher
(lower) concentration in the north (south) of city. For the case
with high PM2.5 pollution in Nanjing city [Fig. 13(b-1)–(b-4)],
the high (low) PM2.5 concentration is distributed in the
north (south) of city, generally higher (lower) than ∼110
(80) µg/m3. The spatial distribution of PM2.5 concentration
derived from the MxD3km AOD-PM2.5 model is consistent
with the Ref250-PM2.5 model. However, the MxD3km AOD-
PM2.5 model has no estimations in a large area of the city.
Meanwhile, compared with the Ref250-PM2.5 and MAIAC
AOD-PM2.5 model estimations, the MxD3km AOD-PM2.5

model obviously overestimated the PM2.5 concentrations in the
south of the city. The MAIAC AOD-PM2.5 model estimated
PM2.5 concentration in the south of the city is consistent
with the Ref250-PM2.5 model estimations. However, there are
no PM2.5 estimations from the MAIAC AOD-PM2.5 model
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Fig. 13. Ref250-PM2.5-model-estimated PM2.5 concentrations over (a-1) and
(b-1) Nanjing City, (a-4 and b-4) urban central district of Nanjing City,
(c-1) and (d-1) Shanghai city, and (c-4) and (d-4) urban central district
of Shanghai city, as well as MxD3km and MAIAC AOD-PM2.5-model-
estimated PM2.5 concentrations over (a-2), (b-2), (a-3), and (b-3) Nanjing
City and (c-2), (d-2), (c-3), and (d-3) Shanghai city for low and high PM2.5
concentration cases. The colored dots in (a-4), (b-4), (c-4), and (d-4) show
surface-measured PM2.5 concentrations. Units are µg/m3. The dates of the
four cases are (a) February 13, 2018, 03:00 UTC, (b) January 15, 2018,
05:05 UTC, (c) October 2, 2018, 03:05 UTC, and (d) January 15, 2018,
05:05 UTC.

in the north of city, where the PM2.5 concentrations are
high. For the case with low air pollution in Shanghai city
[Fig. 13(c-1)–(c-4)], the PM2.5 concentration varies from ∼20
to ∼35 µg/m3 with relatively higher and lower values that
are seen in the western and the eastern part of city, respec-
tively. The spatial distribution of the Ref250-PM2.5, MxD3km
AOD-PM2.5, and MAIAC AOD-PM2.5 model estimations are
consistent with each other. However, the PM2.5 estimations
from the Ref250-PM2.5 model have a much more complete
spatial coverage than those from the MxD3km AOD-PM2.5

and MAIAC AOD-PM2.5 models. For the case with high
air pollution in Shanghai city [Fig. 13(d-1)–(d-4)], relatively
higher and lower values are distributed in the west and the
east of the city with values larger and smaller than ∼90
and ∼50 µg/m3, respectively. The PM2.5 estimations from
the Ref250-PM2.5 model cover almost the entire city, but there
are no PM2.5 estimations from the MxD3km AOD-PM2.5 and
MAIAC AOD-PM2.5 model in a large area of the city. In
addition, the PM2.5 estimations from the MAIAC AOD-PM2.5

model are obviously lower than those from the Ref250-PM2.5

and MxD3km AOD-PM2.5 models in the west of the city.
Overall, the spatial distribution of the PM2.5 concentration
estimated from the Ref250-PM2.5, MxD3km AOD-PM2.5 and
MAIAC AOD-PM2.5 models is generally consistent, but the
Ref250-PM2.5 model estimations have a much more complete
spatial coverage than the MxD3km AOD-PM2.5 and MAIAC
AOD-PM2.5 model estimations, which is likely related to
the AOD retrieval algorithm [40]. In addition, more pixels
were masked as the cloud contamination in the MxD3km
AOD retrieval algorithm than the MODIS cloud mask

Fig. 14. (a) Cloud mask result in the MODIS cloud mask product and
(b) cloud fraction result in MODIS 3-km AOD product over YRD region for
one case as shown in Fig. 5 (July 14, 2018, 03:05 UTC).

product (as shown in Fig. 14) is also partially contributed to
the large missing of the AOD retrievals. The Ref250-PM2.5

model estimates PM2.5 concentrations by directly using TOA
reflectances, avoiding AOD retrievals.

