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Abstract. Lightning is affected by many factors, many of which are not routinely measured, well understood, or
accounted for in physical models. Several commonly used machine learning (ML) models have been applied to
analyze the relationship between Atmospheric Radiation Measurement (ARM) data and lightning data from the
Earth Networks Total Lightning Network (ENTLN) in order to identify important variables affecting lightning
occurrence in the vicinity of the Southern Great Plains (SGP) ARM site during the summer months (June, July,
August and September) of 2012 to 2020. Testing various ML models, we found that the random forest model
is the best predictor among common classifiers. When convective clouds were detected, it predicts lightning
occurrence with an accuracy of 76.9 % and an area under the curve (AUC) of 0.850. Using this model, we fur-
ther ranked the variables in terms of their effectiveness in nowcasting lightning and identified geometric cloud
thickness, rain rate and convective available potential energy (CAPE) as the most effective predictors. The con-
trast in meteorological variables between no-lightning and frequent-lightning periods was examined for hours
with CAPE values conducive to thunderstorm formation. Besides the variables considered for the ML mod-
els, surface variables and mid-altitude variables (e.g., equivalent potential temperature and minimum equivalent
potential temperature, respectively) have statistically significant contrasts between no-lightning and frequent-
lightning hours. For example, the minimum equivalent potential temperature from 700 to 500 hPa is significantly
lower during frequent-lightning hours compared with no-lightning hours. Finally, a notable positive relationship
between the intracloud (IC) flash fraction and the square root of CAPE (

√
CAPE) was found, suggesting that

stronger updrafts increase the height of the electrification zone, resulting in fewer flashes reaching the surface
and consequently a greater IC flash fraction.

1 Introduction

Thunderstorms are most common during the warm season
when high moisture and buoyant instability are available
(Doswell III et al., 1996). The frequency of lightning is re-
lated to multiple meteorological variables, including convec-
tive available potential energy (CAPE), rain rate, geometrical
cloud thickness, wind shear and multiple microphysical vari-
ables such as the diameter of ice crystals (Sherwood et al.,

2006; Lal et al., 2014) and cloud droplet size (Orville et al.,
2001). CAPE plays an important role in lightning activity
(Pawar et al., 2012; Romps et al., 2014, 2018), with the mag-
nitude and vertical distribution of CAPE affecting the up-
draft velocity and vertical distribution of a cloud water path
and consequently the lightning charge generation process in-
side deep convective clouds (Williams, 2017). When study-
ing daily records of flashes, Williams et al. (2002) found a
CAPE threshold of approximately 1000 Jkg−1 above which

Published by Copernicus Publications on behalf of the European Geosciences Union.



14548 S. Shan et al.: Machine-learning-based investigation of variables

lightning is likely. Both lightning activity and rainfall in deep
convective systems are physically related to mixed-phase
cloud processes involving super-cooled water, ice and grau-
pel. Heavy glaciation aloft is essential to produce frequent
lightning activity (Williams et al., 1989). Monthly and sea-
sonal correlation coefficients between precipitation and light-
ning counts were found to vary between 0.81 and 0.98 over
the central and eastern Mediterranean Sea during winter time
(Price and Federmesser, 2006). The influence of cloud thick-
ness on lightning is complicated. According to Takahashi
(1978), the mixed-phased zone of convective clouds is cru-
cial for the charge separation mechanism. Warm-cloud depth
is defined as the vertical thickness between the lifting con-
densation level (LCL) and the freezing level (0 ◦C). Cold-
cloud depth is defined as the thickness from the freezing
level to the storm top. The depth of the warm-cloud region
is critical for determining the cloud droplet growth. A larger
warm-cloud depth is likely to enhance the efficiency of warm
rain–collision–coalescence processes and to lower the alti-
tude at which precipitation forms, thus lessening the number
of droplets available to be lofted into the mixed-phase re-
gion, where they can affect electrification in the thunderstorm
(Carey and Buffalo, 2007). The mixed-phase region includes
graupel and ice crystals, so it is closely related to the light-
ning activity. Price and Rind (1992) showed that the lightning
flash rate within a convective cloud is proportional to the fifth
power of the cloud-top height. Furthermore, Yoshida et al.
(2009) found that the number of lightning flashes per sec-
ond per convective cloud is proportional to the fifth power
of the cold-cloud depth regardless of location. Wind shear’s
influence on convective systems is mixed. Richardson et al.
(2007) found that strong wind shear may weaken the verti-
cal development of an isolated supercell. Wind shear at dif-
ferent levels can play different roles in convective systems.
According to Chen et al. (2015), increasing wind shear in the
lower troposphere results in a more organized quasi-linear
convective system. By increasing wind shear at the upper ver-
tical levels only, the convective intensity is weakened but the
structure is not affected much. Bang and Zipser (2016) ana-
lyzed wind shear in the lowest 200 hPa of the atmosphere and
found that the magnitude of the wind shear is a poor discrim-
inator of lightning occurrence. Stolz et al. (2017), based on
an analysis over multiple regions, found that total lightning
density increases with increasing wind shear, but the signal
is relatively weak compared with other variables.

