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Abstract The vertical distribution of aerosols and their capability of serving as cloud condensation nuclei
(CCN) are important for improving our understanding of aerosol indirect effects. Although ground-based
and airborne CCN measurements have been made, they are generally scarce, especially at cloud base where
it is needed most. We have developed an algorithm for profiling CCN number concentrations using
backscatter coefficients at 355, 532, and 1,064 nm and extinction coefficients at 355 and 532 nm from
multiwavelength lidar systems. The algorithm considers three distinct types of aerosols (urban industrial,
biomass burning, and dust) with bimodal size distributions. The algorithm uses look-up tables, which were
developed based on the ranges of aerosol size distributions obtained from the Aerosol Robotic Network, to
efficiently find optimal solutions. CCN number concentrations at five supersaturations (0.07–0.80%) are
determined from the retrieved particle size distributions. Retrieval simulations were performed with different
combinations of systematic and random errors in lidar-derived extinction and backscatter coefficients:
systematic errors range from �20% to 20% and random errors are up to 15%, which fall within the typical
error ranges for most current lidar systems. The potential of this algorithm to retrieve CCN concentrations is
further evaluated through comparisons with surface-based CCN measurements with near-surface lidar
retrievals. This retrieval algorithm would be valuable for aerosol-cloud interaction studies for which virtually
none has employed CCN at cloud base because of the lack of such measurements.

1. Introduction

Atmospheric aerosol particles affect climate indirectly by acting as cloud condensation nuclei (CCN; Carslaw
et al., 2010; Paasonen et al., 2013). CCN are those aerosol particles on which cloud droplets form when the
supersaturation in a cloud is high enough for the particles to grow by water condensation until they reach
a critical radius, beyond which condensational growth continues spontaneously unless the supersaturation
decreases rapidly (Mamouri & Ansmann, 2016; Nenes et al., 2001). Anthropogenic emissions of aerosol parti-
cles are a major source of CCN, which influence cloud microphysical and radiative properties, and conse-
quently climate change (Boucher et al., 2013). Therefore, an accurate knowledge of the spatial distribution
of aerosols and their capability of serving as CCN is fundamental to understanding aerosol indirect effects.
As emphasized by Fan et al. (2016), obtaining concurrent measurements of aerosol properties and cloud
microphysical and dynamic properties over a range of temporal and spatial scales is critical to advance our
understanding of aerosol-cloud interactions.

CCN can be measured in situ from the ground (Feingold & Grund, 1994; Roberts & Nenes, 2005) and from air-
craft (Li, Liu, et al., 2015; Li, Yin, et al., 2015; Rosenfeld et al., 2008) or inferred from satellite observations
(Grandey & Stier, 2010; Gryspeerdt et al., 2014; Rosenfeld et al., 2016; Shinozuka et al., 2015). Long-term
monitoring of CCN properties at different observation sites has been chiefly made on the ground. Other than
limited horizontal cover and many other issues (Paramonov et al., 2013), near-surface CCN properties could
be significantly different from CCN properties near the cloud base due to vertical aerosol inhomogeneities,
especially air pollution under stable atmospheric boundary conditions. Except for Rosenfeld et al. (2016),
satellite-based CCN estimations mainly use aerosol optical depth as a proxy for aerosol loading to take
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advantage of its global coverage. It is still challenging and highly uncertain (Andreae, 2009; Liu & Li, 2014)
with many other limitations such as a lower temporal resolution, cloud contamination, and aerosol swelling
in the moist environment near clouds (Koren et al., 2007). Airbornemeasurements can provide CCNmeasure-
ments near cloud base, but are expensive to collect and are limited to a few field experiments (Feingold et al.,
1998; Li, Liu, et al., 2015; Li, Yin, et al., 2015). The capability of routinely measuring new CCN at cloud base to
study aerosol-cloud-precipitation interactions effectively is still lacking (Burkart et al., 2011).

Vertically resolved aerosol measurements offered by lidars provide the potential to measure CCN near cloud
base. Feingold et al. (1998) developed an approach that used a combination of several remote sensing instru-
ments, such as the Ka-band Doppler radar, the microwave radiometer, and the lidar, to derive the activation
of CCN as a function of supersaturation level. However, this approach is based on the Junge power law aero-
sol size distribution (Junge, 1952) that is only applicable for a clean troposphere and stratosphere. Ghan and
Collins (2004) and Ghan et al. (2006) developed a technique to estimate CCN at cloud base based on the rela-
tionship between the aerosol extinction from lidar and CCN concentrations from near-surfacemeasurements.
However, their methods rely on the assumption that the aerosol composition and the shape of the aerosol
size distribution at the surface are representative of the vertical column. Thus, their retrievals may have
high uncertainties if the vertical profile of the shape of the aerosol size distribution differs markedly from
that at the surface. In addition to their common use in profiling atmospheric temperature and humidity
(Wandinger, 2005), multiwavelength Raman lidars and High Spectral Resolution Lidars (HSRL) have been
increasingly used in recent years to retrieve aerosol and CCN properties (Chemyakin et al., 2014; Mamouri
& Ansmann, 2016; Müller et al., 1999). This type of lidar allows for independent inferences of particle backscat-
ter and extinction coefficients without the need for assuming any atmospheric parameters. Multiwavelength
Raman lidars can thus be used to quantify the main aerosol microphysical parameters and CCN properties
with fewer a priori assumptions. The retrieval of aerosol microphysical properties is mainly based on the reg-
ularization algorithm (Chemyakin et al., 2014, 2016; Müller et al., 1999, 2000, 2014; Veselovskii et al., 2002,
2004, 2013). Most of these early studies focused on aerosol size distribution and total aerosol concentration
retrievals and used the regularization technique, which lead to higher sensitivities with a 1-sigma value of
61.4–95.2% for different aerosol types (Pérez-Ramírez et al., 2013). This is because total aerosol concentration
is very sensitive to aerosols with diameters smaller than 50 nm and lidar observations offer almost no con-
straint for them. To our knowledge, limited attempts have been made to quantify CCN concentrations from
multiwavelength lidar measurements. Feingold and Grund (1994) explored the potential of using multiwave-
length lidar measurements, but they only performed a simulation by using the theoretical wavelengths of
289, 532, 1,064, 2,020 and 11,150 nm that some wavelengths are not available in real measurements. From
the simulation, they only provided some relationships between multiwavelength backscatter coefficients
with the median radius and did not quantify any aerosol or CCN parameter.

