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A B S T R A C T

Cloud detection is crucial in many applications of satellite remote sensing data. Traditional cloud detection 
methods typically operate at the pixel level, relying on empirically tuned thresholds or, more recently, machine 
learning classification schemes based on training datasets. Motivated by the success of the Transformer with its 
self-attention mechanism and convolutional neural networks for enhanced feature extraction, we propose a new 
encoder-decoder method that captures global and regional contexts with multi-scale features. This new model 
takes advantage of two advanced deep-learning techniques, the Swin Transformer and UPerNet (named STUP
mask), demonstrating improved cloud detection accuracy and strong adaptability to diverse imagery types, 
spanning spectral bands from visible to thermal infrared and spatial resolutions from meters to kilometers, across 
a wide range of surface types, including bright scenes such as ice and desert, globally. Training and validation of 
the STUPmask model are conducted using data obtained from the Landsat 8 and Sentinel-2 Manually Cloud 
Validation Mask datasets on a global scale. STUPmask accurately estimates cloud amount with a marginal dif
ference against reference masks (0.27 % for Landsat 8 and − 0.81 % for Sentinel-2). Additionally, the model 
captures cloud distribution with a high overall classification accuracy (97.51 % for Landsat 8 and 96.27 % for 
Sentinel-2). Notably, it excels in detecting broken, thin, and semi-transparent clouds across diverse surfaces, 
including bright surfaces like urban and barren lands, especially with acceptable accuracy over snow and ice. 
These encompass the majority of challenging scenes encountered by cloud identification methods. It also adapts 
to cross-sensor satellite data with varying spatial resolutions (4 m–2 km) from both Low-Earth-Orbit (LEO) and 
Geostationary-Earth-Orbit (GEO) platforms (including GaoFen-2, MODIS, and Himawari-8), with an overall 
accuracy of 94.21–97.11 %. The demonstrated successes in the automatic identification of clouds with a variety 
of satellite imagery of different spectral channels and spatial resolutions render the method versatile for a wide 
range of remote sensing studies.

1. Introduction

Clouds are ubiquitous, covering approximately 60–70 % of the Earth, 
particularly over oceans and tropical regions (Asner, 2001; King et al., 

2013; Y. C. Zhang et al., 2004). They can obstruct surface observations 
from space, posing a great challenge in the retrieval of both atmospheric 
and land surface parameters (B. Li et al., 2021; Schneider et al., 2010; 
Wang et al., 2023; Wei et al., 2023, 2024; Zhen et al., 2023). However, 
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the probability of cloud presence depends on satellite overpass time and 
pixel size (Zhu and Woodcock, 2012, 2014). The complexity of cloud 
inhomogeneity, morphology, and interactions with underlying surfaces 
further complicates detection, especially over bright surfaces (Li and 
Leighton, 1991). Cloud identification has thus been crucial in satellite- 
based Earth Observation (Arvidson et al., 2001; Irish, 2000).

The exponential growth in the volume of satellite data would require 
laborious, time-intensive, and costly human resources (Li et al., 2016; 
Tamiminia et al., 2020). As a result, many methods have been developed 
and implemented to automatically identify clouds, mostly using 
empirically tuned thresholds, chiefly due to their simplicity and 
reasonable accuracy, such as those used for the Advanced Very High 
Resolution Radiometer (AVHRR) (Kriebel et al., 1989; Saunders and 
Kriebel, 1988; Stowe et al., 1991) and the Moderate Resolution Imaging 
Spectroradiometer (MODIS) (Ackerman et al., 1998; Frey et al., 2008). 
For higher-spatial-resolution sensors, Zhu and Woodcock (2012), for 
example, introduced an Fmask algorithm, which incorporates many 
spectral tests to differentiate the spectral characteristics between cloudy 
and cloud-free scenes for use with Landsat and Sentinel-2 imagery (Qiu 
et al., 2017, 2019; Zhu et al., 2015). Sun et al. (2016) devised a dynamic 
threshold algorithm for Landsat 8 imagery based on the mixed pixel 
decomposition theory and radiative transfer modeling with a priori 
surface reflectance model database. Frantz et al. (2018) enhanced the 
accuracy of cloud detection in Sentinel-2 imagery by using the parallax 
effect to distinguish clouds from bright surfaces in the potential cloud 
pixels. Such methods are based on spectral differences between cloudy 
and clear images of the same area over time with different accuracies 
(Frantz et al., 2015; Gómez-Chova et al., 2017; Hagolle et al., 2010; Jin 
et al., 2013; Zhu and Woodcock, 2014). Despite their many advantages, 
the threshold methods suffer from some common limitations, e.g., they 
often fail over bright areas like barren and snow-covered surfaces due to 
the low contrast with bright clouds. In addition, multi-temporal ap
proaches require time series images with cloud-free pixels, which can be 
difficult to obtain in regions frequently obscured by clouds.

In recent years, data-driven artificial intelligence methods have 
improved cloud detection, leveraging their remarkable data mining 
capability to extract valuable insights from vast amounts of input fea
tures (Pérez-Suay et al., 2018). Particularly, “pixel-level” machine- 
learning (ML)-based models have advanced substantially from sensors 
lacking specific spectral channels, e.g., decision trees (Hollstein et al., 
2016; Scaramuzza et al., 2012), neural networks (Hughes and Hayes, 
2014), Bayesian (Hollstein et al., 2016), support vector machines (Sui 
et al., 2019), and random forests (Ghasemian and Akhoondzadeh, 2018; 
Wei et al., 2020). The improved performance of “pixel-level” ML-based 
algorithms stems from their capacity to iteratively optimize extracted 
features and identify the most suitable classifier (Jeppesen et al., 2019). 

Nonetheless, the process of feature selection often depends significantly 
on manual intervention and operates on a point-wise basis, lacking the 
ability to incorporate contextual and global information. Deep learning 
(DL) models, particularly “image feature-based” ML models, such as 
Convolutional Neural Networks (CNNs), can integrate spectral and 
spatial information concurrently and have been extensively employed, 
especially for image classification and object detection (Cheng et al., 
2016; Deng et al., 2018). CNN architectures have demonstrated success 
in cloud detection tasks because they can take advantage of the contrast 
between the spatial variability of clouds and that of the underlying 
surface. The Deep Pyramid Network (Ozkan et al., 2018), SegNet (Chai 
et al., 2019), U-Net (Jeppesen et al., 2019; Wieland et al., 2019; Wright 
et al., 2024; H. K. Zhang et al., 2024), and Multi-scale Convolutional 
Feature Fusion (MSCFF) (Z. Li et al., 2019) architectures have demon
strated effectiveness in producing cloud masks that closely resemble 
manual annotations in cloud detection. The CNN models exhibit robust 
generalization capabilities and are resistant to overfitting through the 
combination of regularization techniques (Zheng et al., 2018). However, 
the CNN network weights are static and lack the ability to adjust 
dynamically to input variations. Furthermore, current research indicates 
that CNN models encounter challenges in capturing long-range de
pendencies and the global context because they are limited by their 
relatively small receptive fields and have difficulty in integrating distant 
pixels across the entire image (Luo et al., 2016; Xie et al., 2021).