Both natural and anthropogenic aerosols affect light-
ning activity (Westcott, 1995; Altaratz et al., 2010; Wang
et al., 2011; Li et al., 2019; Zhao et al., 2020; Sun et al.,
2021). High aerosol loading related to volcanic activity is
closely correlated with general lightning activity at different
timescales (Yuan et al., 2011), and smoke caused by human-
made forest fires increases cloud condensation nuclei (CCN)
concentrations during the Amazon dry season, invigorating
the electrical activity in the low aerosol loading environment
(Altaratz et al., 2010). Weekly cycles in lightning activity are

also observed (Bell et al., 2009) and are consistent with cy-
cles in precipitation over the southeastern USA (Bell et al.,
2008). This apparent weekly cycle in afternoon lightning ac-
tivity, peaking on Wednesday and with minima on Saturday
and Sunday, can only be explained by aerosol’s weekly cy-
cle, given the fact that no significant dynamical or thermal
weekly cycle is observed. Enhanced lightning activity is ob-
served over two of the world’s busiest shipping lanes in the
Indian Ocean and the South China Sea, which cannot be ex-
plained by meteorological factors and is therefore likely due
to aerosol particles emitted from the ship engines (Thorn-
ton et al., 2017). Wang et al. (2018) found that the type of
aerosol affects lightning formation with much higher flash
rates in moist central Africa than dry northern Africa. In both
regions, the lightning flash rate changes with aerosol optical
depth in a boomerang shape: first increasing with aerosol op-
tical depth up to approximately 0.3 and then decreasing for
dust and flattening for smoke aerosols.

There are two types of lightning flashes: cloud-to-ground
(CG) flashes and intracloud (IC) flashes. Many approaches
have been used to predict flash types, which involve compli-
cated interactions between atmospheric processes. For exam-
ple, a new prognostic variable, potential electrical energy, is
introduced to the Weather Research and Forecasting (WRF)
cloud-resolving model to predict the dynamic contribution
of the grid-scale-resolved microphysical and vertical veloc-
ity fields, so that it can be used to predict both CG and IC
flashes in convection-allowing forecasts (Lynn et al., 2012).
Using observations, the product of CAPE and precipitation
explains 77 % of the variance in the time series of the total
CG flashes over the contiguous United States (Romps et al.,
2014). Therefore, Tippett and Koshak (2018) used the prod-
uct of CAPE and rain rate as a proxy to predict CG lightning
over the US and to produce CG lightning threat forecasts.

Today, lightning prediction remains challenging because
lightning production is stochastic, involving microphysical
and thermodynamic processes. In recent years, machine-
learning-(ML)-based predicting or nowcasting of lightning
occurrence has become popular. A four-parameter model
based on four commonly available surface weather variables
(air pressure at station level, air temperature, relative humid-
ity and wind speed) developed by Mostajabi et al. (2019)
has considerable predictive skill for lightning occurrence and
produces warnings for lead times of up to 30 min. The impor-
tance of the input variables in this model fits with the gen-
erally accepted physical understanding of surface processes
driving thunderstorms. CG lightning damages infrastructure,
leads to loss of life and ignites forest fires (Cooper and Holle,
2019). Therefore, ML-based prediction of CG lightning is
increasing. For example, La Fata et al. (2021) used ML to
nowcast the spatial distribution of CG flashes, while He and
Loboda (2020) used a ML algorithm based on a WRF simu-
lation to predict CG lighting over the Alaskan tundra.

In this study, we use a ML model to investigate the mete-
orological variables affecting lightning occurrence over the
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Southern Great Plains during summer. Then, the contrast in
variables between no-lightning and frequent-lightning hours
is shown for strong convective environments. Lastly, the
IC fraction’s relationship with the square root of CAPE
(
√

CAPE) and its potential physical mechanism is discussed.
The scientific questions we address are which variables are

the most important for predicting the lightning occurrence.
Previous research focused on one or two variables or one
class of variable to determine their impact on lightning. What
is new here is that we develop a systematic approach to nar-
row and choose the variables.

2 Data

2.1 Earth Networks Total Lightning Network (ENTLN)

ENTLN is a total lightning detection system and consists
of over 1800 sensors deployed in over 100 countries. It de-
tects wideband (1 Hz to 12 MHz) electric field signals emit-
ted by both IC and CG lightning. In addition, for each flash,
the exact time, geolocation and peak current are recorded as
well (Zhu et al., 2022). ENTLN records the flash type, IC
or CG, and also provides an estimation of the source height
of IC flashes. Typically, signal timing measurements from
at least five sensors are able to determine the latitude, lon-
gitude, height and time that define the source location. The
more sites that are used, the smaller the uncertainty becomes
(Heckman, 2014).

In this study, we use ENTLN flashes within the 1◦× 1◦

grid box (36–37◦ N, 97–98◦W) that includes the Atmo-
spheric Radiation Measurement (ARM) Southern Great
Plains (SGP) site. Hourly flash records of summer months
(June, July, August and September – JJAS) from 2012 to
2020 are used.

2.2 ARM

Multiple datasets are collected at the US Department of En-
ergy ARM program SGP site, which is located at 36.6◦ N,
97.5◦W. The SGP atmospheric observatory was the first field
measurement site established by the ARM user facility, and it
is currently one of the world’s largest and most extensive cli-
mate research facilities. Variables including convective cloud
thickness, rain rate and > 10 dBz vertical extent are down-
loaded or calculated from various ARM SGP datasets and are
considered to be representative of the entire 1◦× 1◦ region.
We discuss the detailed processing method in Sect. 3.3.