In this paper, we propose a retrieval approach to estimate CCN number concentrations from multiwave-
length lidar extinction and backscatter coefficients. The approach is implemented with look-up tables
(LUTs) to provide stable and efficient retrievals. CCN number concentrations at five critical supersaturation
ratios (Scs, 0.07–0.80%) are determined from the retrieved aerosol size distributions. The retrieval accuracies
are evaluated using simulated lidar extinction and backscatter coefficients with both random and systematic
errors. Since CCN retrievals are less sensitive to uncertainties in very small particles (nucleation mode parti-
cles), it leads to much smaller errors in the retrievals of CCN number concentration than those focusing
on total aerosol number concentrations as was done by most early studies due to little information on
fine-mode aerosols from available lidar measurements. In section 2, the inversion methodology is described.
In section 3, we present the numerical simulations. In section 4, a real case study is presented. Conclusions
are given in section 5.

2. Methodology
2.1. Aerosol Size Distributions

As demonstrated by Baars et al. (2016), aerosol types can be identified by combining their Ångstrom expo-
nent, lidar ratio, and depolarization ratio from multiwavelength HSRL or Raman-polarization lidar measure-
ments (Burton et al., 2012; Groß et al., 2013). Therefore, our study assumes known aerosol types for CCN
retrievals for the sake of tackling other more challenging tasks in retrieving CCN profiles.
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Initially, three common and distinct aerosol types are considered in
this study: urban industrial aerosols (Type 1), biomass burning aerosols
(Type 2), and dust aerosols (Type 3). Although particle size distribu-
tions are not always bimodal in each measurement case, their size dis-
tributions can be treated as a combination of fine and coarse modes
with lognormal distributions, as widely used in aerosol remote sensing
studies (Remer et al., 2005; Schuster et al., 2006; Veselovskii et al.,
2004). Multiwavelength HSRL or Raman lidar measurements provide
feasible constraints on these size parameters:

dn rð Þ
dln rð Þ ¼

X
i¼f ;c

Nti

2πð Þ1=2 ln σi
exp � ln r � ln rni

� �2
2 ln σið Þ2

" #
; (1)

where Nti is the total particle number concentration of the ith mode and ri
n is the median radius for the aero-

sol size distribution with n representing the number concentration distribution. The index i = f, c refers to the
fine mode and coarse mode, respectively. The term lnσi is the mode width of the ith mode. This general aero-
sol size distribution shape is adopted in this study to improve the accuracy of the CCN retrieval. The sensitivity
test regarding the response of CCN to the assumption of bimodal size distributions is presented in section 3.2.

Table 1 lists the typical ranges of the bimodal distribution parameters of the three types of aerosols derived
using measurements from Sun and sky-scanning ground-based automated radiometers at 12 selected
Aerosol Robotic Network sites from 1993 to 2000 (Dubovik et al., 2002; Veselovskii et al., 2004). Parameters
representing the volume concentration can be transformed to parameters for the number concentration
through the following relationships (Horvath et al., 1990):

rni ¼ rvi = exp 3 ln σð Þ2
h i

; (2)

Vti ¼ Nti
4
3
π rni
� �3

exp
9
2

ln σð Þ2
� �

: (3)

As shown in Table 1 and Figure 1, themain difference between the three
aerosol types is the ratio of the volume concentration of the fine mode
to the volume concentration of the coarse mode. Both urban industrial
and biomass burning aerosols have a predominance of fine-mode frac-
tions while the coarse mode dominates for dust aerosols.

2.2. Inversion Technique for Aerosol Size Distribution Parameters

The first step in estimating CCN concentrations is to retrieve aerosol size
distributions from backscatter coefficients at 355, 532, and 1,064 nm
(β355, β532, and β1064) and extinction coefficients at 355 and 532 nm
(α355 and α532). These can be retrieved from multiwavelength Raman
lidar (Ansmann et al., 1992) or HSRL measurements (Shipley et al.,
1983). Aerosol type, which can be identified from lidar measurements
(Baars et al., 2016; Burton et al., 2012; Groß et al., 2013), provides the
mean complex refractive index (Table 1). Thus, retrieving six parameters
(σf, Ntf, rf, σc, Ntc, and rc) for a bimodal size distribution from five known
quantities (β355, β532, β1064, α355, and α532) is still an ill-defined problem.
Observations (Dubovik et al., 2002) indicate that the variation of the
mode width of the coarse mode (lnσc) is small for a given aerosol type
and that the contribution of the coarse mode to the total aerosol num-
ber concentration is relatively low. Therefore, we assume that lnσc is a
known quantity (Table 1). The retrieval errors from this assumption are
examined in section 3.3.

Table 1
Typical Parameter Ranges for the Three Aerosol Bimodal Distributions

Aerosol parameter Urban industrial Biomass burning Dust

rf
n (μm) 0.075–0.095 0.072–0.082 0.062–0.082

rc
n (μm) 0.60–0.71 0.75–0.80 0.59–0.64

ln σf 0.38–0.46 0.4–0.47 0.4–0.53
ln σc 0.70 0.70 0.65
Vtf/Vtc 0.8–2.0 1.3–2.5 0.1–0.5
mR, mI 1.45, 0.01 1.5, 0.015 1.55, 0.002

Note. Vtf/Vtc is the ratio of the volume concentration of the fine mode to
the coarse mode. mR and mI represent the mean values of real and
imaginary parts of the complex refractive index (Dubovik et al., 2002;
Veselovskii et al., 2004).

Figure 1. Normalized size distributions representing the three types of
aerosols considered in this study. Types 1–3 represent urban industrial,
biomass burning, and dust aerosols, respectively.
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The retrieval algorithm searches for the best combination of five values (σf, Ntf, rf, Ntc, and rc) to match inputs
(β355, β532, β1064, α355, α532) by minimizing the following function:

ρsum ¼
X
i

gi � g
0
i

gi

����
����; i ¼ 1;…; 5ð Þ; (4)

where gi represents input optical data (β355, β532, β1064, α355, and α532) and g
0
i is optical data (β0355, β0532,

β01064, α0355, and α0532) calculated from Mie theory and size distribution parameters. Note that using the
Mie theory for irregular-shaped dust aerosols can introduce potential systematic errors. It is a simplification
for this simulation study. For future real-case applications, an improved optical database for dust aerosols
will be developed following more advanced scattering calculations (Liu et al., 2015; Nousiainen, 2009).
Additionally, including depolarization measurements improves not only the ability to distinguish dust,
but also overall dust retrievals (Luo et al., 2015).