Transformer, a new generation of powerful DL framework, is getting 
popular for enhancing the extraction of global image features through its 
self-attention mechanism (Vaswani et al., 2017). It has been applied to 
cloud detection in satellite imagery (Singh et al., 2023). Several 
Transformer-based models have been applied aimed at improving cloud 
detection performance, such as Vision Transformers (Fan et al., 2024; B. 
Zhang et al., 2023) and Swin Transformer (Tan et al., 2023), as well as 
hybrid models combining Transformers with CNNs (Gong et al., 2023; 
Zhang et al., 2022). However, most previous studies primarily trained 
models separately for individual sensors, limiting their generalizability. 
Recently, Wright et al. (2025) developed a deep-learning Omni
CloudMask method for cross-sensor cloud and cloud-shadow detection 
using dynamic Z-score normalization and mixed-resolution training 
across Landsat-8, Sentinel-2, and PlanetScope. However, it mainly fo
cuses on specific sensor pairs and does not fully address the substantial 
differences in spatial resolution, spectral characteristics, and orbital 
configurations across sensors.

To address these issues, our study establishes a comprehensive 
experimental cloud detection framework that integrates the Swin 
Transformer (Liu et al., 2021) as the encoder and the Unified Perceptual 
Parsing Network (UPerNet, Xiao et al., 2018) as the decoder. This 
framework improves cloud detection performance by leveraging both 

Table 1 
The spectral bands of the sensors on Landsat 8 and Sentinel-2 satellites.

Landsat 8 Sentinel-2 Band Type

Band Wavelength (μm) Resolution (m) Band Wavelength (μm) Resolution (m)

1 0.435–0.451 30 1 0.433–0.453 60 Coastal
2 0.452–0.512 30 2 0.458–0.523 10 Blue
3 0.533–0.590 30 3 0.543–0.578 10 Green
4 0.636–0.673 30 4 0.650–0.680 10 Red
– – – 5 0.698–0.713 20 Red edge
– – – 6 0.733–0.748 20 Red edge
– – – 7 0.773–0.793 20 Red edge
5 0.851–0.879 30 8 0.785–0.900 10 NIR
– – – 8a 0.854–0.875 20 Red edge
– – – 9 0.935–0.955 60 Water vapor
9 1.363–1.384 30 10 1.360–1.390 60 Cirrus
6 1.566–1.651 30 11 1.565–1.655 20 SWIR-1
7 2.107–2.294 30 12 2.100–2.280 20 SWIR-2
8 0.503–0.676 15 – – – Panchromatic
10 10.60–11.19 100 – – – TIRS-1
11 11.50–12.51 100 – – – TIRS-2
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global and regional contexts, as well as multi-scale features for complex 
scene segmentation, while adapting to variations across different image 
datasets. More importantly, our STUPmask model is initially pre-trained 
and applied to two representative high-resolution satellites, Landsat 8 
(30 m) and Sentinel-2 (10 m). The model is then evaluated using inde
pendent validation and test datasets, which are not used during training, 
over various underlying surfaces. We further extend the model to 
accommodate satellites with varying spatial resolutions, from very-high 
to moderate, across both Low Earth Orbit (LEO) and Geostationary Earth 
Orbit (GEO) platforms, including GaoFen-2 PMS (4 m), Aqua MODIS (1 
km), and Himawari-8 AHI (2 km). Through extensive experiments 
spanning multiple Earth observation platforms, we provide a practical 
and reproducible benchmark for cross-sensor generalization. This 
approach offers valuable insights into how large-scale pretraining can 
support the development of robust, cross-sensor cloud detection models.

2. Data source

2.1. Landsat and Sentinel imagery

The NASA Landsat series of satellite instruments provide over five 
decades of high-resolution (~30 m) continuous records of Earth's land 
surfaces. This dataset is crucial for various applications, including 
agriculture, forest cover assessment, water resource management, and 
tracking urban expansion. Currently, Landsat 8 and Landsat 9 are in 
operation, each carrying two sensors: the Operational Land Imager and 
the Thermal Infrared Sensor. These sensors provide eleven channels 
ranging from 0.435 to 12.51 μm, covering visible, near-infrared (NIR), 
shortwave infrared (SWIR-1 and SWIR-2), and thermal infrared (TIRS) 
spectra bands, as listed in Table 1 for Landsat 8. This comprehensive 
coverage allows for ground-based imaging across a wide spectral range. 
The spatial resolution of the imagery is 30 m, except for the Panchro
matic (15 m) and TIRS (100 m) bands (Table 1). Similarly, Sentinel-2 
(including 2A and 2B) plays a crucial role in monitoring Earth's land 
surfaces for various environmental and land management applications. 
Equipped with MultiSpectral Instrument (MSI) sensors, it has 13 spectral 
bands spanning from the visible to the SWIR at three high spatial reso
lutions (10 m, 20 m, and 60 m). Unlike Landsat, Sentinel-2 does not 
include thermal infrared and panchromatic bands. However, it is one of 
the few multispectral satellites to include three bands in the red-edge 
range (Table 1), significantly enhancing its capacity for monitoring 

vegetation health and related information (Fernández-Manso et al., 
2016).

2.2. Training and validation datasets

In this study, the Landsat 8 Biome Cloud Validation Mask (L8 
Biome), the Sentinel-2 CloudSEN12, and the Sentinel-2 Cloud Mask 
Catalogue (S2 CMC) datasets are employed to train the DL model and 
validate our cloud detection results. The L8 Biome includes 96 globally 
distributed scenarios (spatial resolution = 30 m) covering a variety of 
land-use types (Foga et al., 2017), and each Cloud Mask is categorized 
into three classes based on the percentage of cloudy pixels in the im
agery: Clear (less than 35 %), MidClouds (between 35 % and 65 %), and 
Cloudy (more than 65 %). Additionally, for comparison, we collect 
Landsat 8 official cloud mask products, which apply spectral reflectance 
and brightness temperature tests to detect clouds (Foga et al., 2017; Zhu 
and Woodcock, 2012). It is recorded in the Quality Assessment (QA) 
band in a 16-bit binary format; specifically, cloud and cirrus information 
labeled with medium and high confidence, located within the 12th to 
15th bits, is used for analysis.