2.3 Other data sources

The wind shear values used in this study are calculated using
fields from the “ERA5 hourly data on pressure levels from
1959 to present” dataset (Hersbach et al., 2023). ERA5 is
the fifth-generation ECMWF reanalysis for global climate
and weather. The analysis is produced at a 1 h time resolu-

tion using an advanced 4D-Var assimilation scheme (Hers-
bach et al., 2020). The eastward and northward components
of the wind with a 0.25◦× 0.25◦ spatial resolution (centred
at 36.5◦ N, 97.5◦W) are downloaded for the 750, 500 and
250 hPa levels. The hourly wind shear is then calculated be-
tween 750 and 500 hPa and between 750 and 250 hPa.

Wind shear (750/250hPa)

=

√
(u750 hPa− u250 hPa)2+ (v750 hPa− v250 hPa)2 (1)

Wind shear (750/500hPa)

=

√
(u750 hPa− u500 hPa)2+ (v750 hPa− v500 hPa)2 (2)

Fine particulate matter (PM2.5) concentrations are ob-
tained from the US Environmental Protection Agency Air
Quality System database. We have taken the average value of
hourly surface PM2.5 concentrations measured in the nearby
counties of Kay (in Oklahoma, 36.7◦ N, 97.1◦W), Sedg-
wick (in Kansas, 37.7◦ N, 97.3◦W) and Sumner (in Kansas,
37.5◦ N, 97.4◦W). One measurement is available in each
county.

The column aerosol optical thickness (AOT) used in this
study comes from the Modern-Era Retrospective analysis
for Research and Applications version 2 (MERRA-2), which
is the latest version of global atmospheric reanalysis for
the satellite era produced by the NASA Global Model-
ing and Assimilation Office using the Goddard Earth Ob-
serving System (GEOS) model version 5.12.4. The dataset
covers the period of 1980 to the present. M2T1NXAER
(or tavg1_2d_aer_Nx) is an hourly time-averaged two-
dimensional data collection in MERRA-2. This collection
consists of assimilated aerosol diagnostics, and the data field
is time-stamped with the central time of hours starting from
00:30. We used distance-weighted averaging to aggregate the
0.625◦× 0.500◦ MERRA-2 data to the 1◦× 1◦ Global Pre-
cipitation Climatology Center (GPCC) grid using the level-3
Goddard Earth Sciences Data and Information Services Cen-
ter (GES DISC) regridder and subsetter. The function used
distance-weighted averaging to remap to the GPCC1.0 grid
(level-3 and level-4 regridder and subsetter information). For
aerosol extinction, we took the 36–37◦ N, 97–98◦W grid box
value of the total aerosol extinction AOT at 550 nm.

3 Methods

In this section, the random forest classifier is introduced and
various ML-related terms are defined. It will be shown that
the random forest classifier has the best performance among
all common classifier ML models.

Ten-fold cross-validation is a resampling procedure com-
monly used to evaluate ML models. First, the dataset is shuf-
fled randomly and split into 10 groups, which is a neces-
sary step. Nine of the groups are used for training and the
other group for evaluation. In this application, we predict the
occurrence of lightning (“Yes” vs. “No”) using nine train-
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Table 1. Random forest classifier performances using different parameters.

Parameters Accuracy AUC

Default: n_estimators= 100, max_depth= none, 76.9 %± 0.3 % 0.850± 0.002
min_samples_split= 2, min_samples_leaf= 1

Changing n_estimators only n_estimators= 10 74.4 %± 0.4 % 0.812± 0.003
n_estimators= 50 76.7 %± 0.3 % 0.846± 0.002
n_estimators= 200 76.9 %± 0.3 % 0.853± 0.001

Changing max_depth only max_depth= 5 74.6 %± 0.2 % 0.832± 0.001
max_depth= 10 76.5 %± 0.3 % 0.848± 0.001
max_depth= 50 77.0 %± 0.3 % 0.851± 0.002

Changing min_samples_split only min_samples_split= 3 76.8 %± 0.3 % 0.849± 0.002
min_samples_split= 4 76.7 %± 0.3 % 0.850± 0.001

Changing min_samples_leaf only min_samples_leaf= 2 76.5 %± 0.2 % 0.847± 0.001
min_samples_leaf= 3 76.1 %± 0.3 % 0.845± 0.001

ing groups and evaluate the prediction using the remaining
group. The RepeatedStratifiedKFold classifier includes mul-
tiple adjustable parameters, including the number of trees
(n_estimators, defaults to 100) and the maximum depth of
the tree (max_depth, defaults to “none”). Setting the maxi-
mum depth to “none” ensures that the nodes are expanded
until all leaves are pure or until all leaves contain less than
min_samples_split (defaults to 2) samples, which is the min-
imum number of samples required to split an internal node.
The parameter min_samples_leaf (defaults to 1) is the mini-
mum number of samples required to be at a leaf node. We
tried each parametrization option in Table 1 50 times but
found that the default parameters provided the best or nearly
best performance. Since random shuffling can affect the per-
formance, we have chosen to retain the default parameters.
Our model only simulated the convective hours over the SGP,
when convective clouds are detected from the ARM SGP
site, which will not cause temporal auto-correlation since
convective clouds do not occur frequently (817 h in total
among nine summers).