To search for the optimal solution, LUTs for each type of aerosol are constructed. To reduce the LUT size
and its dimensions, each LUT consists of two parts. The size distribution shown in equation (1) can be
rewritten as

dn rð Þ
dln rð Þ ¼

X
i¼f ;c

1

2πð Þ1=2 ln σi
exp � ln r � ln rni

� �2
2 ln σið Þ2

" #
• Nti

( )
¼

X
i¼f ;c

Bi • Nti; (5)

where Bf and Bc refer to the data bank precomputed with (σf, rf, and r) and (σc, rc, and r), respectively,
where the intervals of σf, rf, and rc are fixed at 0.01, 0.002, and 0.01 μm, respectively, and where σc is
assumed known and taken from Table 1. The range of r in the calculations is limited to 0.01–10 μm with
a fixed bin size of 0.002 defined on a logarithmic-equidistant scale. These intervals are set as a compro-
mise between accuracy and computation time.

Since the range of Ntf is usually large, the successive approximation method (Kantorovitch, 1939) is adopted:

Step 1: Calculate the corresponding optical data (β0355, β0532, β01064, α0355, α0532) from the data bank (Bf and
Bc) and Ntf and Ntc (the step widths of Ntf and Ntc: 100 and 0.1 cm�3, respectively). Search for an
approximate solution based on the criterion in equation (4).

Step 2: Determine a smaller solution space of Ntf based on the approximate solution obtained in Step 1.
Repeat the procedure in Step 1 except use a smaller step width of 10 cm�3 for Ntf. Search for the
optimal solution of five parameters (σf, Ntf, rf, Ntc, and rc).

2.3. CCN Estimations

The ability of aerosols to act as CCN is mainly determined by three factors: aerosol particle size distribu-
tion, chemical composition, and mixing state. Several studies have suggested that it is controlled more
by the aerosol size distribution than the chemical composition (Dusek et al., 2006; Fitzgerald, 1973;
Junge & McLaren, 1971); however, for some specific areas and meteorological conditions, both factors
are important (Mamouri & Ansmann, 2016). If no suitable chemical composition data are available, using
mean chemical composition information for each aerosol type denoted by a single value of κ is feasible
to estimate the CCN number concentration. In reality, the uncertainty of using the mean value of κ to esti-
mate the CCN number concentration varies with atmospheric conditions. Most studies show that the
uncertainty is within 10% (Deng et al., 2011; Jurányi et al., 2010; Wang et al., 2018). The hygroscopicity
parameter κ describes the relationship between the particle dry diameter and CCN activity when compo-
sitional data are not available (Petters & Kreidenweis, 2007). Wang et al. (2018) found that the sensitivity of
the estimated CCN concentration to κ depends strongly on the variability of the shape of the aerosol size
distribution. The sensitivity of CCN concentration to κ becomes weaker with increasing supersaturations,
suggesting that chemical composition becomes less important in CCN concentration estimates at larger
supersaturations. In addition, this study also suggested that using the mean value of κ ≈ 0.3 can be a good
proxy for urban industrial aerosol when estimating the CCN concentration. The κ is assumed to be 0.3 for
Type 1 (Liu et al., 2011), 0.1 for Type 2 (Petters et al., 2009), and 0.03 for Type 3 (Koehler et al., 2009)
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aerosols in the simulations. For actual measurements, the mixing state
of aerosols and the precise values of κ can be determined with the
aid of other instruments, such as the aerosol particle mass analyzer,
and the hygroscopic tandem differential mobility analyzer (HTDMA)
(Malloy et al., 2009; Wang et al., 2017; Zhang et al., 2014). For experi-
ments without the HTDMA, a lidar can be used to roughly infer κ indir-
ectly by identifying aerosol types (Baars et al., 2016). However, the
determination of κ is beyond the scope of the current method.

We first determine the critical radius (rc) of CCN activation at five
critical Scs for activation (0.07%, 0.10%, 0.20%, 0.40%, and 0.80%),
which are often used for in CCN counters. The critical diameter Dc

(rc = Dc/2) and Sc for activation (where Sc = S � 1) can be computed
from the maximum of κ-Köhler curve as suggested by Petters and
Kreidenweis (2007):

S Dð Þ ¼ D3-D3
d

D3 � D3
d 1� κð Þ exp

4σs=aMw

RTρwD

� �
; (6)

where S is the water saturation ratio, D is the droplet diameter, Dd is the dry diameter, σs/a = 0.072 J m�2,
Mw is the molecular weight of water, R is the universal gas constant, T is temperature and equal to
298.15 K, and ρw is the density of water. Equation (6) describes the relationship between the dry diameter
and critical supersaturation for a selected hygroscopicity κ. Note that the Köhler theory used for dust CCN
activation is based on the assumptions that activation is solely controlled by the amount of soluble salts in
the dust aerosol and that it is not affected by water adsorption on the dust surface.

Figure 2 shows the relationship between critical dry diameter and critical supersaturation for each type
of aerosol. Table 2 shows the critical radius (rc) at five critical Scs calculated using equation (6). The criti-
cal radius for each type of aerosol in Table 2 shows that CCN retrievals are mostly sensitive to particles
with radii greater than 0.1 μm under normal atmospheric conditions, which indicates that neglecting
nucleation mode particles has a weaker impact on CCN determination than on the total aerosol number
concentration retrievals.

It is noted that, to simplify the simulation, the impact of aerosol hygroscopic growth on the size distributions
is not considered. However, in real atmosphere, the aerosol size distribution is affected by aerosol hygro-
scopic properties, especially when it is under high relative humidity conditions or near cloud base. In this
case, the wet size distribution should be corrected to the dry size distribution by using the hygroscopic
enhancement factor that is defined as

f RH; rð Þ ¼ ξ RH; rð Þ
ξ RHref ; rð Þ (7)

where RH is the relative humidity, r is the dry radius, ξ(RH, r) refers to a RH-dependent aerosol property at a
certain r, the RHref is chosen as the lowest value of RH that represents the relative dry environment in a case.

f(RH, r) can be obtained from HTDMA or Raman lidar (Lv et al., 2017;
Veselovskii et al., 2009). For the determination of f(RH) from Raman lidar,
it is based on the assumption of well-mixed atmospheric conditions that
may be identified as having the constant profiles of potential tempera-
ture and water vapor simultaneously (Granados-Muñoz et al., 2015).