CloudSEN12 is a large dataset designed for cloud semantic under
standing, comprising 9880 regions of interest (ROIs) and 49,400 image 
patches (IPs) distributed across all continents except Antarctica, and 
provides separate training, validation, and testing datasets (Aybar et al., 
2022). Each IP spans 5090 × 5090 m and includes data from Sentinel-2 
levels 1C and 2A, along with annotations for thick and thin clouds, cloud 
shadows, Sentinel-1 SAR, digital elevation models, surface water 
occurrence, land cover types, and cloud mask results from six advanced 
cloud detection algorithms. Each ROI contains five 5090 × 5090-m 
patches captured on different dates, corresponding to various cloud 
cover categories: clear, low-cloudy, almost clear, mid-cloudy, and 
cloudy. The S2 CMC dataset comprises 513 sub-scenes, each with an 
image size of 1022 × 1022 pixels (Francis et al., 2020), evenly distrib
uted across 11 surface types worldwide.

To ensure that the training and validation samples encompass nearly 
all cloud types as well as diverse land-cover types, satellite scenes over 
various underlying surfaces are selected. For Landsat 8, a total of 48 
scenes from the 96 Biome images are chosen for training using the 
stratified sampling method, which ensures a uniform selection of images 
and representation of cloud cover across various land-cover types, 
providing a more balanced and representative dataset for model training 

Fig. 1. Geolocation of the global Landsat 8 and Sentinel-2 cloud mask training and validation datasets. The background map displays the MODIS land cover product.
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or analysis (Wei et al., 2020). The remaining 48 scenes are used for 
validation. The patch size is set to 512 pixels with a 24-pixel overlap, 
resulting in 10,230 training patches and 9986 validation patches. For 
Sentinel-2, considering the available training sample size, the Cloud
Sen12 training dataset, consisting of 8942 patches, each resized from the 
original 509 × 509 to 512 × 512 pixels (using bilinear interpolation) for 
model input consistency (Aybar et al., 2022). The CloudSen12 valida
tion dataset (975 patches) and the S2 CMC dataset (2052 patches of 512 
× 512 pixels and a 2-pixel overlap) are utilized for independent vali
dation (Wright et al., 2024). The training and validation datasets are 
entirely independent, and all reported metrics are calculated solely 
based on the validation datasets. The spatial distribution of all training 
and validation cloud mask datasets employed in this study is shown in 
Fig. 1.

3. Methodology

3.1. The STUPmask framework

Regarding the limitations of traditional DL models like CNN in 
drawing global dependencies for satellite imagery, this study introduces 
the Transformer as a solution. The Transformer utilizes the self-attention 
mechanism to effectively capture long-range dependencies in the spatial 
information domain, specifically, the model's ability to capture 

relationships between distant pixels within the image, which is crucial 
for detecting clouds that span large areas or exhibit similar spatial pat
terns (Vaswani et al., 2017). The self-attention mechanism computes 
attention scores by taking the inner product of the input matrix (the 
image itself), followed by normalizing the attention weights using the 
softmax function. Subsequently, a weighted summation facilitates the 
model in effectively capturing correlations among various elements 
within the input sequence (Eq. 1): 

Attention(Q,K,V) = softmax
(

QKT
̅̅̅
d

√
k

)

V, (1) 

where Q = XWQ, K = XWK, V = XWV, and dk is the input dimension; X 
represents the input matrix; and WQ, WK and WV denote the weight 
matrix. The Transformer, originally developed for Natural Language 
Processing (NLP), has been widely applied across various fields and has 
recently shown strong potential for cloud detection (Fan et al., 2024; 
Gong et al., 2023; Singh et al., 2023; Tan et al., 2023; B. Zhang et al., 
2023; Z. Zhang et al., 2022).

The scale of the NLP problem is relatively small compared to satellite 
remote sensing images since processing a large volume of satellite data, 
especially in extracting contextual information, involves significant 
computational demands, as the complexity scales with the square of the 
number of pixels in the image. The computational complexity of pro

Fig. 2. Flowchart of the hybrid Swin Transformer and UPerNet (STUPmask) cloud detection model designed for satellite imagery.
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cessing satellite images is proportional to the square of the number of 
image pixels, leading to significant computational requirements. Vision 
Transformer (ViT) partitions the image into several smaller blocks based 
on a predefined size, subsequently transforming each patch into a fixed- 
length vector for correlation computation (Dosovitskiy et al., 2020). 
However, this approach still incurs significant overhead, which is 
particularly noticeable when dealing with larger image sizes. The Swin 
Transformer provides a solution that integrates the advantages of lo
cality, translation invariance, and hierarchy, making it suitable for 
image classification tasks (Liu et al., 2021). First, the hierarchical 
structure is introduced to process pictures, enabling the model to flex
ibly handle images of different scales and perform various tasks. Then, 
the concept of locality is introduced by applying self-attention within 
non-overlapping window areas, which significantly reduces computa
tional overhead. This operation is known as Window-based Multi-head 
Self-Attention (W-MSA). To further facilitate information exchange be
tween windows, the Transformer incorporates the Shifted W-MSA (SW- 
MSA) operation (Eq. 2): 

x̂l
= W-MSA

(
LN

(
xl− 1) )+ xl− 1

xl = MLP
(
LN

(
x̂l) )

+ x̂l

x̂l+1
= SW-MSA

(
LN

(
xl) )+ xl

xl+1 = MLP
(
LN

(
x̂l+1) )

+ x̂l+1

, (2) 

where LN represents the layer normalization; x̂l and x̂l+1 represent the 
output of W-MSA and SW-MSA, respectively; xl and xl+1 denote the 
output after it has passed through the multilayer perceptron (MLP) 
layer. This advanced design makes the Swin Transformer particularly 
well-suited for processing large satellite remote sensing images.