3.1 Area under the curve (AUC) calculation

The receiver operating characteristic (ROC) curve was first
used in signal detection theory to represent the trade-off be-
tween hit rates and false alarm rates (Green and Swets, 1966).
For a ML classifier model, a positive or negative prediction
for a certain threshold will be made for a given set of input
variables. A confusion matrix is then made that records the
frequency of true positive (TP), false positive (FP), false neg-
ative (FN) and true negative (TN) predictions. The true posi-
tive rate (TPR, TPR=TP/(TP+FN)) and false positive rate
(FPR, FPR=FP/(FP+TN)) can be calculated accordingly.
TPR and FPR vary with threshold, and we can put (FPR,
TPR) points on the ROC space as the threshold changes. Both
FPR and TPR range in value from 0 to 1, and we connect the

points to get an ROC curve. The area under the ROC curve
integrating from 0 to 1 is called AUC, which measures the
discriminatory power of the predictive classification model.

3.2 Random forest classifier and 10-fold cross-validation

The random forest classifier is an ensemble learning method
for classification that operates by constructing a multitude of
decision trees at training time. For classification tasks, the
output of the random forest is the class selected by the most
trees.

3.3 ARM dataset processing

Cloud top height, cloud base height and cloud type are ob-
tained from the CLDTYPE data product with a temporal res-
olution of 1 min. For the SGP site, deep convective clouds
are identified as clouds with a cloud base height lower than
3.5 km and a cloud top height higher than 6.5 km (Flynn
et al., 2017). We use this product to identify convective
clouds and calculate the convective cloud thickness from
the cloud base to the cloud top. For each hour, the vari-
able “cloud thickness” is obtained by averaging thicknesses
for each minute during the hour with convective clouds.
Rain rate is measured with a temporal resolution of 1 min
(Bartholomew, 2016) and is contained in the VDIS (Video
Disdrometer) product. The variable “rain rate” is the hourly
sum. The ARSCLKAZR1KOLLIAS data product provides
us with zenith-pointing radar reflectivity profiles at the Ka
band (35 GHz) every 4 s with a vertical resolution of 30 m.
According to Seo and Liu (2005), the relationship between
radar reflectivity and ice water content for the six ice particle
types near the ARM SGP site shows that the ice water con-
tent for each vertical layer is proportional to the 0.79th power
of radar reflectivity. We have set a threshold of 10 dBz for
layers, so that each layer will have at least 0.5 gm−3 ice wa-

Atmos. Chem. Phys., 23, 14547–14560, 2023 https://doi.org/10.5194/acp-23-14547-2023



S. Shan et al.: Machine-learning-based investigation of variables 14551

Table 2. Datasets containing the variables considered for use in the lightning parameterization.

Data product name Variables obtained or derived from the dataset

CLDTYPE Convective cloud type, cloud thickness
VDIS Rain rate
ARSCLKAZR1KOLLIAS Radar reflectivity > 10 dBz extent, radar Reflectivity > 10 dBz centroid
INTERPOLATEDSONDE CAPE, surface equivalent potential temperature, 0 ◦C Freezing level height
AOSCCN1COL, AOSCCN2COLAAVG CCN concentration
PBLHTMPL1SAWYERLI Planetary boundary layer height

ter content when its radar reflectivity exceeds this threshold.
We only take measurements of radar reflectivity at altitudes
higher than 3 km as temperatures at altitudes lower than this
are always too low to support ice in clouds during the sum-
mer at the ARM SGP site. The hourly average extent and cen-
troid of radar reflectivity exceeding 10 dBz are recorded as
the variables “radar reflectivity > 10 dBz extent” and “radar
reflectivity > 10 dBz centroid”, respectively. These variables
are chosen because they are closely associated with mixed-
phase cloud extent and height. Fifty-four environmental vari-
ables (Jensen et al., 1998) are measured every minute and
recorded in INTERPOLATEDSONDE. We primarily use the
profiles of pressure, temperature and dew point and calcu-
late the meteorological variables listed in Table 2 for this
product. We use the 30th minute profile of the hour to cal-
culate these variables, except for CAPE. We calculate the
average CAPE based on the 15th minute and 45th minute
profiles of the hour. We do not calculate values for each
minute due to computational expense. The AOSCCN1COL
and AOSCCN2COLAAVG datasets include cloud CCN con-
centrations every minute. We use both datasets because the
AOSCCN1COL dataset ended in September 2017 and the
AOSCCN2COLAAVG dataset started from April 2017. The
datasets both measure the CCN concentrations at differ-
ent supersaturation levels by manipulating the supersatura-
tion in the instruments from 0.1 % to 1.2 %, although there
are some minor changes in technique. According to Poli-
tovich and Cooper (1988), the maximum supersaturation is
usually smaller than 0.5 % in cumulus clouds. Thus, we
have selected all the CCN concentration measurements at
supersaturation in the range from 0.4 % to 0.6 % and cal-
culated the average value for each hour. Measurements of
the planetary boundary layer height (PBLH) are conducted
every 30 s using micropulse lidar (MPL) and recorded in
PBLHTMPL1SAWYERLI. We take the average values of
the PBLH for each hour and record them as the variable
“PBLH”.

Because of the differences in temporal resolution and for-
matting, each variable from the ARM SGP site is merged into
a database at a temporal resolution of 1 h (Table 2).

4 Results

4.1 ML-based investigation of the variables affecting
lightning occurrence

First, we identified convective hours using the CLDTYPE
product at the ARM SGP site. This product provides an
automated cloud type classification based on microphysical
quantities derived from vertically pointing lidar and radar.
Twenty-four hours were checked each day.