Finally, the CCN concentration can be calculated as

Nccn ¼ ∫
∞

ln rc

dn rð Þ
d ln rð Þd ln rð Þ: (8)

Figure 2. The relationship between particle critical dry diameter and critical
supersaturation ratio for Type 1 (κ = 0.3), Type 2 (κ = 0.1), and Type 3
(κ = 0.01) aerosols. The parameter κ is the hygroscopicity parameter. Gray
dashed lines denote the five critical Scs for activation (0.07%, 0.10%, 0.20%,
0.40%, and 0.80%).

Table 2
Critical Radius at Five Critical Supersaturation Ratios for Each Type of Aerosol

Critical radius (rc, μm)

0.07% 0.10% 0.20% 0.40% 0.80%

Type 1 (κ = 0.3) 0.105 0.083 0.052 0.033 0.021
Type 2 (κ = 0.1) 0.151 0.119 0.075 0.047 0.029
Type 3 (κ = 0.03) 0.224 0.177 0.111 0.069 0.043

10.1029/2017JD028102Journal of Geophysical Research: Atmospheres

LV ET AL. 6086



3. Numerical Simulations

Due to the lack of reliable collocated CCN and lidar measurements, evaluating the algorithm is a challenging
task. As the first step, the performance of the algorithm is evaluated using simulated observations with
different error characteristics.

3.1. Inversion With Error-Free Inputs

The first evaluation is performed under the assumption of error-free lidar measurements to understand the
inversion stability. For each type of aerosol, 1,000 different sets of bimodal size distributions are used to
simulate lidar observations. The retrieval is repeated for each simulated observation. The retrieved para-
meters (σf, Ntf, rf, Ntc, and rc) and assumed σc permit us to calculate the errors in retrieved CCN number
concentration (CCNretrieved) with respect to the initial inputs (CCNinitial), that is, [(CCNretrieved � CCNinitial)/
CCNinitial] × 100%. Apart from the mean values, we employ the standard deviations (SDs) of the CCN retrie-
val errors from the different bimodal size distribution data sets to gauge the range of the retrieved CCN
errors as well. As shown in Table 3, initial CCN concentrations are well reproduced from the error-free
inputs for each type of aerosol size distribution. The mean errors in retrieved CCN number concentrations
are close to zero but are not equal to zero due to striking an appropriate balance between the accuracy
and processing time of the LUTs as mentioned in section 2.2. The higher the accuracy of the LUTs, the
more time expensive are the calculations and the closer CCN errors approach zero. Moreover, the small

SDs (≤ ~0.3%) suggest that the variances of errors among the different
aerosol size distributions are also small. Overall, the retrieval results
shown in Table 3 attest to the good accuracy and stability of the inver-
sion algorithm for the three types of aerosols.

3.2. Sensitivity Test of the Assumed Bimodal Size DistributionWith
Error-Free Inputs

We test the sensitivity of the CCN retrieval to the assumption of the
bimodal size distribution by exploring dust aerosol size distributions
measured on 20 August 2006 during the National Aeronautics and
Space Administration African Monsoon Multidisciplinary Analysis
(NAMMA) campaign (Chen et al., 2011). NAMMA particle size distribu-
tions were measured simultaneously by an Ultra-High Sensitivity
Aerosol Spectrometer for the 0.07- to 1-μm (geometric) diameter range
(Cai et al., 2008) and a TSI model 3321 Aerodynamic Particle Sizer for the
0.7- to 5-μm (aerodynamic) diameter range (Peters & Leith, 2003). Fifty
full particle size distributions were constructed using the size conversion
factor, which is defined as the ratio of aerodynamic diameter to
geometric diameter. These full aerosol size distributions can be well
represented by the trimodal lognormal distributions reported by Chen
et al. (2011). For the purpose of this study, we produce corresponding
bimodal fits representative of the observed size distributions. Figure 3
shows an example of the observed aerosol size distribution and the

Table 3
CCN Errors at Different Scs (0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) Retrieved From Error-Free Inputs for the Three
Aerosol Types

CCN error (%)

0.07% 0.10% 0.20% 0.40% 0.80%

Mean ± SD (%) Type 1 �0.01 ± 0.24 �0.01 ± 0.24 �0.01 ± 0.24 �0.01 ± 0.24 �0.01 ± 0.24
Type 2 �0.01 ± 0.18 �0.01 ± 0.18 �0.01 ± 0.18 �0.01 ± 0.18 �0.01 ± 0.18
Type 3 �0.00 ± 0.21 �0.00 ± 0.25 �0.00 ± 0.27 �0.00 ± 0.28 0.00 ± 0.28

Note. CCN = cloud condensation nuclei.

Figure 3. Observed particle number size distribution measured on
20 August 2006 during the National Aeronautics and Space Administration
African Monsoon Multidisciplinary Analysis field campaign. Particle size is
represented by the geometric diameter. Solid dots denote integrated
Ultra-High Sensitivity Aerosol Spectrometer and Aerodynamic Particle Sizer
measurements. Curves are bimodal lognormal fits for the size distributions of
the fine mode (red dash-dotted line), the coarse mode (blue dashed line),
and the full mode (black solid line).
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corresponding bimodal fits. It suggests that the observed dust aerosol
size distributions can be qualitatively well represented by bimodal log-
normal size distributions. To quantify the errors arising from the bimodal
lognormal fits, we calculate CCN concentrations based on the bimodal
fits and compare them with those from the 50 observed size distribu-
tions. The κ of NAMMA dust aerosols is assumed to be 0.03 when calcu-
lating CCN concentrations at the five values of Scs as described in
section 2.3. Table 4 shows the induced CCN errors from the bimodal fit-
ting of 50 NAMMA aerosol size distributions. The absolute value of CCN
retrieval errors is 4.2% with a SD of 3.3% when Sc = 0.20%. Although
errors from the bimodal assumption are not negligible, the results sug-
gest that bimodal lognormal aerosol size distributions are adequate
for retrieving CCN concentrations.

3.3. Sensitivity Test of the Assumed lnσc With Error-Free Inputs

As described in section 2.2, lnσc is assumed to be equal to 0.7, 0.7, and 0.65 in LUTs corresponding to the dif-
ferent aerosol types. However, the real lnσc may vary within a small range. A sensitivity test of the effects of
this assumption on the retrieval results is performed. In this sensitivity test, the fixed values of lnσc are still
used in the LUTs while the real values of lnσc in simulations is selected randomly from within the ranges
0.6–0.8, 0.7–0.8, and 0.6–0.7 for urban industrial, biomass burning, and desert dust aerosols, respectively
(Veselovskii et al., 2004). One thousand different sets of simulations are produced randomly with the other
known parameters as input. The same inversion procedure described in section 3.1 is repeated to retrieve
CCN concentrations and to calculate the retrieval errors.