Despite the considerable attention garnered by its strong global 
modeling capabilities, Transformer typically treats images as a sequence 
of patches, potentially overlooking crucial structural information 
inherent in the images. In addition, merely encoding marked image 
blocks using a Transformer and directly upsampling the hidden features 
to full resolution for output often fails to yield optimal results (Chen 
et al., 2021; Zhang et al., 2021). The CNN architecture offers an effective 
approach to capturing low-level visual cues, and in this study, we chose 
the CNN-derived newly powerful UPerNet (Xiao et al., 2018), which 
features a powerful decoder that is a multi-task model capable of 
concurrently discerning the texture and surface attributes of objects and 
their diverse components. The UPerNet model uses a Pyramid Pooling 
Module (PPM) and lateral connections to integrate both low- and high- 
level information. The model structure can be adapted accordingly to 
achieve varying degrees of enhancement. For the current image seg
mentation task, feature fusion is performed at each layer of the UPerNet 
model, and the cross-entropy formula is employed to calculate the fused 
feature loss.

Here, we developed a hybrid model comprising the Swin Trans
former and UPerNet models, defined as STUPmask, for satellite cloud 
detection (Fig. 2). The Swin Transformer serves as an encoder to 
enhance overall contextual understanding in satellite remote sensing 
images, while the decoder employs the UPerNet structure to integrate 
low- and high-level semantic features for cloud detection. This newly 
integrated design preserves the global context information extracted by 
the Swin Transformer and leverages the high-resolution feature map 
generated in the decoding path to produce a more accurate cloud clas
sification outcome.

3.2. Model training and construction

A key aspect of the STUPmask model lies in the selection of input 
features for training and data collection. Imagery is first converted from 
digital counts to Top-of-Atmosphere (TOA) reflectance (from visible to 
SWIR bands) and brightness temperature (BT, for TIRS bands). The TOA 
reflectance of clouds notably exceeds that of common terrestrial 

elements in visible channels, such as water bodies, soil, vegetation, man- 
made structures, and rocks. In addition to visible channels, NIR and 
SWIR channels can also enhance cloud detection capabilities. Although 
the spectral characteristics of ice and snow resemble those of clouds 
across the visible to SWIR bands, the thermal infrared channel plays a 
crucial role in their differentiation due to significant differences in BTs. 
Furthermore, both Landsat 8 and Sentinel-2 satellites are equipped with 
an additional cirrus channel, which has often been used for detecting 
cirrus clouds (Gao et al., 2002; Zhu et al., 2015). Thus, the chosen 
fundamental spectral features for Landsat 8 imagery encompass visible 
channels spanning blue, green, red, and NIR alongside SWIR, Cirrus, and 
BT channels. Similarly, for the Sentinel-2 satellite, the selected basic 
spectral features range from blue to SWIR wavelengths, with the TIRS 
channel excluded due to its absence.

During the model training stage, all input parameters for the 
STUPmask model are first standardized. Subsequently, the AdamW 
optimizer is utilized with the parameters configured (e.g., β1 = 0.9, β2 =

0.999, and λ = 0.01) (Loshchilov and Hutter, 2017). The learning rate, 
determined using the Warmup strategy, begins with an initial small 
value and gradually increases over iterations until reaching the pre-set 
maximum before decay, effectively mitigating instability arising from 
initializing model parameters. Due to hardware memory constraints, 
block processing (i.e., dividing large satellite images into smaller 
patches and stitching the results back together) is necessary, as pro
cessing large remote-sensing images at the same time is impractical. In 
our study, we employed a single unified model, which was trained on a 
combined dataset integrating both the Landsat 8 Biome and the Sentinel- 
2 Cloud Mask Catalogue.

3.3. Evaluation indices

Our study employed a range of evaluation indices to quantitatively 
assess the STUPmask model performance. Initially, we calculated the 
cloud amount (CA), which refers to the cloud fraction and is defined as 
the ratio of cloud pixels to the total number of valid pixels in an image. 
We also calculated the cloud amount difference (CAD) to quantify the 
detected cloud content and estimate biases between the predicted and 
reference cloud masks generated automatically with human supervision 
(Foga et al., 2017). Furthermore, we computed the confusion matrix to 
assess the classification accuracy, indicated by the overall accuracy 
(OA), balanced overall accuracy (BOA), user's accuracy (UA), and pro
ducer's accuracy (PA) (Eqs. 3–6). Moreover, two indicators—F1-score 
and intersection over union (IoU)—are also employed (Eqs. 7–8), where 
the former is the harmonic average of PA and UA, and the latter rep
resents the intersection of two regions divided by the union of two re
gions. These metrics are computed based on true positives (TP), true 
negatives (TN), false negatives (FN), and false positives (FP)—where FP 
and FN signify correctly identified cloud and non-cloud pixels, while FN 
and FP represent mistakenly classified cloud and non-cloud pixels. 

OA =
TP + TN

TP + TN + FP + FN
(3) 

UA =
TP

TP + FP
(4) 

PA =
TP

TP + FN
(5) 

BOA = 0.5
(

PA+
TN

TN + FP

)

(6) 

F1 − score =
2*UA*PA
UA + PA

(7) 

IoU =
TP

TP + FP + FN
(8) 
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4. Results and discussion

4.1. Cloud detection using the STUPmask model

4.1.1. Qualitative evaluation of Landsat 8 cloud detection
The cloud detection results for Landsat 8 Biome imagery (30 m) 

using the STUPmask model and the official Landsat 8 algorithm 
demonstrate similar spatial patterns and a high degree of consistency 
with the reference cloud distribution over different surfaces (Fig. 3). 
Overall, clouds identified by our STUPmask model and Landsat 8 official 
(CFmask) algorithm bear high similarity in spatial patterns and a high 
degree of consistency with the reference cloud distribution over dark 

surfaces. For example, both excel in detecting various clouds over water 
bodies and coastal areas (Fig. 3a, b) and are particularly adept at 
identifying broken clouds (pointed to by the yellow arrows), leveraging 
substantial differences in reflectance. Moreover, STUPmask identifies 
clouds well in areas with diverse vegetation features, like densely 
vegetated forests (Fig. 3c), agricultural regions (Fig. 3d), mountainous 
terrain with notable elevation variations (Fig. 3e), and even in areas 
with minimal cloud cover (pointed to by the yellow arrows in Fig. 3d). 
Furthermore, STUPmask performs well in portraying cloud distributions 
over areas with reduced vegetation, particularly in the mountains 
(Fig. 3f), vegetated landscapes mixed with small urban areas (Fig. 3g), as 
well as estuaries and river alluvions (Fig. 3h), exhibiting high alignment 
with the color composite image and minimal occurrences of omissions 

Fig. 3. Representative examples of color composite images (RGB: Bands 5–4-3 for a-m; Bands 6–5-4 for n-p to highlight snow/ice surfaces), reference cloud masks, 
STUPmask cloud detection results, and official CFmask cloud masks for Landsat 8 imagery (30 m). Clouds and underlying surfaces are denoted by yellow arrows and 
yellow ellipses, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and misclassifications. This performance represents significant im
provements compared to the official CFmask cloud masks, as evidenced 
by the yellow ellipses. For instance, it is prone to misidentifying a large 
number of highlighted surface pixels as clouds, including man-made 
features like urban buildings and roads (Fig. 3i, j), bare lands like the 
Gobi Desert and rocks (Fig. 3k, l), and coastal tides (Fig. 3m). 

