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The importance of fungi as cloud condensation nuclei (CCN) and ice-forming nuclei (IN) has been recognized for
some researches. Particle growth alongwith newparticle formation (NPF) play a joint role inmodulating the CCN
number concentration. Although fungi can accelerate the coalescence by large particles, the specific contribution
and characteristics of atmospheric fungi for particle growth, especially during NPF events, is poorly understood.
In this study, aerosol size distribution data and air sampleswere collected at Xingtai, a suburban site in the central
North China Plain, from 1May to 1 June 2016. Using DNA sequence-basedmethods, atmospheric fungal commu-
nities were identified and quantified. Significant differences in fungal communities between particle growth
events along with new particle formation (PGE-NPF) and non-PGE-NPF events are found, especially for the Asco-
mycota and Basidiomycota phyla, and the Dothideomycetes, Saccharomycetes, and Tremellomycetes classes. At the
genus level, five fungal communities were significantly different under PGE-NPF and non-PGE-NPF conditions,
i.e., the Cladosporium, Capnodiales, Mrakia, Saccharomycetales and Trichocomaceae genera. The air mass source
not only had an impact on NPF and the particle growth process, but also on the characteristics of the fungal com-
munities. The fungal genus communities of Cladosporium, Capnodiales, Trichocomaceae, Mrakia, and
Saccharomycetales may contribute to NPF and the particle growth process.
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1. Introduction
Earth's atmospheric microorganisms like fungi can influence atmo-
spheric physics, climate, and human health (Elbert et al., 2007). The
microbes can participate in long-distance transport and affect huge
areas andmassive numbers of people (Tang et al., 2018). Fungi are ubiq-
uitous in the atmospheric environment and are one of the most com-
mon classes of primary biological aerosol particles (Després et al.,
2012). In addition, fungi comprise 23% of the total primary emissions
of organic aerosols (Heald and Spracklen, 2009).

The importance of airborne fungi is amplified in the process of cloud
formation and development due to their roles as both cloud condensa-
tion (CCN) and ice nuclei (IN) (Möhler et al., 2007; Heald and
Spracklen, 2009; Iannone et al., 2011). Several dicarboxylic acids have
been identified as predominant constituents of organic CCN which can
be efficiently transformed by fungi in the boundary layer (Yu, 2000;
Ariya et al., 2002; Sun and Ariya, 2006). Laboratory studies have also in-
dicated that certain species of fungi are highly efficient IN, such as Fusar-
ium (Pouleur et al., 1992), Isaria farinose, and Acremonium implicatum
(Huffman et al., 2013).

Particle growth is an important process in CCN formation because
only atmospheric aerosols capable of growing to sizes of 50 nm or
larger can act as CCN (Pierce et al., 2014; Sarangi et al., 2015), al-
though smaller particles may serve under certain special circum-
stances (Fan et al., 2018). New particle formation (NPF) sometimes
occurs during particle growth events and contributes to CCN number
concentration significantly (Kuwata et al., 2008; Li et al., 2017). The
Fig. 1. Location of the sampling site (Xingta
NPF is defined that its particle formation rates for 3 nm typically
vary from 1 to 70 cm−3 s −1 and the growth rate of new nucleated
particles has been observed in the range of 1–20 nm h−1 (Yue
et al., 2010; Yao et al., 2018; Shen et al., 2019; Lv et al., 2018).
Wiedensohler et al. (2009) found that atmospheric aerosols in the
growing mode contributed ~80% to the CCN number concentration
on a NPF day in the North China Plain. The enhancement by NPF
may differ in different regions. For example, NPF increases the CCN
number concentration by 2–9 times in urban areas (Kuang et al.,
2009) and by 3–10 times in coastal areas (O'Dowd, 2001).