Table 5 shows CCN retrieval errors due to assuming a constant lnσc. As expected, the assumption of a con-
stant lnσc introduces an additional CCN retrieval error. In general, CCN retrieval errors at higher Scs are larger
than those at lower Scs for all types of aerosols due to the smaller critical radius, which makes CCN calcula-
tions more sensitive to fine-mode size distribution shapes. The maximum absolute value of CCN errors is
3.4% when Scs are 0.07% and 0.10% and reaches 6.6% when the Sc is 0.80%. This suggests that assuming a
constant lnσc is reasonable although the errors resulting from the assumption are not negligible.

3.4. Effect of Systematic and Random Errors on the Retrieval Results
3.4.1. The Impact of Systematic Errors
Extinction and backscatter coefficients retrieved from multiwavelength lidar measurements contain
systematic and random errors (Ansmann et al., 1992). Systematic errors can be induced by experiment
conditions, techniques, and our understanding of physical interactions. Systematic errors ranging from
�20% to 20% in intervals of 5% are considered for the extinction and backscatter coefficients. In actual
measurements, the Raman lidar or HSRL allows for the independent calculation of extinction and back-
scatter coefficients by combining elastic and Raman backscatter signals (Ansmann et al., 1992) and by
taking advantage of the spectral distribution of the lidar return signal to discriminate aerosol and mole-
cular signals (Shipley et al., 1983). The systematic errors are thus assumed independent for individual
lidar measurements in the simulations. This error range is reasonable for most current lidar systems

Table 4
Sensitivity of CCN Retrievals to the Bimodal Fits at Different Supersaturation
Ratios (0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) From the 50 NAMMA
Aerosol Size Distributions

CCN error (%)

0.07% 0.10% 0.20% 0.40% 0.80%

Mean ± SD (%) 3.9 ± 2.8 3.1 ± 2.9 4.2 ± 3.3 2.2 ± 1.8 1.9 ± 1.6

Note. The CCN error is calculated as an absolute value. CCN = cloud
condensation nuclei; NAMMA = National Aeronautics and Space
Administration African Monsoon Multidisciplinary Analysis; SD = stan-
dard deviation.

Table 5
Effects of the Assumed lnσc on the Retrieved CCN Errors at Different Supersaturation Ratios (0.07%, 0.10%, 0.20%, 0.40%, and
0.80%) for the Three Aerosol Types

CCN error (%)

0.07% 0.10% 0.20% 0.40% 0.80%

Mean ± SD (%) Type 1 0.01 ± 0.7 �0.03 ± 1.2 �0.03 ± 3.8 0.02 ± 5.2 0.04 ± 5.5
Type 2 0.8 ± 1.6 0.6 ± 1.0 �0.2 ± 1.2 �1.0 ± 3.0 �1.3 ± 3.9
Type 3 �0.05 ± 2.7 0. 07 ± 3.3 0.3 ± 1.2 �0.2 ± 2.4 �0.8 ± 5.8

Note. Error-free inputs were used. CCN = cloud condensation nuclei; SD = standard deviation.

10.1029/2017JD028102Journal of Geophysical Research: Atmospheres

LV ET AL. 6088



(Pérez-Ramírez et al., 2013). To better understand the impacts of individual input parameters, a systematic
error is applied to one input parameter at a time. We repeat the inversion to obtain a new set of aerosol
size distribution and CCNretrieved data. For each input parameter and error value, the procedure is
repeated with 200 sets of randomly generated size distributions for each aerosol type. The CCN

Figure 4. Errors in retrieved cloud condensation nuclei (CCN) number concentrations at different supersaturation ratios
(0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) as a function of systematic errors in the input optical data. Error bars denote
the standard deviations for (a) Type 1, (b) Type 2, and (c) Type 3 aerosols.
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percentage errors associated with systematic errors can be estimated by comparing retrieved and initial
CCN number concentrations as defined above.

Figure 4 shows how individual systematic errors impact retrievals. The slope of the curve indicates the sensi-
tivity of CCN errors to systematic errors in individual input parameters. A larger slope implies a higher sensi-
tivity of the CCN retrieval to the systematic error for a given input parameter. In general, retrievals are most
sensitive to the errors in α355 and α532 and are least sensitive to errors in β1064, with β355 and β532 falling
somewhere in the middle. It is also interesting to note that the results are less sensitive to β355, β532, and
β1064 at Scs ≤ 0.10% but are more sensitive to them at Scs> 0.10%. These results suggest that reducing uncer-
tainties in the extinction coefficients at 355 and 532 nm can effectively improve the CCN retrieval accuracy,
while reducing uncertainties in the backscatter coefficients benefits CCN retrievals at higher Scs. Figure 4 also
suggests that the retrieval results are sensitive to the position of the activation radius (denoted by Sc). This
effect is the most obvious for Type 2 aerosols. Retrieval uncertainties due to systematic errors in α532 are
much lower at 0.10% than at other Scs.

In addition, it is also clear that the impact of systematic errors in a given input parameter on CCN retrievals
varies with Sc as illustrated by the different signs of the slopes (positive or negative). For example, for Type
3 aerosols, the slopes of α355 and β355 are negative and positive, respectively, with magnitudes of 0.07%
and 0.10%. When Sc exceeds 0.20%, the slopes reverse. These differences most likely result from the reduced
sensitivity of the retrieval to the coarse mode of the aerosol size distribution.

Figure 5. Frequency distributions of cloud condensation nuclei (CCN) errors for (a) Type 1, (b) Type 2, and (c) Type 3
aerosols at different supersaturation ratios (0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) and with 15% random errors for all
input optical data.
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Furthermore, there are significant differences among the three types of aerosols. Type 3 aerosols have the
largest absolute CCN errors and Type 1 aerosols have the smallest. These results are consistent with the
weights of fine-mode aerosol particles for the three types of aerosols shown in Table 1. These results suggest
that there are better constraints for fine-mode aerosols than for coarse-mode aerosols. Therefore, retrieval
uncertainties for the coarse mode are higher which introduces larger CCN retrieval errors for aerosols with
more weight in the coarse mode, such as Type 3 aerosols. Including additional lidar measurements at wave-
lengths longer than 1,064 nm will reduce the retrieval errors for dust aerosols.
3.4.2. The Impact of Random Errors
Thus far, only the influence of systematic errors on the inversion results has been considered which intro-
duces mean biases in CCN retrievals. Random errors in observations produce random CCN retrieval errors.
Random errors are generated by considering a Gaussian distribution centered at zero with a SD equal to
15% of a given input parameter. Random errors are applied to all input optical data simultaneously.
For each type of aerosol, we repeat this simulation 5,000 times. The statistical results are presented in
Figure 5 and Table 6.