The results indicate that the Ref250-PM2.5 model success-
fully derives PM2.5 concentrations at the city level and smaller
scales within the city under low and high air pollution condi-
tions. The Ref250-PM2.5 model also captures the uneven spatial
distribution of PM2.5 concentrations at small spatial scales
and identifies locations with the highest PM2.5 concentration,
considered possible sources of PM2.5 point emissions. The
AOD-PM2.5 model, however, cannot reveal such details, given
the large number of missing retrievals and the coarse spatial
resolution of the MODIS DT AOD product. The Ref250-PM2.5

model, with its spatial resolution of 250 m, can provide more
details about the gradual variations in PM2.5 concentration at
the city level and at smaller scales within the city than models
developed using the MxD3km and MAIAC AOD products.

The spatial distribution of annual mean PM2.5 concentration
derived from the Ref250-PM2.5 model in Nanjing city is given
in Fig. 15(II) and the satellite image in Nanjing city from
Google Earth image is given in Fig. 15(I) as a reference.
The results indicate that the high PM2.5 concentration derived
from the Ref250-PM2.5 model is generally seen in the regions
with intensive human activities and dense urban constructions,
e.g., industrial zones and residential areas. In addition, several
typical areas, including an industrial park located in the
north of the city [see Fig. 15(a)], a combination of industrial
zones and residential areas [see Fig. 15(b)], and the Nanjing
Lukou International Airport [see Fig. 15(c)], with high PM2.5

concentration are zoomed in upon in order to illustrate the
performance of high spatial resolution of Ref250-PM2.5 model.
The PM2.5 concentration is typically higher in the industrial
zone and the high-density residential area than that in the
surrounding area of nonindustrial and nonresidential areas [as
shown in Fig. 15(a) and (b)]. Fig. 15(c) shows that the PM2.5

concentration is obviously higher in the entire airport than
that in the surround area, with relatively higher values in the
parking apron, indicating that our Ref250-PM2.5 model has the
potential ability to locate PM2.5 emission source inside a large
PM2.5 emissions unit to a certain extent. Overall, the high
resolution of the model developed in this study is possibly used
to locate main PM2.5 emission sources, consisting of industrial
zones, residential areas, and transportation hubs.

Authorized licensed use limited to: Beijing Normal University. Downloaded on December 15,2021 at 16:10:09 UTC from IEEE Xplore.  Restrictions apply. 



4101312 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 15. Illustration of the locations with high annual mean PM2.5 con-
centration derived from Ref250-PM2.5 model in Nanjing city, combined with
Google Earth images as references.

F. Limitations and Future Work

In this section, we developed a model to estimate surface
PM2.5 concentrations with a high spatial resolution of 250 m
by using the direct measurements of MODIS TOA reflectance
in combination with meteorological variables, in lieu of the
conventional approach of using the retrieved AOD. Compared
with the latter, the proposed model has a much higher spatial
resolution at the same temporal frequency. However, there are
some limitations and potential room for model improvements.

Reanalysis meteorological variables were used in the model
development, having relatively coarse spatial resolutions of
0.25◦×0.25◦ and whose accuracy still needs further validation.
For example, the ECMWF Reanalysis v5 (ERA5) tends to
overestimate/underestimate the PBLH in spring/summer over
China [41] and underestimate the 10-m wind speed in most
regions of China [42]. The coarse spatial resolution of reanaly-
sis data may lead a spatial mismatch between the surface PM2.5

concentrations and the meteorological variables. The possible
unrepresentativeness of the meteorological conditions over a
site may result in errors in PM2.5 estimations. More accurate
surface measurements of meteorological variables over a site
may improve the model performance.

