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Abstract

Satellite remote sensing is a promising technique to estimate global or regional evapotranspiration (ET) or evaporative fraction (EF) of the
surface total net radiation budget. The current methods of estimating the ET (or EF) from the gradient between land surface temperature (Ts) and
near surface air temperature are very sensitive to the retrieval errors of Ts and the interpolation errors of air temperature from the ground-based
point measurements. Two types of methods have been proposed to reduce this sensitivity: the thermal inertia method and the Ts–normalized
difference vegetation index (NDVI) (Ts–NDVI) spatial variation method. The former is based on the temporal difference between Ts retrievals, and
the latter uses the spatial information of Ts. Another approach is proposed here that combines the advantages of the two types of methods and uses
day–night Ts difference–NDVI (ΔTs–NDVI). Ground-based measurements collected by Energy Balance Bowen Ratio systems at the 11 enhanced
facilities located at the Southern Great Plains of the United States from April 2001 to May 2005 were analyzed to identify parameterization of EF.
ΔTs–NDVI spatial variations from the Aqua and Terra MODerate-resolution Imaging Spectroradiometer (MODIS) global daily products, at 1km
resolution were used to estimate EF. Ground-based measurements taken during 16days in 2004 were used to validate the MODIS EF retrievals.
The EFs retrieved from the spatial variations of ΔTs–NDVI show a distinct improvement over that retrieved from the ΔTs–NDVI. The EF can be
retrieved with a mean relative accuracy of about 17% with the proposed ΔTs–NDVI spatial variations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Evapotranspiration (ET) is a primary process driving the
energy and water exchange between the hydrosphere, atmo-
sphere and biosphere (e.g. Priestley & Taylor, 1972; Monteith,
1973). It is required by short-term numerical weather
predication models and longer-term simulation for climate
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predication (Rowntree, 1991). Different methods have been
proposed for measuring ET on various spatial scales from
individual plants (i.e. sap-flow, porometer, lysimeter) (Yunusa
et al., 2004), to fields (i.e. field water balance, Bowen ratio,
scintillometer) (Brotzge & Kenneth, 2003) or landscape scales
(i.e. eddy correlation and catchment water balance) (Baldocchi
et al., 2001).

However, conventional techniques provide essentially point
measurements, which usually do not represent areal means
because of the heterogeneity of land surfaces and the dynamic
nature of heat transfer processes. Satellite remote sensing is a
promising tool which has been used to provide reasonable
estimates of the evaporative fraction (EF) defined as the ratio of
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ET to available total energy (Shuttleworth et al., 1989). Over the
last few decades, a large number of techniques have been
proposed to estimate EF (Wang et al., 2005d; Verstraeten et al.,
2005).

Under the assumption that the energy storage by the canopy
is negligible, ET (also denoted as λE) can be calculated as a
residual of the surface available energy (Rn), the sensible heat
flux (H) and ground heat flux (G):

kE ¼ Rn−G−H ð1Þ
Surface heat flux H is usually determined following the Monin–
Oblukhov similarity theory (Monin & Oblukhov, 1954) in the
following parameterized form (e.g., Friedl, 2002; Wang et al.,
2005d for review):

H ¼ qCpðT0−TaÞ
ra

ð2Þ

where ρ the density of air, Cp is the specific heat of air, T0 is the
surface aerodynamic temperature, Ta is the near surface air
temperature, and ra is the aerodynamic resistance. In satellite
remote sensing applications, the land surface radiometric
temperature (Ts) retrieval is often used instead of the
aerodynamic temperature in Eq. (2) (see, for example, Kustas
et al., 1989), despite numerous uncertainties associated with the
retrieval of Ts (e.g. Prata & Cechet, 1999; Wang et al., 2005a).