At 0.07% and 0.10%, errors in retrieved CCN number concentrations also follow a Gaussian distribution for
Type 1 and Type 2 aerosols. When Sc exceeds 0.20%, the Gaussian shape distributions disappear and the high
frequencies shift to the edge of the distributions for all types of aerosols. Mean errors are relatively small and
nonzero, which is mainly due to the different sensitivities of CCN retrievals to different optical data. These
results also reveal that random errors in the input parameters may produce systematic errors in the CCN
retrievals. At 0.07%, Type 3 aerosols show the largest shift (�20.0%) while Type 2 aerosols have the smallest
shift (�1.0% at 0.10%). Among the three types of aerosols, the largest errors are found in Type 3 aerosols,
which contain larger particles. These results are consistent with the sensitivities to the systematic errors,
which also have the largest errors for Type 3 aerosols. As discussed earlier, measurements considered in
the current multiwavelength lidar technique contain less information for larger particles. Including additional
lidar measurements at longer wavelengths could improve Type 3 aerosol retrievals. The maximum values of
relative errors decrease with increasing Scs for all aerosol types (Table 6).
3.4.3. The Impact of Combined Systematic and Random Errors
In reality, systematic and random errors coexist in optical input parameters, so their concurrent effects need
to be tested. However, for real cases, the input optical data (β355, β532, β1064, α355, α532) might be obtained
simultaneously from different lidar systems like the Raman lidar or the HSRL with overestimation or underes-
timation of systematic errors appearing in different combinations. For well-designed lidar systems with reli-
able data processing procedure, it is a good to assume independent systematic errors. However, there do
have cases, which can result in dependent systematic errors. For example, near range overlap corrections
could introduce dependent systematic errors between 355-nm extinction and backscattering and 532-nm
extinction and backscattering. To simplify the simulation, we only evaluate the overall performance of the
newmethod when systematic and random errors coexist. The simulations are done by conducting additional
simulations with both systematic and random errors occurring simultaneously. Systematic errors are ran-
domly assigned a sign (over/underestimation) as was done by Pérez-Ramírez et al. (2013). Systematic errors
are difficult to reveal, whereas random errors can be revealed and reduced by repeating the measurements.
Systematic errors of 0–20%with a step width of 5% are added to all optical input parameters (β355, β532, β1064,

Table 6
Range, Mean, and Standard Deviations of Retrieved CCN Number Concentration Errors at Different Supersaturation Ratios
(0.07%, 0.10%, 0.20%, 0.40%, and 0.80%)

0.07% 0.10% 0.20% 0.40% 0.80%

Type 1 Range (%) [�53.4, 47.2] [�49.4, 44.1] [�37.9, 26.8] [�30.0, 19.1] [�27.5, 18.2]
Mean ± SD (%) �2.5 ± 18.7 �3.6 ± 20.3 �7.0 ± 19.0 �7.6 ± 18.2 �7.3 ± 18.2

Type 2 Range (%) [�61.7, 50.4] [�53.0, 51.6] [�55.1, 44.7] [�43.8, 21.9] [�31.2, 16.9]
Mean ± SD (%) �5.4 ± 14.6 �1.0 ± 21.4 �3.3 ± 24.9 �7.7 ± 18.9 �6.5 ± 17.5

Type 3 Range (%) [�82.7, 122.6] [�92.0, 103.4] [�79.4, 98.1] [�75.4, 103.5] [�64, 57.7]
Mean ± SD (%) �20.0 ± 46.1 �19.4 ± 34.1 4.4 ± 27.5 10.2 ± 41.4 �0.8 ± 36.2

Note. Input optical data included 15% random errors. CCN = cloud condensation nuclei; SD = standard deviation.
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α355, and α532) concurrently. As for random errors, they are generated by considering a Gaussian distribution
centered at zero with a SD equal to 5% of a given input parameter. For each type of aerosol, simulations were
performed 500 times. The CCN retrieval results are presented in Figure 6 and Table 7.

For Type 3 aerosols, the largest mean CCN error is 25.8% at Sc = 0.07%. For Type 1 and Type 2 aerosols, mean
CCN errors in all cases are less than 10.3%. These retrieved CCN errors are much smaller than those obtained
in section 3.4.1 when only the systematic error was considered at each wavelength independently. Adding
errors for multiple optical input parameters simultaneously might compensate each other and improve the
CCN retrievals. However, the SDs are larger with maximum values reaching 20.5%, 26.7%, and 53.1% for
Type 1, Type 2, and Type 3 aerosols, respectively, due to the very large measurement errors created by the
random combination of systematic and random errors.

4. A Real Case Study

The evaluation of CCN retrievals depends critically on how well lidar and in situ measurements are matched,
as matching errors can become overwhelming. Due to a lack of collocated measurements of the required
quantities, we have not yet seen any evaluation done using real-case data. It is done here by comparing
CCN derived from lidar measurements and measured by a CCN counter (CCNc) on the ground on 16
August 2015 at the U.S. Department of Energy’s Atmospheric Radiation Measurement Climate Research
Facility Southern Great Plains (SGP) site.

Table 7
Mean and Standard Deviations of CCN Retrieval Errors at Different Supersaturation Ratios (0.07%, 0.10%, 0.20%, 0.40%, and
0.80%) With Both Systematic and Random Errors Included

Systematic
error (%) 0.07% 0.10% 0.20% 0.40% 0.80%

Type 1 Mean ± SD (%) 5 1.3 ± 14.7 �0.1 ± 16.3 �3.7 ± 15.9 �4.5 ± 16.3 �4.2 ± 16.6
10 �0.1 ± 18.3 �0.9 ± 20.2 �4.5 ± 18.9 �5.3 ± 18.1 �5.1 ± 18.0
15 �3.3 ± 18.7 �4.1 ± 19.7 �7.5 ± 18.8 �8.2 ± 18.3 �8.0 ± 18.4
20 �6.9 ± 19.9 �6.9 ± 20.5 �8.9 ± 19.6 �9.3 ± 18.8 �9.0 ± 18.7