In the particle growth process, although biological particles, such
as fungi can accelerate the coalescence by large particles (Möhler
et al., 2007), less is known about what specific contribution is
made by atmospheric fungi to particle growth, especially on NPF
day. Many studies have investigated particle growth from the chem-
ical point of view (Zhang et al., 2011; Zhang et al., 2015), but the link
between fungi and the particle growth process or NPF is not clear. A
detailed investigation about the airborne fungi population and di-
versity during particle growth or NPF events is thus needed. Airborne
fungi have been quantified using the cultivation method (Heid et al.,
1996; Lau et al., 2006). However, fungi quantified by this method
may not accurately reflect the true fungal species because some
fungi cannot be cultured (Lang-Yona et al., 2012). The culture envi-
ronment in the laboratory and the true atmosphere also differ.
Others have reported limitations for culturing airborne fungi
(e.g., Amann et al., 1995; Buttner et al., 1997; Hospodsky et al.,
2010). DNA sequence-based methods have been proposed to
i) and instruments used in this study.
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circumvent the cultivation method's limitations in detecting
culturable and non-culturable atmospheric fungi (Fröhlich-
Nowoisky et al., 2009; Dannemiller et al., 2014). DNA sequence-
based methods can make hundreds to thousands of identifications
in each sample and are useful for identifying fungal species, concen-
trations, and diversity (Dannemiller et al., 2014).

In this study, we quantify different atmospheric fungal populations
sampled in the central North China Plain by DNA sequence-based
methods. Alongwith aerosol particle number size distributionmeasure-
ments, the goal of this study is to investigate and characterize atmo-
spheric fungal diversity and explore possible correlations between
fungal species and particle growth events on NPF days.

2. Materials and methods

2.1. Sample collection

The sampling site is Xingtai located in the central North China Plain
(NCP) (Fig. 1), which is located in southern Heibei Province and to the
east of the Taihang Mountains. Local industrial and domestic sources
are the greatest contributors to air pollution in this study area. Air sam-
ples were taken from the roof of a two-story building at the Xingtai Na-
tional Meteorological Station (37.18°N, 114.37°E) during the Aerosol
Atmosphere Boundary-Layer Cloud (A2BC) campaign. Airborne parti-
cles (particulate matter that have a diameter of b2.5 μm, or PM2.5)
were collected using a high volume air sampler (model Tish TE-6001,
Tish Environment Inc., USA) which can separate particles below 2.5
μm. Ambient air was drawn at an average flow rate of 1.13 m3 min−1

for 12 h during the day (7 am to 7 pm local time). Samples were col-
lected from 1 May to 1 June 2016 (Table S1). Quartz microfiber filters
(203 mm × 254 mm, WhatmanTM) were first decontaminated by bak-
ing at 500 °C then used to collect airborne particles. Each sterilized filter
was packaged in sterilized aluminum foil. All collected samples were
stored in a refrigerator with the temperature set at −80 °C until being
used (Fröhlich-Nowoisky et al., 2009).

2.2. Aerosol size distribution measurements

Aerosol particle number size distributions (from 15 nm to 685 nm)
were measured by a Scanning Mobility Particle Sizer (SMPS, model
Fig. 2. Time series of particle number size distribution on (a) 3May 2016 and (b) 20May2016 in
along with new particle formation were observed.
3938, TSI Inc.) that was equipped with a differential mobility analyzer
(3081L, TSI Inc.) and a condensation particle counter (3775, TSI Inc.).
In addition, we also obtained aerosol size distribution data using a
Cimel CE318-DP sun-sky radiometer. Sky radiance almucantar mea-
surements at 440, 670, 870, and 1020 nmcombinedwith aerosol optical
thickness retrievals were used to retrieve aerosol size distributions
based on the method developed by Dubovik and King (2000). This
CE318-DP sun-sky radiometer is part of the Sun-sky radiometer Obser-
vation NETwork (SONET). Data from the SONET Xingtai site are avail-
able from the Aerosol Robotic Network (AERONET) website (https://
aeronet.gsfc.nasa.gov/) (Li et al., 2016). The CE318-DP-based aerosol
size distributions (Holben et al., 1998) used in this study correspond
to AERONET level 1.5 data (only level 1.5 data available). The
AERONET level 1.5 is the cloud-screened data, which includes two
major criteria in the cloud-screening procedure and the detailed
methods can be found in Smirnov et al. (2000).