Attempts have been made to use the temporal variation of Ts
to reduce the sensitivity of ET retrievals to the uncertainties in Ts
(Albellaoui et al., 1986; Anderson et al., 1997; Caparrini et al.,
2004; Norman et al., 2000). The thermal inertia method is one
of the approaches used. Thermal inertia is a bulk property and is
a measure of resistance of a material to changes in temperature
(Price, 1977). For a given heat flow, a high thermal inertia leads
to a small change in temperature (Pratt & Ellyett, 1979).
Different surface cover types have different thermal inertia and
soil thermal inertia mainly depends on soil moisture content.
Thermal inertia derived from satellite data has been used to
determine soil moisture (Pratt & Ellyett, 1979), ET (Albellaoui
et al., 1986), and crop water stress (Price, 1982). However, early
models to calculate thermal inertia from satellite data still
require many parameters (i.e., average wind speed, surface
roughness, average temperature of air and ground surface, etc.),
which have to be obtained from ground-based measurements
(Sobrino & EL Kharraz, 1999).

The Ts and NDVI spatial variation (Ts–NDVI) method uses
spatial information of the Ts and NDVI to reduce the
requirement of accuracy of Ts retrievals (Venturini et al.,
2004). The spatial variation of Ts and NDVI often results in a
triangular shape, with lower temperature for wet, vegetated
surfaces (cold edge of shape) and higher temperature for dry
surface (warm edge) (Carlson et al., 1994; Price, 1990), or a
trapezoid shape (Moran et al., 1994) if a full range of fractional
vegetation cover and soil moisture content is represented in the
data. The approach of using the Ts–NDVI spatial variation to
obtain EF has been validated using land surface models
simulations (Carlson et al., 1995; Friedl, 2002; Gillies et al.,
1997; Gowarda et al., 2002). Several studies focus on the slope
of the Ts/NDVI spatial variation (e.g., Friedl & Davis, 1994;
Nemani & Running, 1989; Smith & Choudhury, 1991). Water
stress index or drought index were determined successfully
from the Ts–NDVI spatial variation (Sandholt et al., 2002; Wan
et al., 2004a).

Jiang and Islam (2001) estimated EF by interpolating the
Priestley–Taylor parameter (Priestley & Taylor, 1972) using the
triangular distribution of the Ts–NDVI spatial variation. EF is
parameterized as a function of the Priestley–Taylor parameter,
α, and the air temperature controlling factor Δ/(Δ+γ) (see
Section 3 for details). Recently, a similar spatial variation of
broadband albedo and Ts (Ts–albedo) was proposed to estimate
EF (Gómeza et al., 2005; Roerink et al., 2000; Su et al., 1999;
Verstraeten et al., 2005). However, some methods do not
include Δ/(Δ+γ) and have different parameterization of α and
EF (Gómeza et al., 2005; Roerink et al., 2000; Su et al., 1999;
Verstraeten et al., 2005).

We propose a method employing day–night differences and
NDVI (ΔTs–NDVI). The objectives of this study are: (1) to
extensively explore the utility of the data to further our
understanding of parameters dictating the variation of EF to
select proper parameterization of EF; and (2) to evaluate and
improve a remote sensing method for estimating EF.

2. Data

Given that satellite can only provide limited information
pertaining to ET (or EF), a major task in the remote sensing of
ET (or EF) is to identify key factors influencing the processes
involved and its parameterization from satellite data. To this
end, extensive measurements of surface fluxes, meteorological
and soil variables, as well as coincident satellite data are
required. This requirement is met thanks to the continuous
observations made over the past decade at the Southern Great
Plains site under the aegis of the Atmospheric Radiation
Measurement (ARM) Program. Fourteen Energy Balance
Bowen Ration (EBBR) systems were deployed to measure the
ET, the EF and related meteorological parameters (e.g. the air
temperature and the wind speed), as well as the soil moisture.
These ground measurements are available at http://www.
archive.arm.gov/. The MODIS land surface products related
to ET, including land surface temperature, vegetation indices,
albedo, and land cover type (http://www.edcdaac.usgs.gov/
modis/dataprod.html) are also used in this study. The two data
sets cover a period ranging from April 2001 to May 2005.

Two MODIS instruments (Salomonson et al., 1989) have
been launched for global studies of the atmosphere, land, and
ocean processes. The first instrument was launched on 18
December 1999 on a morning platform called Terra, and the
second was launched on 4 May 2002 on an afternoon platform
called Aqua. The Terra overpass time is around 10:30AM (local
solar time) in its descending mode and 10:30PM in its
ascending mode. The Aqua overpass time is around 1:30PM
in its ascending mode and 1:30AM in its descending mode.