Numerous meteorological variables were considered for
use in the ML-based analysis. Eight mostly independent vari-
ables (i.e., variables with inter-correlations |R| of 0.5 or less)
were selected for further analysis. These variables and their
inter-correlations are shown in Fig. 1. In total, there were
817 h with detectable deep convective clouds and measure-
ments of all eight variables available during JJAS of 2012–
2020. Lightning was observed in the 1◦× 1◦ grid box (36–
37◦ N, 97–98◦W) encompassing the ARM site in 509 of
those hours.

In addition to the random forest method, five other ML
classifier schemes were tested. The support vector machine
(SVM) algorithm fits a hyperplane in space. The dimensions
of the hyperplane are equal to the number of features. This
approach results in a distinct classification of data points by
using different kernels containing a set of mathematical func-
tions to massage the data. Linear and radial basis function
(RBF) kernels are two different kernels used in the SVM.
Logistic regression is a classification algorithm used to pre-
dict a binary outcome based on a set of independent variables
and the sigmoid function. A decision tree is a tree-like struc-
ture where each internal node tests an attribute, each branch
corresponds to an attribute value and each leaf node repre-
sents the final decision or prediction. Gaussian naive Bayes
is based on the probabilistic approach and Gaussian distribu-
tion, which assume that each parameter has an independent
capacity to predict the output variable. Our goal is to use
the eight input variables to predict the occurrence of light-
ning in a convective hour. We repeat 10-fold cross-validation
50 times in order to estimate the overall performance of dif-
ferent ML models. Based on our 50 simulations with the 10-
fold cross-validation, the random forest classifier was iden-
tified as the best classifier among the common classifiers
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Figure 1. Pearson correlation coefficients between variables selected for use in the ML analysis. Asterisks indicate that the correlations are
significant at the 95 % level. The relatively low correlations between the pairs make them good candidates for the analysis.

Table 3. Mean accuracy and AUC with the standard deviation for
each ML classifier method. Each method was run 50 times using
10-fold cross-validation. The accuracy is defined as the ratio of cor-
rect predictions of lightning occurrence (“Yes” vs. “No”) to total
predictions. AUC provides an aggregate measure of performance
across all the classification thresholds and can have values ranging
from 0.5 to 1.0. Models with higher values of AUC do a better job
of distinguishing between convective hours with and without light-
ning.

Classifier name Accuracy AUC

SVM with a linear kernel 72.1 %± 0.1 % 0.797± 0.001
SVM with an RBF kernel 74.0 %± 0.2 % 0.821± 0.001
Random forest 76.9 %± 0.3 % 0.850± 0.002
Logistic regression 72.3 %± 0.1 % 0.800± 0.001
Decision tree 69.8 %± 0.5 % 0.679± 0.004
Gaussian naive Bayes 74.2 %± 0.2 % 0.812± 0.002

shown below because of its highest accuracy and its AUC
value (Table 3).

After choosing the random forest classifier model, we split
the dataset randomly into training and test sets with split per-
centages of 75 % to 25 % and performed 1000 simulations
with the random forest classifier to evaluate its overall per-
formance, as shown in the confusion matrix (Table 4). This
classifier predicts lightning occurrence with an accuracy of
77 % using these eight input variables.

In addition to the confusion matrix, an overall ranking of
feature importance is also generated from the ML model, as
shown in Fig. 2. The feature importance is a measure of how
much one variable decreases the impurity, i.e., the probabil-

Table 4. This confusion matrix shows the accuracy of the random
forest classifier. The frequency (percentage and standard deviation)
of the binary prediction that fell into each of the four categories
is shown. The overall accuracy, which is sum of the true negatives
(24.5 %) and the true positives (52.1 %), is about 77 %.

Prediction: Prediction:
no lightning lightning

Truth: no lightning 24.5 %± 2.5 % 13.0 %± 2.6 %
Truth: lightning 10.4 %± 2.5 % 52.1 %± 2.9 %

ity that more than one class of data will remain in a node
after processing through various decision trees in the forest.
This figure shows the percent of the 1000 simulations where
each variable was identified as the most important feature
(column no. 1) to the least important feature (column no.
8). For example, the variable “cloud thickness” was iden-
tified as the most important feature in 57.4 % of the 1000
runs, while it is the second (no. 2), third (no. 3) and fourth
(no. 4) most important feature in 33.4 %, 8.9 % and 0.3 %
of the runs. From the ranking distribution, we can identify
that “cloud thickness”, “rain rate” and “CAPE” are the top
three most important variables determining lighting occur-
rence in the model. The sum of the first-, second- and third-
place percentages for each of these variables exceeds 90 %.
The next three most important variables are radar reflectiv-
ity > 10 dBz extent, “wind shear (750 / 250 hPa)” and radar
reflectivity > 10 dBz centroid. The least important variables
are “PM2.5 concentration” and “wind shear (750 / 500 hPa)”.
The low sensitivity to PM2.5 concentrations could be due to
its small range of variability, especially compared with other
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Figure 2. Variable importance ranking distribution. Probability distribution function showing the frequency at which each variable was rated
from most to least important after running the random forest classifier with random splitting 1000 times.

variables’ relatively large variations. The differentiation of
the variables into the most important, modest and least im-
portant categories is distinct according to the robust rank-
ing distribution, as can be seen in Fig. 2. The importance of
the variables can also be estimated by removing them from
the model and seeing how successful the remaining variables
are at predicting the true outcome. In Sect. 3.2, our model
was found to have an overall accuracy of 76.9 % and an
AUC of 0.850. By removing “cloud thickness”, “rain rate”
and “CAPE” separately, the accuracy dropped from 76.9 %
to 72.1 %, 75.6 % and 74.3 %, and the AUC dropped from
0.850 to 0.797, 0.830 and 0.821. The impact of removing
the other variables was smaller. Based on these metrics, the
“cloud thickness” is the most important, followed by “rain
rate” and then “CAPE”.