2.3. DNA extraction, amplification, and sequencing

Sample filters (3/4 of the total, 721 cm2) from each sampling day
were used for DNA extraction. The filters were cut into 2 × 6 cm2 pieces
and were placed in 50-ml centrifuge tubes filled with sterilized 1× PBS
buffer. The samples were then pelleted at 4 °C by centrifugation at 200g
for 2 h. After gentle vortexing, the resuspension was filtered with a 0.2-
μm Supor 200 PES Membrane Disc Filter (PALL, NY, U.S.) which was
then cut into small pieces and used for DNA extraction using the MO-
BIO PowerSoil DNA Isolation Kit (MOBIO Laboratories, Carlsbad, CA,
USA). Each sample's DNA from three independent extractionswas com-
bined, and the amount of DNAwas determined by aNanoDropND-1000
spectrophotometer (ThermoFisher, USA). All DNAwas stored at−20 °C
before further analysis.

The 18S rRNA gene (379 bp) was used as the fungal specific frag-
ment with the primers SSU0817F (5′-TTAGCATGGAATAATRRAATA
GGA-3′) and 1196R (5′-TCTGGACCTGGTGAGTTTCC-3′). Rousk et al.
(2010) reported that these selected primers are fungal-specific and
can target a region of the 18S rRNA gene, enabling alignment of the var-
iables between major taxa. Polymerase chain reaction (PCR) amplifica-
tion was performed in an ABI GeneAmp® 9700 (Applied Biosystems,
Foster City, CA, USA). The PCR components were: 5× FastPfu Buffer (4
μl), 2.5 mM dNTPs (2 μl), forward primer (5 μM, 0.8 μl), reverse primer
Xingtai. The rectangles outlined bydashes show time periodswhen particle growth events

https://aeronet.gsfc.nasa.gov/
https://aeronet.gsfc.nasa.gov/
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(5 μM, 0.8 μl), FastPfu polymerase (0.4 μl), and template DNA (10 ng).
The reaction volumewas increased to 20 μl with ddH2O. The PCR ampli-
fication used an initial denaturing step of 95 °C for 3 min, followed by
35 cycles of 95 °C for 30 s, 53 °C for 30 s, and 72 °C for 45 s, and finally
an elongation step of 72 °C for 10 min.

Roch 454 high-throughput sequencing was performed in this study.
Amplification products for sequencing were purified using the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) and
quantified using QuantiFluor™-ST (Promega, Madison, WI, USA). Puri-
fied amplicons were pooled in equimolar, and paired-end reads were
generated on an Illumina MiSeq platform (Majorbio Bio-Pharm Tech-
nology Co., Ltd., Shanghai, China).

2.4. Bioinformatics analysis

Fungal diversity and richness in the atmosphere were quantified
based on operational taxonomic units (OTUs) with 97% sequence simi-
larity (Liu et al., 2016). 18S rRNA gene sequences of each OTU were an-
alyzed by a Ribosomal Database Project Classifier (http://rdp.cme.msu.
edu/) against the Silva 18S rRNA database (http://www.arb-silva.de)
to determine the fungal taxonomy. Rarefaction curves and Shannon-
Fig. 3. (a) Particle number size distribution and (b) volume concentrations for aerosol particles o
Wiener curve analyses were done to show the diversity of the samples.
The Wilcoxon rank-sum test was used to check changes in fungal com-
position between two groups with a statistical significance P b 0.05. In
addition, the linear discriminant analysis (LDA) effect size (LEfSe)
method was used to elucidate differences in fungal taxa. This method
can search the taxon for which the relative abundance is significantly
different among the various populations at different taxa levels (Ling
et al., 2016;Wang et al., 2012). In this study, LDA scores ≥2were consid-
ered to be important contributors to themodel and the significant alpha
is 0.05.

2.5. Back trajectory analysis

To understand the source direction of the different airmasses, a back
trajectory analysis was done in this study. The Hybrid Single-Particle La-
grangian Integrated Trajectory (HYSPLIT) model was used to compute
72-h backward trajectories at 500m every 12 h during the sampling pe-
riod (day and night) (Wang et al., 2009). HYSPLIT is a professional
model to calculate and analyze the transport and diffusion trajectories
of airmasses. It has beenwidely used in the study of atmospheric air fol-
lows in many regions. Meteorological data were obtained from the Air
n3May 2016 fromwithin the rectangle outlined bydashes in (a), the time is the local time.