Three MODIS land products are used in this study: the 96-
day land cover product, the 16-day vegetation indices product
and the daily Ts product at 1-km resolution. Two algorithms
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were used to retrieve Ts from the MODIS thermal and middle
infrared spectral regions: the generalized split window
algorithm (Wan & Dozier, 1996) and the MODIS day/night
land surface temperature algorithm (Wan & Li, 1997). The
product at 1-km resolution produced by the former algorithm
(MOD11A1 for Terra MODIS or MYD11A1 for Aqua
MODIS) is selected because of its higher accuracy (1K)
(Wan et al., 2002, 2004b, Wang et al., 2005a). Independent
validation experiments show that the MODIS Ts produced by
split-window algorithm agrees well with the ground measure-
ments of Ts, with differences comparable or less than the
uncertainties of the ground measurements for most of the
days (bias of +0.1°C and standard deviation of 0.6°C, for
cloud-free cases and viewing angle less than 60°) (Coll et al.,
2005).

Two indices were used from the MODIS global vegetation
indices products: the NDVI and the Enhanced Vegetation
Indices (EVI) (Huete et al., 2002). In this study, NDVI was
selected because it is the more widely accepted index. Nagler et
al. (2005a,2005b) argued that EVI was a better predictor of ET
than NDVI when using empirical formula to estimate ET at
multiple riparian sites. We also used EVI to retrieve EF but
found no substantial differences from those estimated using the
Fig. 1. The different land cover types characterizing the South Great Plains stud
550×550km2. International Geosphere–Biosphere Programme (IGBP) land cover ty
evergreen broadleaf forest, (3) deciduous needleleaf forest, (4) deciduous broadleaf
savanna, (9) savanna, (10) grassland, (11) permanent wetland, (12) crop land, (13) u
barren lands. The locations of the 11 enhanced facility sites are also shown.
NDVI. Eq. (A1) in Appendix A shows EF retrievals are not
sensitive to vegetation indices using the method proposed.

The Southern Great Plains (SGP) Cloud and Radiation
Testbed (CART) region spans over a 350-km by 400-km
domain across portions of south-central Kansas and north-
central Oklahoma. Fourteen enhanced facility sites instruments
with Energy Balance Bowen Ratio (EBBR) stations are located
throughout the SGP CART region and most of the sites fall
within the MODIS land products tile number H10V5. Of the 14
EBBR sites, data from 3 sites were not selected because one site
was vacated in April 2002 (EF25), another site (EF26) lies
within a different MODIS land products tile and the EF27 site
only became operational in May 2003. Fig. 1 shows the
International Geosphere–Biosphere Programme (IGBP) land
cover types that characterize the study region, with water bodies
shown in black, and the superimposed locations of the 11
enhanced facility sites chosen for this study. Fig. 1 shows that
the surface around sites EF04 and EF08 is more heterogeneous
than that of other sites. Table 1 shows that the 11 sites chosen
represent a variety of land types, soil moisture and vegetation
conditions.

These stations operate continuously throughout the year.
Meteorological data collected by the EBBR stations are used to
y region. The pixel resolution is about 1km and the whole region is about
pes were shown in the figure: (0) water body, (1) evergreen needleleaf forest, (2)
forest, (5) mixed forest, (6) closed shrubland, (7) open shrubland, (8) woody

rban/build up, (14) crop land/natural vegetation mosaic, (15) snow/ice, and (16)



Table 1
Brief description of the 11 enhanced facilities located throughout the Southern Great Plains