4.2 Contrast in meteorological variables between
no-lightning and frequent-lightning hours in strong
convective environments

ML provides robust feature importance rankings, which are
useful for determining the importance of each variable. To
aid in physical interpretation, we compare the meteorolog-
ical variables’ difference with or without the existence of
lightning. In convective hours with lightning, the hourly flash
count distribution is shown in Fig. 3. The average and median
numbers of ENTLN flashes per hour in the 1◦× 1◦ grid box
containing the SGP site are 864.9 and 162.5, respectively,
with the large difference indicating that the distribution is
skewed by hours with very frequent lightning.

To ensure that the environment is favorable for lightning,
we have set a threshold of CAPE= 2000 Jkg−1 and only se-

Figure 3. Hourly flash count distribution for flashing hours in the
1◦× 1◦ grid box containing the SGP site. Note that the x axis is
logarithmic. There are 608 h with both flashes and convective clouds
detected, accounting for 2.3 % among all 26 352 h in the summer
months (June, July, August and September) from 2012 to 2020.

lected hours with convective clouds when CAPE is larger
than 2000 Jkg−1, where 2000 Jkg−1 is chosen as the thresh-
old for a strong convective environment following several
studies (Rutledge et al., 1992; Chaudhuri, 2010; Chaudhuri
and Middey, 2012; Hu et al., 2019). Overall, there were
175 h satisfying the CAPE threshold. Of these hours, 41 had
no lightning in a 3 h period centered on the CAPE obser-
vation and were labeled “no-lightning hours”. Seventy-five
of the hours had 3 h mean flash rates exceeding the median
flash rate of 162.5 and were classified as “frequent-lightning
hours”, while the remainder of the hours (59) were deemed
intermediate lightning hours.

The contrast in meteorological variables between the no-
lightning and frequent-lightning hours is shown in Table 5.
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Table 5. The contrast (mean, standard deviation and significance of difference) in meteorological variables put into the ML random forest
model between no-lightning and frequent-lightning hours. For example, a p value of < 0.01 indicates that the difference is significant at the
99 % level.

Meteorological variables No-lightning hours Frequent-lightning hours p value

CAPE (Jkg−1) 2627± 712 2669± 585 > 0.05
Rain rate (mmh−1) 0.16± 0.51 8.57± 15.25 < 0.001
Cloud thickness (km) 6.22± 2.13 10.66± 3.04 < 0.001
Wind shear (750 / 250 hPa) (ms−1) 14.63± 5.17 12.04± 6.22 < 0.05
Wind shear (750 / 500 hPa) (ms−1) 9.45± 4.17 7.65± 3.85 < 0.05
Radar reflectivity > 10 dBz extent (km) 0.13± 0.24 1.31± 1.60 < 0.001
Radar reflectivity > 10 dBz centroid (km) 4.80± 1.23 5.73± 1.96 < 0.01
PM2.5 concentration (µgm−3) 10.92± 3.83 6.57± 3.89 < 0.001

Table 6. The contrast (mean, standard deviation and significance of difference) in aerosol-related variables between no-lightning and
frequent-lightning hours.

Meteorological variables No-lightning hours Frequent-lightning hours p value

PM2.5 concentration in convective hours (µgm−3) 10.92± 3.83 6.57± 3.89 < 0.001
PM2.5 concentration 1 h before convective hours (µgm−3) 10.94± 3.82 7.08± 4.28 < 0.001
CCN concentration in convective hours (cm−3) 1640.13± 401.55 1094.22± 1205.45 < 0.05
CCN concentration 1 h before convective hours (cm−3) 1616.69± 384.77 1249.85± 1222.03 > 0.05
MERRA-2 total aerosol extinction AOT at 550 nm in convective hours 0.28± 0.10 0.22± 0.10 < 0.05
PM2.5 concentration in convective hours×PBLH (µgm−3 km) 10.88± 6.31 9.45± 8.36 > 0.05
CCN concentration in convective hours×PBLH (cm−3 km) 1377.31± 493.49 1999.69± 3402.52 > 0.05

After limiting the analysis to hours with
CAPE > 2000 Jkg−1, we do not see a significant difference
in CAPE between the no-lightning and frequent-lightning
hours, indicating that once CAPE reaches a high value, it is
no longer a good predictor of lightning occurrence. The rain
rate and convective cloud thickness are much larger when
lightning is frequent (p value less than 0.001), indicating
that lightning is associated with high rain rates and deep
convective clouds. This finding is consistent with the ML
results. The radar reflectivity > 10 dBz extent variable is an
order of magnitude larger when lightning occurs, indicating
that the total ice water path, which is associated with high
values of radar reflectivity, is also much higher. In addition,
the centroid altitude of radar reflectivity is higher by about
19 %, a difference that is significant at the 99 % confidence
interval (CI). Mean vertical wind shear is smaller when
flashes are present, with decreases of about 18 % in 750
to 250 hPa shear (significant at the 95 % CI) and 20 % in
750 to 500 hPa shear (significant at the 95 % CI). Perhaps
surprisingly, differences in PM2.5 between the non-flashing
and frequent-flashing hours are significant. Specifically,
hours with frequent lightning have 40 % less PM2.5 than
no-lightning hours. This result is seemingly inconsistent
with the ML analysis discussed earlier, which showed that
PM2.5 had little effect on lightning occurrence and with
previous studies finding that enhanced lightning activity is
related to higher aerosol loading.