Type 2 Mean ± SD (%) 5 �0.8 ± 8.5 1.7 ± 15.2 �1.6 ± 17.2 �5.1 ± 14.8 �4.4 ± 15.7
10 �3.2 ± 11.8 �0.3 ± 19.1 �3.5 ± 21.6 �6.7 ± 16.6 �5.1 ± 16.6
15 �7.6 ± 15.3 �2.7 ± 21.6 �3.8 ± 25.5 �7.6 ± 19.0 �6.3 ± 17.3
20 �10.3 ± 19.6 �5.5 ± 24.0 �6.3 ± 26.7 �10.0 ± 20.1 �8.5 ± 17.9

Type 3 Mean ± SD (%) 5 �12.7 ± 32.0 �10.0 ± 23.2 3.0 ± 15.3 4.4 ± 29.5 �1.1 ± 31.7
10 �16.2 ± 41.9 �15.2 ± 30.4 3.5 ± 21.8 6.8 ± 36.5 �1.9 ± 33.3
15 �24.9 ± 48.3 �23.5 ± 36.0 6.1 ± 29.2 14.0 ± 43.9 �0.8 ± 36.8
20 �25.8 ± 53.1 �24.9 ± 38.8 6.0 ± 36.6 12.7 ± 45.4 �1.8 ± 37.0

Note. CCN = cloud condensation nuclei; SD = standard deviation.

Figure 6. Errors in retrieved cloud condensation nuclei (CCN) number concentrations at different supersaturation ratios
(0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) that arise from accounting for both systematic and random errors for (a) Type
1, (b) Type 2, and (3) Type 3 aerosols. Error bars denote the standard deviations.
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Multiwavelength lidar data were collected during the Combined HSRL
and Raman lidar Measurement Study (CHARMS) intensive observation
period that occurred in August 2015 at the SGP site (Ferrare, 2017).
During the CHARMS intensive observation period, aerosol backscatter
profiles at 532 and 1064 nm, and aerosol extinct-ion profiles at
532 nm were acquired from the University of Wisconsin HSRL located
at the SGP site. HSRL aerosol profiles, when combined with aerosol
backscatter and extinction profiles at 355 nm collected by the SGP
Raman lidar, provide a full set of three aerosol backscatter (355, 532,
and 1064 nm) and two aerosol extinction (355 and 532 nm) profiles
for CCN retrievals. CHARMS data were processed at temporal and ver-
tical resolutions of 10 min and 0.06 km, respectively. To avoid the
impact of the overlap function on extinction and backscattering retrie-
vals, the lower limit of the height range where CCN properties are
retrieved from optical data is 0.6 km above ground level. We also
set the upper limit of the retrieval height range as 3 km due to the
low aerosol loading in higher layers. For comparison purposes, in situ
CCN concentrations under different supersaturation conditions (Scs
ranging from 0.1% to 0.75%) were measured on the ground by the
CCNc at the same site.

Although the SGP site is located in a rural area surrounded by cattle pas-
tures and agricultural fields, air masses transported from the south and
southeast often arrive at this site in the summer (Mahish & Collins, 2017).
Based on an overview of aerosol-type-dependent properties from more
than 10 years of lidar observations (Baars et al., 2016) and Figure 7, we
can infer that aerosols in this case are not dust but urban or biomass
burning aerosols by virtue of the lidar ratio (Figure 7a), the depolariza-
tion ratio (Figure 7b), and the Ångstrӧm exponent (Figure 7c). The aero-
sol depolarization ratio was less than 0.1 on this day, which indicates
that using the Mie theory for CCN retrievals is reasonable although
potential systematic errors introduced by irregular-shaped aerosols are
not negligible. To further distinguish between these two aerosol types,
48-hr back trajectories calculated using the Hybrid Single-Particle
Lagrangian Integrated Trajectory model (Draxler & Rolph, 2003) and
active fire spots from Moderate Resolution Imaging Spectroradiometer
data (Giglio et al., 2016) on 15 August 2015 are also used. Figures 8a
and 8b show that aerosols on 16 August 2015 originated from fire activ-

ities in the southeast and northeast of the SGP site. Therefore, the aerosol loading in this case was greatly
influenced by biomass burning aerosols transported to the SGP site. Based on the analysis of a multi-year
record of hygroscopic measurements made at the SGP site (Mahish & Collins, 2017), a simplified hygroscopi-
city parameter κ equal to 0.2 is chosen for CCN retrievals here. This value falls within the reasonable range of κ
for biomass burning aerosols (Petters et al., 2009).

Total particle number concentrations (condensation nuclei, CN) retrievals from the lidar are shown in
Figure 9. Figure 9a shows the temporal evolution of the vertical profile of aerosol extinction at 355 nm
in the 0.6- to 3-km height ranging from 0000 universal coordinated time (UTC) to 2400 UTC on 16
August 2015. During that day, a distinct aerosol layer was observed near the ground with an extinction
coefficient of up to 0.25 km�1. From 1200–2400 UTC, the aerosol layer increased in altitude up to 2.2 km
due to the enhancement of turbulent mixing in the atmosphere. Above that layer, several weak aerosol
layers appeared and aerosols were distributed more uniformly with height. The CN number concentra-
tions which is computed from the retrieved size distribution parameters are shown in Figure 9b.

Based on an investigation of the spatiotemporal distributions of RH at SGP during that day, the maximum RH
is lower than 70% at each height and lower than 60% at 0.6 km, which did not reach the deliquescence RH of
biomass burning aerosols (Kuang et al., 2016; Lei et al., 2014). Thus, the aerosol size distributions used for