Site Lat./Long. Elevation (m) Land cover Mean (Max) NDVI Mean ET (EF) Mean SM

Hillsboro, Kansas: EF02 38.305′N, 97.301′W 447 Grass 0.51 (0.74) 124.9 (0.535) 0.232
Plevna, Kansas: EF04 37.953′N, 98.329′W 513 Rangeland (ungrazed) 0.43 (0.69) 87.4 (0.363) 0.088
Elk Falls, Kansas: EF07 37.383′N, 96.180′W 283 Pasture 0.49 (0.74) 137.9 (0.648) 0.238
Coldwater, Kansas: EF08 37.333′N, 99.309′W 664 Rangeland (grazed) 0.36 (0.67) 103.4 (0.436) 0.084
Ashton, Kansas: EF09 37.133′N, 97.266′W 386 Pasture 0.49 (0.74) 130.6 (0.545) 0.205
Pawhuska, Oklahoma: EF12 36.841′N, 96.427′W 331 Native prairie 0.48 (0.81) 122.4 (0.500) 0.240
Lamont, Oklahoma: EF13 36.605′N, 97.485′W 318 Pasture and wheat 0.51 (0.79) 115.2 (0.493) 0.192
Ringwood, Oklahoma: EF15 36.431′N, 98.284′W 418 Pasture 0.41 (0.62) 112.3 (0.481) –
Morris, Oklahoma: EF18 35.687′N, 95.856′W 217 Pasture (ungrazed) 0.50 (0.76) 131.0 (0.578) 0.195
El Reno, Oklahoma: EF19 35.557′N, 98.017′W 421 Pasture (ungrazed) 0.44 (0.69) 132.4 (0.515) 0.239
Meeker, Oklahoma: EF20 35.564′N, 96.988′W 309 Pasture 0.48 (0.70) 128.2 (0.554) 0.205

Mean and maximum values of NDVI are obtained from MODIS 16-day vegetation indices product obtained from April 2001 to May 2005. Mean soil moisture (SM,
kg/kg) is obtained from surface soil moisture measurements taken at 2.5cm, collected from April 2001 to May 2005. Mean evapotranspiration (ET, Wm−2) and
evaporative fraction (EF) are also obtained from data collected from April 2001 to May 2005.
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calculate sensible heat flux and ET using the Bowen ratio
technique. The bulk aerodynamic technique is used to replace
sunrise and sunset spikes in the flux data. The measurements
and instruments are summarized in Table 2.

Net radiation (Rn) is measured at the EBBR sites using
domed model Q⁎6.1 instruments manufactured by Radiation
and Energy Balance Systems (REBS), mounted at the 2.6m
level. ET is estimated as a function of the Bowen ratio β:

kE ¼ Rn−G
1þ b

ð3Þ

where β is estimated from the vertical gradients of temperature
(T1, T2) and specific humidity (q1, q2) at two heights in the
following manner:

b ¼ H

kE
¼ CpKh

kKw

ðT1−T2Þ
ðq1−q2Þ ð4Þ

Cp is the isobaric specific heat for dry air and is equal to
1012Jkg−1K−1, λ is the latent heat of vaporization, and Kh and
Kw are the eddy diffusivities for heat and water vapor,
respectively (Ohmura, 1982). The eddy diffusivities are
assumed to be equal. Vertical gradients in air temperature and
moisture are measured using temperature and humidity sensors
mounted at heights of 2 and 3m. An automatic exchange
mechanism switches the two temperature and humidity sensors
vertically every 15min to minimize systematic errors due to
instrument offset and drift. The average of data produced by two
Table 2
Measurements and Instruments deployed at the South Great Plain Energy
Balance Bowen Ratio (EBBR) sites

Net radiation only Q⁎6.1

Ground heat flux Five HFT3.1 ground flux plates installed at 5-cm depth
Five REBS PRTDs installed at 0–5cm depth, spaced
1.0m apart

Sensible and latent
heat fluxes

Bowen ration system: vertical temperature/moisture
gradient measured between 2 and 3m

Soil moisture Five resistance-type SMP-2 sensors, installed at 2.5cm
depth, spaced 1.0m apart
13-min averages of 30-s samples yields a final 30-min mean of
H and λE.

At each EBBR facility, soil heat flux G was estimated as the
average of data from five soil heat plate sensors (the REBS HFT
3.1s model) buried at a depth of 5cm. The ground heat storage
term was calculated as a function of the soil heat capacity
(computed as a function of soil moisture and estimated at a
depth of 2.5cm) and the integrated soil temperature as observed
from five soil heat plate sensors buried between 0 and 5cm. The
ARM EBBR facilities estimate the percent soil water (ratio of
the mass of soil water to the mass of dry soil) from the soil water
potential measured from five resistance-type soil moisture
sensors (model SMP-2 manufactured by REBS). An average
data value from the five soil heat plates and soil moisture
sensors is used.