CCN concentrations are also more than 30 % smaller dur-
ing frequent-lightning hours than no-lightning hours (Ta-
ble 6). Similarly, values of MERRA-2 total aerosol extinction
AOT at 550 nm simultaneous with the convective hour are
lower in frequent-lightning hours than in no-lightning hours
(significant at the 99 % CI). One plausible explanation for
this is aerosol wet removal, given the fact that lightning oc-
currence is closely related to precipitation. Therefore, we ex-
amined the PM2.5 and CCN concentrations during the con-
vective hour and also during the hours preceding the con-
vective hour, as shown in Table 6. During all these hours,
we still notice less PM2.5 concentration when flashes are fre-
quent, but differences in CCN concentrations are small and
insignificant statistically.

Another possible explanation is mixing of pollutants
throughout the planetary boundary layer (PBL). A higher
PBLH is associated with greater vertical mixing and often
a larger CAPE and higher surface temperature (Zhang et al.,
2013). Sun and Liang (2020) found that higher PBLHs were
common during extreme precipitation. Both higher CAPE
and higher precipitation rates are related to lightning occur-
rence. We calculated the product of the PBLH and the PM2.5
or CCN concentration, assuming that pollutants are dis-
tributed homogeneously within the PBL, and compared the
values between no-lightning and frequent-lightning hours.
Even though the differences in the product of the CCN con-
centration and the PBL height between the no-lightning and
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Table 7. The contrast (mean, standard deviation and significance of difference) between no-lightning and frequent-lightning hours in vari-
ables derived from the INTERPOLATEDSONDE data product.

Meteorological variables No-lightning hours Frequent-lightning hours p value

LCL height (km) 1.11± 0.41 1.11± 0.47 > 0.05
0 ◦C freezing level height (km) 4.78± 0.22 4.64± 0.20 < 0.001
Surface equivalent potential temperature (K) 356.64± 4.81 353.39± 6.42 < 0.01
Minimum equivalent potential temperature from 700 to 500 hPa (K) 333.30± 4.18 328.84± 4.21 < 0.001
Average specific humidity (SH) from the surface to the LCL (gkg−1) 15.59± 1.68 14.92± 1.47 < 0.05
Average relative humidity (RH) from the surface to the LCL (%) 69.8± 11.5 69.1± 12.4 > 0.05
Average mid-tropospheric SH from 700 to 500 hPa (gkg−1) 6.09± 1.05 5.10± 1.12 < 0.001
Average mid-tropospheric RH from 700 to 500 hPa (%) 73.2± 13.1 62.0± 13.1 < 0.001

frequent-lightning periods were nearly 50 %, the differences
were insignificant at the 95 % CI due to large variability.
Thus, mixing through a deeper PBL could be the cause of
the differences in PM2.5 and CCN concentrations.

Some additional meteorological variables are calculated
from the INTERPOLATEDSONDE dataset at the ARM SGP
site. This value-added product provides us with profiles of
pressure, temperature and dew point. The contrast of these
meteorological variables between no-lightning and frequent-
lightning hours is shown in Table 7.

According to the table, the LCL height and vertically inte-
grated relative humidity (RH) from the surface to the LCL do
not vary between no-lightning and frequent-lightning hours.
These variables affect warm-cloud depth (Medina et al.,
2022). Differences in the height of the 0 ◦C freezing level
(0.14 km), mean specific humidity (SH) from the surface to
the LCL (0.67 gkg−1) and surface equivalent potential tem-
perature (3.25 K) are relatively small but significant statisti-
cally. The mid-tropospheric SH and RH are much lower dur-
ing hours with thunderstorm activity (0.99 gkg−1, 11.2 %, re-
spectively), which is consistent with the analysis of convec-
tive profiles in the Amazon by Wall et al. (2014). They spec-
ulated that the increased lapse rate of humidity associated
with a dry mid-troposphere increased the lapse rate of equiv-
alent potential temperature and increased the severe storm
threat when abundant moisture was present in the lower tro-
posphere. Finally, the minimum equivalent potential temper-
ature in the mid-troposphere is lower in frequent-lightning
hours (4.46 K), which is consistent with Scala et al. (1990),
who found that cells with a less pronounced equivalent po-
tential temperature minimum are less likely to produce vig-
orous vertical transport than those developing in environ-
ments with a relatively strongly pronounced minimum. The
low equivalent potential temperature region is considered a
source of cool dry air which feeds penetrating downdrafts,
helping to maintain an intense storm (Pickering et al., 1993).