Additionally, it faces great challenges in identifying clouds against the 
backdrop of ice and snow surfaces, resulting in misjudgments 
(Fig. 3n–p). This is primarily attributed to the high spectral similarity 
between bright surfaces and clouds for traditional threshold methods, 
which can result in misclassifying bright surfaces as clouds and missing 
thin clouds.

Fig. 4. Representative examples of color composite images (RGB: Bands 8–4-3 for a-l and Bands 11–8-4 for m-n to highlight snow/ice surfaces), reference cloud 
masks, and STUPmask cloud detection results for Sentinel-2 imagery (10 m). Clouds and underlying surfaces are denoted by yellow arrows and yellow ellipses, 
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.1.2. Qualitative evaluation of Sentinel-2 cloud detection
Similarly, the cloud detection results for Sentinel-2 imagery (10 m) 

using the STUPmask model show close spatial patterns with the cloud 
distribution from reference masks over different surfaces (Fig. 4). Unlike 
Landsat imagery, there are no official cloud mask products generated 
from the traditional threshold method for comparison. Our results 
illustrate that most clouds over the ocean (water bodies) are detected by 
the STUPmask model due to their large reflectance differences (Fig. 4a). 
Additionally, our model is effective in detecting clouds over densely 
vegetated and mixed-vegetated areas (Fig. 4b, c), with a high degree of 
consistency with the reference cloud distribution. Furthermore, the 
STUPmask model performs well in regions characterized by sparse 
vegetation, such as mountain ridge areas, where it identifies most thin 
and broken clouds without any further misjudgments observed (Fig. 4d, 
e). Our model has also been tested in challenging scenes of varying 
brightness. For example, the model successfully detects clouds over 
urban centers mixed with vegetation (indicated by yellow arrows in 
Fig. 4f, g), bare rocks (Fig. 4h, i), as well as the Gobi Desert and other 
arid areas (Fig. 4j–l). However, despite generally accurate recognition of 
most clouds above ice and snow surfaces (Fig. 4m, n), some cloudy pixels 
are still misidentified due to the absence of thermal infrared information 
for Sentinel-2. Overall, the STUPmask model effectively differentiates 
between different types of clouds (especially thin and broken clouds) for 
different satellites, minimizing misclassifications of clear-sky pixels as 
clouds over bright surfaces with minimal or no vegetation coverage.

4.2. Quantitative evaluation of cloud detection

4.2.1. Cloud amount
We first validate the cloud amounts by comparing our STUPmask- 

derived results with the L8 Biome and S2 CMC reference cloud mask 
datasets (Fig. 5). In addition, we make comparisons with available 
Landsat 8 official cloud masks. Our results for Landsat 8 show improved 
statistics (R2 = 0.98, MAE = 2.35 %, RMSE = 3.79 %) compared to the 
official cloud mask product (R2 = 0.64, MAE = 7.18 %, RMSE = 15.13 
%) (Fig. 5a). In addition, the frequency histograms of STUPmask closely 
resemble a normal distribution (Fig. 5b), and approximately 95 % of 
Landsat 8 cloud detection results exhibit deviations of less than 0.1 %, 
indicating an average cloud amount difference (CAD) value of 0.27 %, 
compared to 2.19 % for the official product. Sentinel-2 shows similar 
accuracy, comparable to Landsat 8, featuring a high R2 of 0.99, average 
MAE of 1.43 % and RMSE values of 3.29 % (Fig. 5c). Similarly, the CADs 
for most Sentinel-2 results are predominantly below 0.1 %, with an 
average of − 0.81 %. The exceptional consistency between cloud amount 
recognition and reference images offers robust support for the rapid pre- 
screening of satellite data. This will significantly reduce the need for 
manual data selection from extensive datasets (e.g., selecting data based 
on a certain cloud amount threshold), ultimately saving users valuable 
time and resources.

Fig. 5. Scatter plots and frequency histograms of estimated cloud amount for each image, compared with the STUPmask results with the reference cloud masks from 
Landsat 8 and Sentinel-2 images. The comparison with Landsat 8 official cloud mask products is also shown (indicated by orange lines and columns in a and b).

S. Pang et al.                                                                                                                                                                                                                                     Remote Sensing of Environment 334 (2026) 115206 

8 



4.2.2. Cloud distribution
We then assess the STUPmask model in detecting the cloud distri

bution (i.e., the spatial arrangement of clouds within an image) by 
calculating the confusion matrix (with metrics such as PA and UA 
revealing typical error patterns associated with different cloud distri
butions) for the two satellites (Fig. 6). In general, the STUPmask model 
demonstrates excellent performance with Landsat 8 imagery, achieving 
an OA of 97.51 % and a BOA of 96.91 %, with average values for UA, PA, 
F1-score, and IoU of 96.61 %, 95.32 %, 95.96 %, and 92.23 %, respec
tively. Notably, our new model surpasses the official algorithm, showing 
improvements of 7 % to 25 % in OA and BOA, and 10 % to 17 % in F1- 
score and IoU, respectively. Similar excellent performance is observed 
for Sentinel-2 imagery using the STUPmask model, yielding an OA 
(BOA) of 96.27 % (96.23 %), along with a UA of 95.12 %, a PA of 97.73 
%, an F1-score of 96.41 %, and an IoU of 93.06 %. This underscores the 
adaptability of our model across diverse satellite sensors, ensuring 
precise identification of cloud distribution in remote sensing imagery. It 
facilitates the generation of accurate cloud masks by extracting clear-sky 
pixels, thereby enhancing the accuracy of remote sensing quantitative 
information retrieval from both the surface and atmosphere.