3. Variation and controlling factors of the evaporative
fraction

We introduce “evaporative fraction (EF)” as an index for ET
after Shuttleworth et al. (1989). EF is directly related to the
Bowen ratio β:

EF ¼ kE
kE þ H

¼ kE
Rn−G

¼ 1
1þ b

ð5Þ

However, we do not use β because: (1) β is a nonlinear
parameter for ET, and (2) β does not have an upper limit (if
ET approaches zero, β goes to infinity) (Nishida et al.,
2003). In comparison, EF has the following advantages
(Nishida et al., 2003): (1) EF is a suitable index for surface
soil moisture condition, and (2) EF is useful for the temporal
scaling.

To obtain the temporally averaged EF, the averaged ET and
sensible heat flux is first calculated using the following relation:

EF ¼

Xn
i−1

kEi

Pn
i¼1

Hi þ
Pn
i¼1

kEi

ð6Þ



Table 3
The correlation coefficients between evaporative fraction (EF) and the midday
air temperature (rEF,tam

2 ), the daytime air temperature (rEF,tad
2 ), NDVI (rEF,NDVI

2 ),
soil moisture (rEF,SM

2 ) at 2.5cm depth

Site rEF,tad
2 rEF,tam

2 rEF,NDVI
2 rEFn,NDVI

2 rEF,SM
2 rEFn,SM

2 rNDVI,SM
2

Ef02 0.515 0.489 0.001 0.197 −0.05 0.281 0.390
Ef04 0.405 0.360 0.000 0.062 0.086 0.295 0.254
Ef07 0.463 0.435 0.460 −0.093 −0.008 0.436 −0.335
Ef08 0.225 0.226 0.310 0.145 0.254 0.467 −0.084
Ef09 0.469 0.440 0.496 0.048 −0.065 0.098 0.080
Ef12 0.503 0.455 0.683 0.081 −0.224 0.119 −0.401
Ef13 0.500 0.460 −0.073 −0.075 −0.075 0.278 0.268
Ef15 0.574 0.545 0.433 0.0121 – – 0.221
Ef18 0.559 0.518 0.567 0.063 −0.232 0.244 −0.491
Ef19 0.512 0.478 0.610 0.274 −0.222 0.229 −0.396
Ef20 0.388 0.3530 0.438 −0.059 0.115 0.410 −0.419

The correlation coefficients between normalized EF by air temperature
controlling parameter Δ/(Δ+γ) and NDVI (rEFn,NDVI

2 ), and soil moisture
(rEFn,SM
2 ) are also shown, as are the correlation coefficients between NDVI

and SM (rNDVI,SM
2 ). The EF, the air temperature, the soil moisture are

collected by the 11 enhanced facilities located throughout the Southern Great
Plains from April 2001 to May 2005. The NDVI are from MODIS 16-day
vegetation indices products from April 2001 to May 2005.
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Temporally averaged EF can also be obtained by averaging EFs
for each measurement of λE and H. The two averaging methods
are similar because EF is apparently stability during daytime
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Fig. 2. An example the time serious of (a) the daily EF, (b) the daily air temperature, (
May 2005 at sites EF12.
(Brutsaert & Sugita, 1992). However, the latter method is
sensitive to the error of measurement of λE and H when their
absolute values are low, such as measurements taken during
early morning and late afternoon.

To identify factors that drive the variation of EF, data
collected from April 2001 to May 2005 are analyzed at the 11
sites. Table 3 summarizes the correlation coefficients between
EF and the air temperature, NDVI and soil moisture of the 11
sites. Fig. 2 gives an example of the time series of daytime EF,
daytime average air temperature, NDVI and soil moisture at site
EF12. Generally speaking, air temperature has the highest
correlationwithEFat all the sites.Thevariationof air temperature
follows that of EF. The scatterplots of the EF as a function of the
air temperature for 4 sites, shown in Fig. 3, demonstrates that
EF increases linearly with air temperature. More importantly,
the slopes are similar for the different sites. The scatter points
show that there are some other factors influencing EF.