http://rdp.cme.msu.edu/
http://rdp.cme.msu.edu/
http://www.arb-silva.de


Fig. 4. (a) Taxonomic cladogramobtained by the LEfSe analysis to identify significantly different abundant taxa of fungi under PGE-NPF (Yes) and non-PGE-NPF (No) conditions. Taxawith
significantly different abundances among PGE-NPF (Yes) and non-PGE-NPF (No) groups are represented by colored dots. From the center outward, they represent the kingdom, phylum,
class, order, family, and genus levels. The color-shaded background represents trends of the significantly different taxa. Each colored dot has an effect size LDA score as shown in Fig. S1.
(b) Wilcoxon rank-sum test for fungal taxa at the genus level in two groups: *0.01 b P ≤ 0.05, **0.01 b P ≤ 0.01. The abbreviation for Taxa levels is shown in Table S2.
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Resources Laboratory website in GDAS (Global Data Assimilation Sys-
tem) format at a 1o spatial resolution.
3. Results and discussion

3.1. Particle size distributions and particle growth events

Fig. 2 shows the time series of particle number size distributions
measured by the SMPS on 3May and 20May 2016. The particle number
size distribution changes dramatically from day to day. Relatively high
concentrations of particles in the 20–200 nm size range were seen in
Xingtai during the sampling period. In addition, particle growth events
along with NPF are clearly observed (Wang et al., 2018). On the NPF
day, the particle number concentration between 15 and 50 nm (N15–50

nm) suddenly increased around 10:00 pm, and the particle growth pro-
cess continued until midnight. This occurred on both clean and polluted
days, e.g., on 3May 2016when the PM2.5 concentration was 9.5 μgm−3

(Fig. 2a), and on 20 May 2016 when the PM2.5 concentration was 75 μg
m−3 (Fig. 2b). We further explore aerosol columnar volume size distri-
bution data obtained by the CE318-DP sun-sky radiometer on 3 May
2016 (Fig. 3). It can be found that the CE318-DP can also capture the
particle growth events. From the Fig. 3(b), we can observe clearly that
the volume concentration for the coarse-mode aerosol particles have a
various increase in the afternoon compared it is in the morning, this
trend has a good agreement with the SMPS data (Fig. 3(a)). From inte-
grated SMPS and CE318-DP sun-sky radiometer data, eight fungal sam-
ples were collected under particle growth events along with new
particle formation (PGE-NPF) conditions and seven samples under
non-PGE-NPF conditions (Table S1).
Fig. 5. HYSPLIT back trajectories at 500 m centered on Xingtai during the sampling period. Blu
Direction B represents the source of air masses from the west to Xingtai. (For interpretation o
this article.)
3.2. Characteristics of fungi in PGE-NPF conditions

The LEfSe analysis was used to identify fungi that differed signifi-
cantly between PGE-NPF and non-PGE-NPF conditions in this study.
Fig. 4a shows a cladogram representing the structure of the predomi-
nant fungi under PGE-NPF and non-PGE-NPF conditions. The LEfSe anal-
ysis revealed 23 discriminative features (LDA score N 2) at different
taxon levels. There were 11 taxa in group Yes (PGE-NPF) and 5 taxa in
group No (non-PGE-NPF) (Fig. 4a). The colored red and green taxa
may be used as biomarkers for exploring the contribution of these spe-
cies to PGE-NPF. At the genus level, Cladosporium and Capnodialeswere
most abundant under non-PGE-NPF conditions. These communities be-
long to the class of Dothideomycetes (c_Dothideomycetes) and the phy-
lum of Ascomycota (p_Ascomycota). By contrast, although
Saccharomycetales (g__norank_o__Saccharomycetales), Galactomyces
(g_Galactomyces) and Pseudoplatyophyra (g__Pseudoplatyophyra) are
also in the Ascomycota phylum, they belong to the class of Saccharomy-
cetes (c_Saccharomycetes) and were most abundant under PGE-NPF
conditions. The genus Mrakia (g_Mrakia), which belongs to the class
of Tremellomycetes (c_Tremellomycetes) and the phylum of Basidiomy-
cota (p__Basidiomycota), was enriched under PGE-NPF conditions as
well. We further analyzed the fungal community structure at the
genus level using the Wilcoxon rank-sum test which is a more strict
two-tailed difference test. The bar plot on the left in Fig. 4b shows the
mean relative abundance of the fungal community in two groups and
the right interval plot shows differences in the fungal community at
the 95% confidence level (only the top 15 most abundant genera are
shown in the figure). Significant differences are seen in five fungal com-
munities between the Yes and No groups: Cladosporium (P ≤ 0.01),
Capnodiales (P ≤ 0.01), Mrakia (P ≤ 0.01), Saccharomycetales (P ≤ 0.01),
e line: direction A represents the source of air masses from the east to Xingtai. Red line:
f the references to color in this figure legend, the reader is referred to the web version of
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and Trichocomaceae (P ≤ 0.05). Cladosporium and Capnodiales have a
higher relative abundance under non-PGE-NPF conditions. The genera
Trichocomaceae, Mrakia, and Saccharomycetales are significantly less
abundant under non-PGE-NPF conditions.