Furthermore, we test the model performance across different surface 
land cover types and found that for dark surfaces, such as shrublands 
(OA = 97.41 %, BOA = 96.79 %), water (OA = 98.01 %, BOA = 97.26 
%), and wetlands (OA = 98.18 %, BOA = 97.78 %), the model exhibits 
high overall accuracy for both Landsat 8 and Sentinel-2. Additionally, 
the IoU scores consistently remain above 92 % for these types, under
scoring that only a small portion of clouds are omitted and misclassified. 
STUPmask also performs well in cloud identification over urban sur
faces, with an OA of 98.32 % and a BOA of 97.79 %. The model remains 

stable with increased reflectance of underlying surfaces, such as barren 
land areas, with OA (BOA) values of 97.87 % (97.48 %) and 96.11 % 
(95.38 %) for the two satellites. However, over snow and ice surfaces, 
bright surface pixels are erroneously classified as cloud pixels, resulting 
in a lower PA (84.50 %) compared to UA (95.57 %) for Landsat 8. In 
contrast, Sentinel-2 cloud recognition results exhibit fewer errors, with 
an average PA of 93.26 % and UA of 90.46 %. Nonetheless, the OA re
mains acceptable, with 95.34 % and 92.83 % for Landsat 8 and Sentinel- 
2, respectively. More importantly, our results consistently outperform 
the official cloud masks generated by the CFmask algorithm across all 
land use types, showing higher evaluation metrics (orange dashed lines 
in Fig. 6), with a particularly notable improvement over ice/snow sur
faces (e.g., OA = 95.34 % vs. 74.11 %, BOA = 91.63 % vs. 69.01 %).

4.3. Adaptable to sensors with different spatial resolutions

In this section, we assess the transferability of our model using open- 
access satellite imagery from sensors with varying spatial resolutions, 
including meter-level data from the GaoFen-2 Panchromatic and Mul
tispectral Sensor (PMS) (4 m) and kilometric-resolution imagery from 
Aqua MODIS (1 km) and the geostationary Himawari-8 Advanced 
Himawari Imager (AHI) (2 km). Model adaptation is accomplished by 
fine-tuning separately for each sensor using a limited amount of addi
tional training data.

4.3.1. Adaptable to very-high-resolution satellites
First, we adapt and test our model for cloud detection using very- 

high-resolution (4 m) imagery from the GaoFen-2 PMS sensor using 
the AIR-CD dataset, which comprises 34 scenes covering diverse land 

Fig. 6. Radar plots of cloud detection performance (including OA, BOA, F1-score, IoU, UA, and PA) of our developed STUPmask model for Landsat 8 and Sentinel- 
2 imagery.
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cover types in China (He et al., 2022). The AIR-CD dataset includes four 
spectral bands, spanning visible to NIR wavelengths, at a spatial reso
lution of 4 m and image dimensions of 7300 × 6908 pixels. For model 
adaptation, 20 images are randomly selected for fine-tuning, with the 
remaining 14 images used for validation, resulting in 4500 training 
samples and 3150 test samples. All other model settings remain 
consistent with those used for Landsat and Sentinel-2.

The cloud detection results from GaoFen-2 PMS imagery are illus
trated in Fig. 7, comparing them with color composite images and 
reference cloud masks across different underlying surfaces. The cloud 
distribution classification and cloud edges are well-defined over oceans, 
land-water interfaces, vegetated and agricultural areas, urban buildings, 
barren land, and mountains. More importantly, our model performs well 
in distinguishing clouds without mistakenly identifying them as haze or 
fog (Fig. 7a, b). In vegetation-covered areas (Fig. 7c, d) and bright urban 
regions (Fig. 7e, f), most small, broken clouds are well-detected, while 
fewer clouds are observed over the rivers or lakes. Additionally, our 
model successfully detects thin clouds missed by the reference mask due 
to manual uncertainty (indicated by the yellow arrows in Fig. 7c), 
capturing small clouds over snow-covered high-altitude mountains 
(pointed to by yellow arrows in Fig. 7g, h). Even in extensive areas with 
thin cloud coverage, clouds are generally classified, minimizing the risk 
of large-scale omissions (Fig. 7h). In general, our model exhibits superior 
performance, with an average OA of 97.11 %, BOA of 94.46 %, F1-score 
of 86.96 %, and IoU of 76.92 %, showing high PA and UA values of 
91.10 % and 83.17 %, respectively, compared with the reference masks 
(Table S1).

4.3.2. Adaptable to moderate-resolution satellites
Our cloud detection model is further tested using moderate- 

resolution imagery from both LEO and GEO satellites, i.e., Aqua 
MODIS (1 km) and Himawari-8 Advanced Himawari Imager (AHI) (2 
km). In this study, the MODIS cloud mask dataset includes 1272 training 

and 150 validation images (X. Li et al., 2022). After cropping these 
images into 512 × 512 patches, the final training and validation datasets 
consist of 19,080 and 2250 non-overlapping patches, respectively. Each 
patch contains ten spectral bands (1, 3, 4, 18, 20, 23, 23, 28, 29, 31, and 
32), which are commonly used for cloud detection. For Himawari-8 AHI, 
due to the absence of manual cloud masks, the official Level 2 Cloud 
Mask products serve as the reference masks for this test (Takahito and 
Ryō, 2016). The Himawari-8 cloud mask dataset consists of 98 scenes, 
with 56 randomly selected for training and the remaining scenes used 
for validation. The images are cropped into 128 × 128 patches, yielding 
20,216 training and 15,162 validation patches. Each patch contains 
spectral bands from visible to NIR wavelengths that are used for cloud 
detection. To accelerate the training process, we fine-tuned the STUP
mask model and evaluated its performance using various metrics on the 
test dataset.