The following general form describing ET (Parlange &
Albertson, 1995) illustrates this finding:

kE ¼ w A
D

Dþ g
ðRn−GÞ þ B

g

Dþ g
f uð Þ e⁎a −ea

� �� �
ð7Þ

where ea is the air vapor pressure at a reference height (often
2m), ea⁎ is the air saturation vapor pressure, Δ=de⁎/dT is the
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c) the NDVI, and (d) the soil moisture (SM) at 2.5cm depth during April 2001–
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Fig. 3. The relationship between air temperature and evaporative fraction (EF) at sites of EF02, EF13, EF15 and EF19 using the data collected from April 2001 to May
2005. The correlation coefficients between EF and air temperature are shown in Table 3.
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gradient of the saturated vapor pressure to the air temperature,
and γ=Cp/λ is the psychrometric constant. The f(u) term
represents some function of the wind velocity. A and B are
model-dependent parameters, and Ψ is generally taken to be
unity. The first term on the right-hand side of the equation
represents the energy control on ET. The second term on the
right-hand side of the equation represents the water vapor deficit
control on ET, which is closely related to the water supply, soil
evaporation and vegetation transpiration. When the water
supply is sufficient, the available energy term dominates.
Therefore, for water bodies and wet vegetation surfaces,
Priestley and Taylor (1972) simplified Eq. (7) to:

EF ¼ kE
Rn−G

¼ a
D

Dþ g
ð8Þ

where α=1.26 is the so-called Priestley–Taylor parameter.
Eichinger et al. (1996) analytically derived the Priestley–Taylor
parameter α. They showed that it is equal to 1.26 for typically
observed atmospheric conditions and is relatively insensitive to
small changes in atmospheric parameters. For unsaturated soil
(Komatsu, 2003) and vegetation surfaces where the water
supply is limited (Davies & Allen, 1973), Eq. (8) becomes:

EF ¼ a½ð1−expð−h=hcÞ� D
Dþ g

ð9Þ

where θ is the surface soil moisture and θc is a parameter that
depends on soil type and wind speed.

The term Δ/(Δ+γ) in Eqs. (8) and (9) mainly depends on the
air temperature:

D ¼ de⁎

dT
¼ 0:622d kd e⁎

Rdd T2
; ð10Þ
Eq. (10) is the Clausius—Clapegron equation. To calculate
simply, Richards (1971) suggested:

D ¼ 373:15d e⁎

T2
a

d ð13:3185−3:952d Tr−1:9335d T2
r −0:5196d T

3
r Þ;

ð11Þ

e⁎ ¼ P0d expð13:3185d Tr−1:976d T 2
r −0:6445d T

3
r −0:1299d T

4
r Þ;

ð12Þ

Tr ¼ 1−373:15=Ta ð13Þ
Psychrometric constant γ can be calculated from:

g ¼ CpP

0:622k
; ð14Þ

P ¼ P0d 10
−z

18 400d
Ta
273ð Þ; ð15Þ

k ¼ 4:2� ð597−0:6ðTa−273ÞÞd 1000 ð16Þ
where Ta is the air temperature (K), z is the height above sea
level (m), and P0=1013.15hPa is the standard atmospheric
pressure at sea surface level. From Eqs. (11)–(16), one can see
that the term Δ/(Δ+γ) mainly depends on air temperature,
therefore, Δ/(Δ+γ) is referred to as the air temperature
controlling factor. Δ/(Δ+γ) is calculated using air temperatures
varying from −10°C to 40°C and the average of the height
above sea level of all the sites. Fig. 4 shows that the control
parameter Δ/(Δ+γ). increases nearly linearly with the air
temperature. This is similar to the EF increasing nearly linearly
with the air temperature as shown in Fig. 3. The slope of the
relation shown in Fig. 4 is about 0.0127, which means that an
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error in air temperature of 1K will result in an error of 0.0127 α
in Eq. (8).