4.3 The IC flash fraction relationship with
√

CAPE

Holton (1973) found that CAPE plays an important role in
determining the maximum parcel updraft velocity, which is

Figure 4. The relationship between the IC fraction and
√

CAPE.
The grey points show the IC fraction for convective hours with
plentiful flashes, while the red stars show the mean IC fraction for
5 ms−1 √CAPE bins. The fitted line for the binned data and its
equation are shown in the figure.

proportional to
√

CAPE based on parcel theory. We have
noticed a positive relationship between the IC fraction and√

CAPE, as shown in Fig. 4. This analysis is based on
304 h with convective clouds detected at the ARM SGP site
from the CLDTYPE product and plentiful flashes (hourly
flash count > median value of flashes during convective
hours= 162.5, which does not have the same definition with
frequent-lightning hours in Sect. 4.2) to ensure that the statis-
tics are meaningful.

From Fig. 5, as
√

CAPE increases from 0 to 60 ms−1, the
IC fraction increases from 0.7 to about 0.9. A hypothesis
for the relationship is that the higher

√
CAPE represents a

stronger convective environment with stronger updrafts. The
stronger updrafts bring the electrification zone further above
the surface, resulting in fewer flashes reaching the surface
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Figure 5. IC height and fraction with
√

CAPE. Median IC height
is plotted against the

√
CAPE for hours when flash rates exceed

the median of flashing hours. The intensity of the colors shows the
fraction of flashes that are IC. The dashed lines show the median
value of

√
CAPE and IC height, respectively. The counts were used

in the chi-square calculator and show the number of data points in
each region of the figure.

and consequently a greater IC flash fraction. This hypothe-
sis is supported by the fact that higher IC flash fractions are
associated with higher IC heights, as shown in Fig. 5. This
relationship has not been widely discussed in previous stud-
ies, as they have focused on land–ocean contrast (Lapp and
Saylor, 2007) or cloud vertical development (Williams et al.,
1989). We tested that association between the

√
CAPE and

IC fraction using a chi-square calculator for a 2× 2 contin-
gency table and found that the relationship was significant at
p < 0.001.

Price and Rind (1993) found that the ratio of CG to IC
lightning is related to the cold-cloud thickness rather than the
height of the freezing level. The cold-cloud thickness method
has been applied to models to estimate the production of ni-
trogen oxides by lightning (e.g., Price and Rind, 1994; Gold-
berg et al., 2022; Pérez-Invernón et al., 2023). The relation-
ship found here between the CG fraction and

√
CAPE when

verified with additional lightning datasets over a broader area
would provide an alternative approach for parameterizing the
ratio of CG to IC lightning in chemistry and climate models.

5 Conclusion

Previous ML-based studies of lightning frequency focus on
larger regions, have a coarser time resolution, or focus on
CG lightning only. Here, we take advantage of rich measure-
ments of atmospheric and cloud properties at the ARM SGP
site and ENTLN flash counts to explore the factors affect-

ing flash rates at an hourly time resolution using ML mod-
els. We limit the analysis to hours when convective clouds
are detected at the SGP site and then nowcast the occurrence
of lightning and examine the conditions under which light-
ning occurs. We begin by inputting eight mostly independent
meteorological variables into a random forest ML model to
predict lightning occurrence. The ML model has an accuracy
of more than 76 % and an AUC of 0.850, and the top, middle
and least important variables’ sorting is significant accord-
ing to the robust ranking distribution. The most important
variables affecting lightning occurrence turn out to be cloud
thickness, rain rate and CAPE.

In strong convective environments (CAPE > 2000 Jkg−1),
several variables, including rain rate and cloud thick-
ness, vary significantly between no-lightning and frequent-
lightning periods. In addition, our analysis indicates that val-
ues of mid-tropospheric humidity are typically lower during
frequent-flashing hours, with low values of mid-tropospheric
humidity indicative of greater convective instability. Both the
0 ◦C freezing level height and the surface equivalent poten-
tial temperature have small but statistically significant dif-
ferences between no-lightning and frequent-lightning hours.
Minimum equivalent potential temperatures in the mid-
troposphere are typically 4.46 K lower in frequent-lightning
hours, suggesting that a source of cool dry air from penetrat-
ing downdrafts is helpful for maintaining intense storms.

A positive relationship is found between
√

CAPE and IC
fraction in convective hours with plentiful flashes, which can
provide models with another alternative parameterization op-
tion of the ratio of CG to IC. This may be explained by the
fact that a higher

√
CAPE represents a stronger convective

environment, which can bring the electrification zone fur-
ther above the surface, resulting in a greater IC flash frac-
tion. This hypothesis is supported by the variation in median
IC heights with

√
CAPE, although more analysis is needed

to confirm the preliminary finding due to uncertainties in IC
heights from ENTLN and the limited sample size. Lightning
Mapping Array (LMA) data with more accurate flash heights
could be used together with ENTLN flash type information
to verify the positive relationship between

√
CAPE and IC

fraction.
As lightning processes are complicated, better time reso-

lution is needed to better understand the mechanism. This
study focuses on hourly time resolution. ML can provide a
quick and efficient result when dealing with multiple vari-
ables, while subsequent analysis and discussion are essen-
tial for understanding the physical meaning behind the re-
sult. This study only focuses on the region around the ARM
SGP site, and we simply assumed that those measurements
are representative of the entire 1◦× 1◦ grid, which adds un-
certainty because the scale of convection is typically smaller
than this. Future analysis over other regions is desired to en-
rich the data volume in order to train the ML model and get
more reliable and robust results.
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