The cloud detection results from Aqua MODIS and Himawari-8 AHI 
imagery using the STUPmask model, compared with standard color 
composite images and reference cloud masks across different underlying 
surfaces, are shown in Fig. 8. Our model successfully detects most 
clouds, showing a high degree of spatial consistency with the reference 
cloud mask across the dark ocean (Fig. 8a, b, e, f), densely to sparsely 
vegetated areas (Fig. 8b, e, f), bright rock formations (Fig. 8c, g, h), and 
extremely bright polar ice-covered regions (Fig. 8d). More importantly, 
our model does not suffer from as many errors as the official cloud mask 
products do, particularly for small and broken clouds over bright sur
faces, which are inherent limitations of multi-channel threshold-based 
cloud detection methods (shown by red ellipses). Nevertheless, the STUP 
cloud mask appears smoother and less responsive to inhomogeneity at 
cloud edges and holes because it is applied directly at the native reso
lution of the input data (e.g., 1 km for MODIS) and does not incorporate 
sub-pixel information from higher-resolution bands (e.g., the 250 m 
bands used by MODIS; Ackerman et al., 1998). Our method is designed 
as a conservative mask for moderate-resolution applications, which 

Fig. 7. Typical examples of color composite images (RGB: 3–2-1), reference cloud masks, and STUPmask cloud detection results for GaoFen-2 PMS imagery (4 m).
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naturally limits its ability to capture the finest-scale heterogeneity. 
Despite the large difference in spatial resolutions (1 km vs. 2 km), our 
model demonstrates strong visual performance in cloud detection for 
moderate-resolution satellite images, with no noticeable mis
classifications or missed detections. In general, our model demonstrates 
superior performance with OAs of 94.21 % and 96.02 %, BOAs of 94.27 
% and 95.25 %, F1-scores of 93.69 % and 91.89 %, and IoUs of 88.13 % 
and 84.98 % for MODIS and AHI imagery, respectively. The PA and UA 
values are highly comparable, with 94.84 % and 92.57 % for MODIS and 
93.75 % and 90.10 % for AHI, respectively (Table S1). These results 
testify to the high adaptability of our STUPmask model in identifying 
clouds across various land cover types and satellite resolutions.

4.4. Model testing, inter-comparison, and limitations

4.4.1. Model testing and inter-comparison
First, we incorporated various publicly available datasets to 

comprehensively test our model and compare it with previous models, 
starting with L8 Spatial Procedures for Automated Removal of Cloud 
and Shadow (SPARCS) (80 global scenes, Fig. S1; Hughes and Kennedy, 
2019) and S2 CESBIO (38 global scenes, Fig. S1; Baetens et al., 2019) 
cloud mask datasets, covering diverse underlying surfaces (Fig. 9). Our 
detected clouds show high consistency in spatial patterns with the two 
referenced masks. This includes clouds over oceans and inland waters, 
the intersection of water and land, and densely vegetated areas, with 
almost no obvious cloud omissions (Fig. 9a-d). In addition, our model 
accurately identifies fragmented or broken clouds with small amounts 
and particularly thin clouds covering large areas (indicated by yellow 
arrows in Fig. 9c, d). Superior identification results are also observed 
over surfaces with high reflectance, such as clouds in urban and high 

mountainous ice-covered areas (Fig. 9e, f), bare land (Fig. 9h), and even 
very challenging permanent snow/ice-covered areas (Fig. 9g), showing 
only a small number of clouds missed. Lastly, we quantitatively assess 
the accuracy of the STUPmask model using all images from the L8 
SPARCS and S2 CESBIO datasets. In general, our model demonstrates 
superior performance with two independent validation datasets, 
achieving average OA and BOA values of 94.09 % and 96.42 %, 94.39 % 
and 94.37 % (PA = 94.81 % and 90.96 %, UA = 73.53 % and 91.01 %) 
for Landsat 8 and Sentinel-2 imagery compared to the conventional 
method. Additionally, the F1-scores for the two satellites are 82.82 % 
and 90.98 %, while the IoU scores are 70.68 % and 93.47 %, 
respectively.

Skakun et al. (2022) conducted the Cloud Mask Intercomparison 
eXercise (CMIX) to benchmark 10 cloud detection algorithms, including 
rule-based (ATCOR, Fmask 4.0, LaSRC, Sen2Cor, Idepix), machine 
learning (s2cloudless, CD-FCNN), and multi-temporal approaches 
(FORCE, MAJA, InterSSIM) for Landsat 8 and Sentinel-2. These algo
rithms were implemented by the original developers under a unified 
evaluation framework and validated against harmonized reference 
masks. Following the CMIX protocol, we adopted the same evaluation 
procedures (Skakun et al., 2022) in our study to ensure a fair and 
scientifically meaningful comparison, benchmarking our model against 
the 10 CMIX baseline algorithms. Our model surpasses all 10 CMIX al
gorithms (Skakun et al., 2022), achieving the highest OA (BOA) of 96.42 
% (94.37 %) on the S2 CEOBIO dataset (Fig. 10a, Table S2). When tested 
on the S2 PixBox dataset (17,351 pixels, Fig. S1; Paperin et al., 2021a), 
STUPmask excelled in detecting thin clouds, with OA and BOA reaching 
91.36 % and 91.43 %, respectively, surpassing all 10 CMIX methods 
(Fig. 10b, Table S3). Additionally, on the L8 PixBox dataset (20,500 
pixels, Fig. S1; Paperin et al., 2021b), our model demonstrated strong 

Fig. 8. Typical examples of color composite images (RGB: 2–1-4 and 4–3-2, respectively), reference cloud masks, and STUPmask cloud detection results for Aqua 
MODIS (1 km, left) and Himawari-8 AHI (2 km, right) imagery. The annotations on the left and right indicate the acquisition date (year followed by day number in 
the year) of the images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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performance, especially in detecting semi-transparent clouds, with the 
best BOA of 91.33 %, compared to 5 CMIX methods (Fig. 10c, Table S4). 
This improvement may be attributed to our large-scale and diverse 
pretraining strategy, as our training datasets, including the L8 Biome 
dataset, contain expert-annotated thin-cloud samples, enabling the 
model to learn their spectral–spatial patterns. Lastly, we evaluated our 
model on the S2 CloudSEN12 testing dataset (963 global scenes, Fig. S1), 

achieving the highest BOA of 93.64 % and outperforming all 10 
benchmark models (Table S5), including DL models such as CloudS2
Mask and UNetMobV2 (Aybar et al., 2022; Wright et al., 2024). These 
results highlight the robust performance of our model and its applica
bility across diverse land and cloud conditions, surpassing widely 
recognized algorithms.

Fig. 9. Typical examples of color composite images (RGB: Bands 5–4-3 and 8–4-3, respectively), along with reference cloud masks from Landsat 8 SPARCS and 
Sentinel-2 CESBIO datasets and cloud detection results derived from our STUPmask model over diverse underlying surfaces.