Table 3 shows that the correlation coefficients between EF
and soil moisture are very low, ranging in magnitude from 0.008
to 0.254. This does not mean that the influence of soil moisture
on EF is negligible. Since the seasonal variation of soil moisture
differ from that of EF and air temperature (see Fig. 2), low
correlation coefficients are expected. Because the seasonal
variation of air temperature is similar to that of EF, the air
temperature control parameter is used to normalize the EF so
that the seasonal variation is partly removed. The correlation
coefficients between soil moisture and the normalized EF are
noticeably improved, with magnitudes now ranging from 0.098
to 0.467. The largest correlations occur for the sites with the
lowest soil moisture contents. This can be explained as follows.
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Fig. 5. The relationship between MODIS normalized difference vegetation index (ND
data collected from April 2001 to May 2005. The correlation coefficients between E
First, for sites with low soil moisture (such as site EF08, where
the soil moisture is about 8% kg/kg) EF is mainly controlled by
the water supply; when the water supply is sufficient, the energy
term is dominant. Second, Kustas et al. (1993) showed that ET
over a soil surface or sparse vegetation is mostly related to the
soil moisture of the 0–5cm layer; the soil moisture used here is
measured at a depth of 2.5cm. It was also found that ET of
vegetation is closely related to the root zone soil moisture
except in conditions of extreme soil water deficit (Arrett &
Clark, 1994; Carlson et al., 1994).

The NDVI shows a similar seasonal variation with that of EF
and the air temperature. Vegetation indices have been used as a
main factor in estimating ET (Nagler et al., 2005a,2005b). Four
sites (sites EF09, EF12, EF18 and EF19) with a high correlation
between the NDVI and EF were selected to study more closely
the relationship between the NDVI and EF. The results are
illustrated in Fig. 5 which shows that there is a general increase
in EF with the NDVI and that the slope varies from sites to site.
This means that the influence of vegetation on EF depends on
other parameters, such as soil moisture. The relationship
between NDVI and EF is more scattered when NDVI is
small, i.e. where the influence of soil moisture is dominant.
Under these conditions, it is difficult to estimate EF from NDVI
using a single empirical formula.

Furthermore, Table 3 shows that the correlation coefficients
between the NDVI and the normalizing EF using the air
temperature control parameter are very low, which shows that
the air temperature control parameter in Eq. (8) can be used to
parameterize EF well.

4. Estimating EF

The above analyses reveal that air temperature, NDVI and
soil moisture are the three dominant factors influencing EF. It
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VI) and evaporative fraction (EF) at sites EF09, EF12, EF18 and EF19 using the
F and NDVI are shown in Table 3.
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has been demonstrated that EF can be parameterized using the
air temperature control parameter and the Priestley–Taylor
parameter (Priestley & Taylor, 1972), which has been shown to
depend on soil moisture content (Davies & Allen, 1973;
Komatsu, 2002). Near surface air temperatures used in this
paper are interpolated from NCEP (National Centers for
Environment Prediction of U.S.) reanalysis near surface air
temperature (at 2m) data sets at a spatial resolution of 1°×1°
and a temporal resolution of four times (at 0:00AM, 6:00AM,
12:00PM, 6:00PM, respectively, Universal Time) a day (http://
dss.ucar.edu/datasets/ds083.2). These data sets supply reason-
able estimation of near surface air temperature (Kalnay et al.,
1996).

In the past, many investigators employed Ts–NDVI spatial
variation to estimate soil moisture content or the Priestley–
Taylor parameter. Sandholt et al. (2002) proposed one method
to parameterize soil moisture based on the triangular distribu-
tion of Ts–NDVI. Wan et al. (2004a) used a similar method to
estimate soil moisture content over SGP using MODIS land
surface temperature and NDVI retrievals. Jiang and Islam
(2001) directly estimated EF over SGP through the linear
decomposition of the triangular distribution of the Ts–NDVI
spatial variation.