The RF algorithm was used to develop the model in the
current study because it has been shown to estimate PM2.5

concentrations from satellite remote sensing very well and
easy to fine-tune to derive optimal model parameters. Some
of the previous studies have developed models based on
different ML algorithms, which shows that the performance is
comparable to or slightly better than the RF algorithm. Thus,
developing high-spatial-resolution models with different ML
algorithms and systematically comparing their performances
should be done in the future. The proposed approach was

initially tested in the YRD region in the current study, and
thus, the model developed over other regions should be tested
in future.

The red channel is sensitive to aerosol particles and reports
relatively low surface reflectance on dark targets. Thus,
the TOA reflectances at red and blue channels from MODIS
have been widely used for aerosol retrievals [43]. The fact is
that much larger sample size of the TOA reflectance than that
of the AOD products is possibly contributed to the higher
performance of the model with reflectance than that with
AOD products. In addition, the ML approach can generally
cope with complex statistics, multiple variables, different noise
sources, and complicated relationship among variables, and
thus, it offers a promising tool to build a new data-driven
model for possibly capturing the complicated relationship
between the initial predictors and the final predictions [44].
However, interpretability has been identified as a potential
weakness of ML approaches. Meanwhile, ML algorithms have
acceptable and relatively stable performances when estimat-
ing over the observation period of the training data set but
deteriorates after application beyond the realm of the training
data. ML algorithms, therefore, have some limitations when
it comes to temporal extrapolation [44]. Using the sample-
and site-based CV, the accuracy of the model and spatial
variability can be well verified. To assess the accuracy of
model prediction in those days beyond the modeling days,
the model is also verified based on the time-based CV with
R2 of 0.56 (figure not shown). The time-based CV is like the
sample- and site-based CV and performs the 10-CV process
with 10% of days randomly dropped. A few previous studies
validated the model with the time-based CV approach with the
most of them have reported a low value of CV-R2, i.e., 0.57 for
the RF model, 0.63 for the space–time RF model [12], 0.68 for
the XGBoost model [45], and 0.52 for the nested linear mixed
effect (LME) model [14]. These results indicate that the model
has the limitation on the PM2.5 prediction for future time.
However, the training data set can be iteratively updated by
incorporating with the near real-time surface measured PM2.5

concentration, satellite observed reflectances, and the related
meteorological variables to update the Ref250-PM2.5 model and
then estimate the surface PM2.5 concentration at satellite pixels
at near real-time level.

VI. CONCLUSION

In this section, a PM2.5 estimation model with an extremely
high spatial resolution of 250 m was developed based on the
RF algorithm by directly using MODIS measurements of TOA
reflectance and relevant meteorological variables. To the best
of our knowledge, it is the first time to derive such high
spatial resolution of PM2.5 product from common satellite
retrievals, such as MODIS. Compared with most previous
models with coarse spatial resolutions, the proposed model
estimates PM2.5 concentrations on ultrafine spatial resolution
(250 m) very well, especially at city and city district scales.
The model performs very well with R2 and RMSE (MPE and
RPE) of 0.90 and 12.0 µg/m3 (7.8 µg/m3 and 16.9%) for
the sample-based CV, respectively, and 0.86 and 13.7 µg/m3

(8.9 µg/m3 and 19.5%) for the site-based CV, respectively.
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The model accurately captures the fine-detailed features in
the distribution pattern and magnitude of PM2.5 concentrations
over the YRD region for seasonal mean, daily variations,
and different air pollution conditions (low, moderate, and
severely high). The proposed model also generates PM2.5

concentrations with more complete spatial coverage than the
MxD3km and MAIAC AOD-PM2.5 models do. It can capture
the uneven spatial distribution of PM2.5 concentrations at a
fine spatial resolution, suggesting a way of locating the main
sources of PM2.5 emissions. PM2.5 concentrations generated by
the proposed model have a much finer spatial resolution than
most previously developed products, useful for air-pollution-
related studies, and pollution monitoring and evaluation by
governments, especially in urban areas and their districts
where human activities are generally intensive.
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