Fig. 10. Comparison of model performance between STUPmask and multiple cloud-detection algorithms from the Cloud Mask Intercomparison eXercise (CMIX) 
study (Skakun et al., 2022) for Sentinel-2 imagery using the (a) CESBIO and (b) PixBox datasets (all clouds), and for Landsat 8 imagery using the (c) PixBox dataset 
(all clouds).
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4.4.2. Enhancing cloud detection with pretraining
To evaluate generalization, we trained the STUPmask model from 

scratch on Gaofen-2, Himawari-8, and MODIS data and compared it with 
pre-trained models (Table 2). The pre-trained model, originally trained 
on Landsat and Sentinel, consistently outperforms scratch-trained 
models across all three sensors, achieving higher OA, F1-score, and 
BOA values. The pre-trained models also improve cloud detection ac
curacy (UA) on Gaofen-2 and Himawari-8, with a 10 % increase in 
completeness (PA) over the MYD35 product, and provide a more 
balanced precision-recall trade-off on MODIS. Models trained from 
scratch often misclassify bright surfaces and snow-covered areas as 
clouds (Fig. S2a-b), whereas pre-trained models correctly identify these 
regions as clear skies. This improvement results from enhanced feature 
discrimination through pretraining, which reduces misclassification 
under limited spectral information. For scenes with extensive thin or 
scattered clouds (Fig. S2c-e), scratch-trained models show large omis
sion errors, while pre-trained models better capture cloud texture and 
morphology. Pre-trained models also preserve cloud structural conti
nuity, whereas scratch-trained models often misclassify cloud bound
aries, especially at cloud connection regions (Fig. S2f).

4.4.3. Potential limitations
Despite the strong performance of our model, certain limitations are 

worth noting. Some problematic cloud detection results obtained by the 
STUPmask model are presented in Fig. S3. For instance, the model 
struggles with low-contrast water bodies (Fig. S3a, b), where thin and 
semi-transparent clouds above water surfaces are difficult to identify 
due to minimal reflectance differences (only 0.003 in the red band). 
Additionally, deteriorated performance is observed over tropical deserts 
and barren land (Fig. S3c, d), as well as polar ice and snow regions 
(Fig. S3e, f), where thin clouds are often omitted, and misclassifications 
occur over high-reflectance surfaces (highlighted by yellow circles in the 
figure) (Li and Leighton, 1991). These findings underscore the inherent 
challenges of detecting clouds under complex and extreme conditions, 
emphasizing the need for continuous model improvements in future 
studies.

5. Conclusions

Cloud detection remains a formidable challenge given that dis
tinguishing clouds from various background objects is hindered by their 
dynamic quantities and shapes, which constantly evolve over space and 
time. Conventional threshold-based or ML methods encounter great 
difficulties for thin or broken clouds over bright surfaces, particularly for 
satellite sensors with high spatial resolution but limited channels, such 
as Landsat and Sentinel. This study introduces a hybrid semantic seg
mentation model, named “STUPmask”, which integrates the Swin 
Transformer and UPerNet encoder-decoder models. By combining these 
two approaches, the model effectively captures spatial local information 
of different types of clouds. We utilize radiometrically calibrated TOA 
reflectance and BT spanning from visible to thermal infrared bands as 
model inputs. The STUPmask model is trained and validated using the 
Landsat 8 and Sentinel-2 cloud mask validation datasets, encompassing 
various underlying surfaces covering the whole globe.

Our method achieves superior performance in cloud detection for 
both sets of satellite images compared to previous methods. The esti
mated cloud amounts agree well with manually annotated cloud masks, 
yielding R2 values of 0.98 and 0.99, and RMSEs of 3.79 % and 3.29 %. In 
addition, the detected cloud distribution patterns match closely with 
those of the referenced masks, achieving high overall accuracies (OA) of 
97.51 % and 96.27 %, and balanced OA (BOA) of 96.91 % and 96.23 %, 
respectively. We further test our model using various publicly available 
independent datasets, including Landsat 8 SPARCS, Sentinel-2 Cloud
SEN12 and CESBIO, as well as PixBox for both Sentinel-2 and Landsat 8, 
which demonstrates generally superior performance, with high OA 
(BOA) values ranging from 86.12 % (91.33 %) to 96.42 % (94.37 %). 
Our STUPmask model surpasses widely recognized models, including 
traditional threshold-based algorithms like the Landsat 8 official 
CFmask and CMIX multiple cloud mask algorithms. Relative to existing 
methods, the new model is particularly robust in detecting diverse cloud 
conditions while minimizing misclassifications over bright surfaces like 
ice/snow. More importantly, our model has been initially tested and 
applied to different LEO and GEO satellites with varying spatial reso
lutions (4 m–2 km), both high and low, achieving considerable accuracy 
(e.g., OA = 94–98 %, BOA = 94–96 %). In particular, pre-trained models 
demonstrate superior quantitative performance across diverse sensors 
and visually reduce misclassifications of bright surfaces and omissions of 
thin clouds, preserving cloud structures more effectively than models 
trained from scratch. This holds significant implications for quantitative 
applications in future terrestrial and atmospheric applications across a 
wider range of sensors with different spectral channels, which require 
retuning algorithms—a process that is time-consuming with conven
tional cloud identification methods.
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Table 2 
Comparison of model performance with and without pretraining across different satellite sensors.

Satellite Method OA (%) UA (%) PA (%) F1 (%) IoU (%) BOA (%)

Gaofen-2 With pretraining 97.11 83.17 91.10 86.96 76.92 94.46
Without pretraining 95.91 81.65 82.76 82.20 69.78 90.18

Himawari-8
With pretraining 96.02 90.10 93.75 91.89 84.98 95.25
Without pretraining 95.51 89.12 91.93 90.51 82.66 94.27

MODIS
With pretraining 94.21 92.57 94.84 93.96 88.13 94.27
Without pretraining 91.57 91.06 95.51 93.23 87.32 90.48
MYD35 87.97 99.99 84.13 91.37 84.13 92.06
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Data availability

The links for Landsat 8 Biome, SPARCS, and PixBox datasets are 
https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation- 
data, https://landsat.usgs.gov/cloud-validation/sparcs/l8cloudmasks. 
zip, and https://zenodo.org/records/5040271, and the links for the 
Sentinel-2 CloudSen12, CMC, CESBIO, and PixBox datasets are 
https://zenodo.org/records/7320147, https://zenodo.org/record 
/4172871, https://zenodo.org/records/1460961, and https://zenodo. 
org/records/5036991.
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