Figure 7. Spatiotemporal distributions of (a) the lidar ratio at 532 nm, and
(b) the aerosol depolarization ratio at 532 nm calculated from the Raman
nitrogen signal, and (c) the Ångstrӧm exponent retrieved from lidar
measurements on 16 August 2015 at the SGP site. The heights are kilometers
above ground level.
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estimating CCN number concentrations are little influenced by aerosol hygroscopic growth on that day. For a
comparison with surface in situ measurements, retrieved CCN number concentrations are calculated
using equation (8) with time-dependent supersaturations set for the in situ CCNc. Figure 10 shows
the spatiotemporal distributions of CCN number concentrations (Figure 10a), the time series of lidar-

retrieved and surface-measured CCN concentrations (Figure 10b), and
a scatterplot of surface-measured CCN concentrations as a function of
lidar-retrieved CCN concentration (Figure 10c). Lidar retrievals shown
in Figures 10b and 10c are within a height range of 0.6 km. Figure 10a
shows that the retrieved CCN number concentrations are roughly
constant with height in the boundary layer except for the CCN
number concentrations around 15:00 (UTC) that is likely due to
the atmospheric transportation. The time series shows that both
instruments generally captured the temporal evolution of CCN
concentration on that day at the SGP site (Figure 10b). However,
periods with substantially different CCN concentrations were also
observed. For example, higher CCN concentrations at ground level
than at 0.6 km in the evening and overnight (0000–1000 UTC) are
seen, most likely due to the vertically inhomogeneous distribution of
aerosols. Figure 10c shows that CCN concentrations derived from
measurements made by both instruments were well correlated. The
correlation coefficient is 0.57, and the regression slope is 1.06 with
most points lying close to the 1:1 line. Other than the vertical
inhomogeneity of the atmosphere, most of the remaining differences
could be due to the different observation methods and the extinction
and backscattering retrieval uncertainties from the two lidar systems.
Although a detailed uncertainty analysis is still needed and will be
done in a future study, this comparison demonstrates the potential of
using multiwavelength Raman lidar measurements to profile aerosol
and CCN properties.

Figure 9. Spatio-temporal distributions of (a) aerosol extinction at 355 nm
and (b) CN concentration retrieved from lidar measurements made on 16
August 2015 at the SGP site. The heights are kilometers above ground level.

Figure 8. (a) The 48-hr back trajectories ending at 2400 UTC 16 August 2015 at the Southern Great Plains site within the 600- to 2,800-m layer; (b) Moderate
Resolution Imaging Spectroradiometer true red-green-blue image along with fire spots (red dots) from Aqua and Terra on 15 August 2015. The heights are
meters above ground level. NOAA = National Oceanic and Atmospheric Administration; HYSPLIT = Hybrid Single-Particle Lagrangian Integrated Trajectory;
GDAS = Global Data Assimilation System; AGL = above ground level.
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5. Conclusions

We have investigated the feasibility of retrieving CCN number concen-
trations using multiwavelength HSRL and Raman lidar measurements.
Three representative types of aerosols with bimodal size distributions
retrieved from Aerosol Robotic Network observations were considered,
namely, urban industrial (Type 1), biomass burning (Type 2), and dust
(Type 3). The aerosol types are assumed known and provide the mean
complex refractive index. This leaves six size parameters to retrieve. To
avoid the ill-posed inversion problem, the mode width of the coarse
mode is assumed. Sensitivity tests suggest that this assumption only
introduces a small error in the retrieval results. The retrieval is imple-
mented based on LUTs generated from Mie scattering calculations. A
successive approximation method in two steps is utilized as a tradeoff
between the accuracy and computation time of the inversion. Once
the parameters of the aerosol size distribution are obtained through
the LUT, CCN number concentrations can be estimated.

Numerical simulations were performed to evaluate the algorithm perfor-
mance with and without errors in the extinction and backscatter coeffi-
cients. For error-free input, CCN concentrations for the three types of
aerosols were well reproduced with good accuracy and stability.
Simulations with systematic errors show that the uncertainties of extinc-
tion coefficients at 355 and 532 nm have a higher impact on the retrieval
results and that retrievals are more dependent on the uncertainties in
backscatter coefficients at higher Scs than at lower Scs. There are signifi-
cant differences in retrieval uncertainties among the three types of aero-
sols due to the different weights of fine- and coarse-mode aerosol
particles among them. The differences can be explained by the weaker
constraint of the algorithm for the coarse mode of aerosol particles than
for the fine mode of particles. Tests where 15% random errors were con-
sidered were done next. CCN number concentrations had Gaussian dis-
tributions at lower Scs (0.07%, 0.10%) for all types of aerosols except for
Type 3. This distribution shape disappeared at higher Scs. Simulations
with both random and systematic errors, which represent more realistic
cases, show that both errors together improved mean CCN retrievals
because random and systematic errors often offset each other.
Simulations showed that if the input optical data had a 15% systematic

error and a 5% random error simultaneously, CCN number concentrations were retrieved with an accuracy of
�3.3 ± 18.7% for urban industrial aerosols,�7.6 ± 15.3% for biomass burning aerosols, and� 24.9 ± 48.3% for
dust aerosols at Sc = 0.07%.

The focus of the numerical simulations is to explore the sensitivity of CCN retrievals to errors in the measure-
ments of extinction and backscatter coefficients. The influences of aerosol hydration and dynamic mixing on
the refractive index are not considered in the simulations. When processing observational data, the impact of
relative humidity needs to be accounted for since the lidars retrieve the wet size distributions while the CCN
calculations require the dry size distribution. From Raman lidar measurements, temperature and water vapor
below clouds can be determined to provide the vertical profile of relative humidity (Behrendt et al., 2002;
Ferrare, 2000; Reichardt et al., 2012). Aerosol-type-dependent hygroscopic growth may thus be needed to
estimate the dry size distribution from the wet size distribution and RH for CCN calculations. Furthermore,
relative humidity information can be used to adjust the mean reflective index for the LUT. The impacts of
humidity and the non-spherical dust shape will be studied and implemented, if warranted, in future
algorithm development.

The algorithm was applied to observational data from the Atmospheric Radiation Measurement Climate
Research Facility SGP site to illustrate the potential of the algorithm. For the first time, lidar-retrieved CCN

Figure 10. (a) Spatiotemporal distributions of retrieved cloud condensation
nuclei (CCN) number concentrations. (b) Time series of CCN concentration
measured by the lidar (at 0.6 km, magenta line) and the surface CCNc (green
line). (c) Surface CCN concentration as a function of lidar CCN concentration
(black dots) on 16 August 2015 at the SGP site. The correlation coefficient
(R) and the slope of the linear best fit line (red line) are given in the lower
right corner of (c). The 1:1 line is also shown (gray dashed line).
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concentrations were compared with simultaneous measurements from an in situ CCNc. Considering the ver-
tical aerosol inhomogeneity between the surface and 0.6 km above ground level, CCN concentrations from in
situ measurements and lidar retrievals agree well.

The study demonstrates the potential of usingmultiwavelength Raman lidar measurements to profile aerosol
and CCN properties. The height-dependent information of aerosols and CCN are important for investigating
the aerosol indirect effect in climate models. To ensure retrieval accuracy, 355 and 532 nm extinction coeffi-
cients need to be reliably derived. It is also important to consider including measurements made at longer
wavelengths to improve CCN retrievals for dust aerosols.
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