3.3. Particle growth events and fungi characteristics in different air masses

Fig. 5 shows results from the HYSPLIT analysis. Based on HYSPLIT
back trajectories, we classify airmasses according to direction: direction
A (air masses from the east to Xingtai, N = 18) and direction B (air
masses from the west to Xingtai, N = 11). Air masses from the south
are too few (N = 2) so are not considered here. Direction B air masses
originate from Inner Mongolia and pass over mountains and through
forests (Fig. 1). These are considered clean air masses. However, Direc-
tion A airmasses flow acrossmany relatively polluted urbanized and in-
dustrialized regions (Zhang et al., 2018). Integrated with SMPS data, we
find that 18% of theHYSPLIT back trajectories from the direction A occur
the clearly PGE-NPF, and for the direction B is 33%.

To understand the disjointed or shared fungal communities at the
genus level between these two directions, a Venn diagram was devel-
oped to observe overlaps Fig. 6 shows that 42 genus communities are
shared. The direction A genus community is not as rich as the direction
B genus community, i.e., 6 elements as opposed to 13 elements. Rarefac-
tion curves and Shannon-Wiener curves were then generated to enable
comparisons of observed fungal community richness at the genus level
between the two directions. As shown in Fig. S2a and c, all curves ap-
proach a plateau, suggesting that the sequencing dataset was large
Fig. 6. The Venn diagram illustrating the overlap of funga
enough to retainmost of the information about the fungal communities
at the genus level in each sample. Mean values of the curves for all sam-
ples with standard deviation error bars are shown in Fig. S2b and d and
confirms the greater richness of the genus community from direction B.

The heatmap analysis based on the fungal community at the genus
level reveals that the fungal communities' relative abundances also dif-
fer between the two directions. Fig. 7a shows that the Mrakia,
Saccharomycetales, and Eukaryota genus communities from direction A
have a higher relative abundance than those from direction B. Direction
A Cladosporium are less abundant. Fig. 7b shows results from the
Wilcoxon rank-sum test. Seven genus communities are significantly dif-
ferent between the two directions: Trichocomaceae (P ≤ 0.05),
Cladosporium (P ≤ 0.05), Mrakia (P ≤ 0.05), Saccharomycetales (P ≤
0.05), Capnodiales (P ≤ 0.01), Galactomyces (P ≤ 0.05), and Eukaryota
(P ≤ 0.05). Of these seven genus communities, only the relative abun-
dances of Cladosporium and Capnodiales from direction B are greater
than from direction A.

4. Discussion

In this study, we find that fungal communities have significant dif-
ferences under PGE-NPF and non-PGE-NPF conditions (Fig. 4), espe-
cially at the genus levels of Cladosporium, Capnodiales, Mrakia,
Saccharomycetales, and Trichocomaceae. Of these communities,
Cladosporium, Capnodiales, and Saccharomycetales all belong to the phy-
lum of Ascomycota. Two IN-active fungi, Isaria farinose and Acremonium
implicatum, also belonging to the phylum of Ascomycota have been
l taxa at the genus level between directions A and B.



Fig. 7. (a) Heatmap of the top 15 genus communities fromdirection A anddirection B. Colors represent log (relative abundance). (b)Wilcoxon rank-sum test for fungal communities at the
genus level in two groups: *0.01 b P ≤ 0.05, **0.01 b P ≤ 0.01.
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found (Huffman et al., 2013). This suggests that the phylum of Ascomy-
cota plays an important role in the atmospheric nucleation and growth
process. Cladosporium is one of most abundant types of fungal spores in
the atmosphere, and its ice nucleation ability has been investigated
(Iannone et al., 2011). Cladosporium have been frequently observed as
the dominant spore near the ground (Pyrri and Kapsanaki-Gotsi,
2007;Mallo et al., 2011). In this study, we also find a high relative abun-
dance of Cladosporium at Xingtai. Its mean relative abundance is ~10%
under PGE-NPF conditions and 28% under non-PGE-NPF conditions.
This finding suggests that in addition to its ice-nucleating ability,
Cladosporium can also play a role in the particle growth andNPF process.

The source direction of air masses is an important factor in the par-
ticle growth and NPF process (Nilsson et al., 2001). We found that NPF
events often occur when clean air flows to Xingtai from the north and
the west (direction B, Fig. 5). However, this study shows that NPF also
occurswhen airflows in frompolluted regions (direction A). This is con-
sistent with earlier studies that reported the more frequent occurrence
of NPF events in the polluted atmosphere of northern China (e.g., Wang
et al., 2017). Pierce et al. (2014) have also reported the occurrence of
NPF events when air flowed in from both clean and polluted regions.
In addition, they revealed that NPF rates tended to be faster under pol-
luted conditions. As shown in Fig. 7, the source direction of air masses
also has a significant impact on fungal communities (Jeon et al., 2013).
Seven genus communities (Trichocomaceae, Cladosporium, Mrakia,
Saccharomycetales, Capnodiales, Galactomyces, and Eukaryota) in air
masses from direction A and direction B differ significantly. Of these
seven genus communities, five (Cladosporium, Capnodiales, Mrakia,
Saccharomycetales, and Trichocomaceae) show significant differences
under PGE-NPF and non-PGE-NPF conditions (Section 3.2). The richness
of the genus community fromdirection A is less than that fromdirection
B. Direction A airmass backward trajectories (Fig. 5) show thatmany air
masses originated over the sea. Di Giorgio et al. (1996) have shown that
fungal concentrations are lower when the wind direction is from the
sea. This is because sea aerosols may have a toxic effect on atmospheric
micro-organisms (Jones and Harrison, 2004).

5. Conclusions

In this study, we carried out a field experiment from 1May to 1 June
2016 at Xingtai in the central North China Plain to investigate the char-
acteristics of atmospheric fungi under PGE-NPF conditions. SMPS and
CE318-DP sun-sky radiometer instruments were used to analyze PGE-
NPF cases. DNA sequence-based methods were also used to obtain in-
depth information about atmospheric fungal communities.

The LEfSe analysis shows that fungal communities under PGE-NPF
and non-PGE-NPF conditions have significant differences, especially
the Ascomycota and Basidiomycota phyla and the Dothideomycetes, Sac-
charomycetes, and Tremellomycetes classes. At the genus level, five
genus communities show significant differences under PGE-NPF and
non-PGE-NPF conditions. Under non-PGE-NPF conditions, Cladosporium
(P ≤ 0.01) and Capnodiales (P ≤ 0.01) have a higher relative abundance.
Trichocomaceae (P ≤ 0.05),Mrakia (P ≤ 0.01), and Saccharomycetales (P ≤
0.01) are significantly less under non-PGE-NPF conditions than under
PGE-NPF conditions. In the back trajectory analysis, the source of air
masses had an impact on the NPF and particle growth process and the
characteristics of fungal communities. PGE-NPF is often observed
when clean air flows in from the west and north and it also occurs
when air flows in from polluted regions to the east. Seven fungal
genus communities (Trichocomaceae, Cladosporium, Mrakia,
Saccharomycetales, Capnodiales, Galactomyces, and Eukaryota) in air
masses from direction A and direction B differ significantly. Five of
these genus communities show significant differences under PGE-NPF
conditions.

Our results suggest that the Cladosporium, Capnodiales,
Trichocomaceae, Mrakia, and Saccharomycetales fungal communities
play an important role in theNPF and particle growth process. Although
the ice-nucleating ability of Cladosporium is investigated, the role of
other fungal communities in NPF or particle growth events is poorly un-
derstood. Further fundamental field and laboratory research is required
to provide in-depth information about the impact of fungi reactions on
themodification of CCN/IN capabilities, and theNPF and particle growth
process. As most fungal species in the atmosphere are still unknown,
DNA sequence-based methods can help to elucidate the diversity of
fungi and provide realistic atmospheric fungal information (Després
et al., 2012).
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