The principle of these methods is simple: the temperature
changes of wet surfaces are small since more energy is used for
ET of wet surface and wet surface have higher thermal inertia
(cooling effect). As such, the temperature used in these methods
should be the temporal variation of Ts rather than Ts itself.
However, in the previous investigations (Boegh et al., 1999;
Jiang & Islam, 2001, 2003; Nishida et al., 2003; Venturini et al.,
2004; Wan et al., 2004a), only the daytime retrievals of Ts over
different locations were used rather than temporal variation of
Ts, which resort to an implicit assumption that Ts at night is
uniform across the study region. From the MODIS Ts retrievals
during day and night, we can examine the day–night Ts
difference, as well as the (ΔTs–NDVI) spatial variation. Fig. 6
shows a histogram of nighttime Ts in the study region shown in
Fig. 1 under clear sky conditions. Although the differences
maybe result partially from retrieval artifacts, the variation of
nighttime Ts is large enough that must be taken into account
when using Ts–NDVI to estimate EF.

Fig. 7 gives examples of daytime Ts–NDVI spatial variations
from Terra and Aqua measurements, differences between
daytime Terra Ts and nighttime Aqua Ts as a function of
NDVI, and differences between daytime Aqua Ts and nighttime
Aqua Ts as a function of NDVI for a sample day. The overpass
times for Aqua nighttime, Terra daytime and Aqua daytime
measurements are about 2:00AM, 11:20AM and 1:10PM,
respectively, for the study region. One can see that the shapes of
the Ts–NDVI spatial variations are similar to those of the Ts–
NDVI spatial variations, making it possible to estimate the EF
using a method similar to that using the Ts–NDVI spatial
variation (Boegh et al., 1999; Prigent et al., 2005). Basically, the
method extends the Priestley–Taylor parameter,α, by interpo-
lating the parameter in a range of 0–1.26 according to NDVI
and Ts over the study region and assuming that that the shape of
the Ts–NDVI spatial variation is triangular (Jiang & Islam,
2001). The method is modified to the trapezoidal Ts–NDVI
spatial variation (Jiang & Islam, 2003), which is tailored to
include the day–night temperature difference (see Appendix A).

To examine the validity of using the day–night temperature
difference and NDVI spatial variation (ΔTs–NDVI), the EF
retrieved using four combinations was compared: (1) Terra
daytime Ts–NDVI, (2) Aqua daytime Ts–NDVI, (3) Terra
daytime and Aqua nighttime temperature difference ΔTs–
NDVI, and (4) Aqua daytime and Aqua nighttime temperature
difference Ts–NDVI. It should be noted that only the difference
between Aqua and Terra daytime Ts lies in the measurement
time, i.e. about 10:30AM for Terra daytime and about 1:30PM
for Aqua. The validations were carried out for sixteen days
during 2004. They are Julian days (day number of a year) 105,
126, 127, 128, 129,143, 144, 152, 163, 230, 242, 252, 257, 260,
262, and 277, covering a period from April to October. The sites
shown in Fig. 1 were used to validate the MODIS-retrieved EF.
The year 2004 is selected because all the required satellite and
ground-based measurements are available during this period.
These days are selected because they are clear days for all the
validation sites shown in Table 1. The retrievals of MODIS-
based EF are averaged over four pixels enclosing the ground-
based site.

Fig. 8 shows the comparison between the MODIS-retrievals
and the corresponding ground-based measurements. One can
see that the ΔTs–NDVI EF retrievals improve distinctly in
comparison with those retrieved from the daytime temperature.
Note that the scatter points in the comparison stems partially
from incompatibility due to different spatial scales of the data
and the heterogeneity of the surface. For the heterogeneous
surface, the scale of ground-based measurement of EF depends
on the fetch length which depends on wind speed and wind
direction, while MODIS EF retrievals have a scale of 1km.

Table 4 presents the biases (BIAS), mean deviations (MD),
standard deviations (S.D.), and correlation coefficients of the
relationships illustrated in Fig. 8. The Aqua daytime EF

http://www.dss.ucar.edu/datasets/ds083.2
http://www.dss.ucar.edu/datasets/ds083.2
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retrievals are better than those from the Terra daytime, and Aqua
daytime and aqua nighttime difference retrievals are better than
those from Terra daytime and Aqua nighttime difference.
Venturini et al. (2004) argued that that EF retrieval is not
sensitive to satellite overpass time, which is seen in Table 4 in
terms of the bias. However, the values of the correlation
coefficient, standard deviation and mean deviation suggest that
Aqua retrieval is better than those of Terra retrievals. Table 4
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shows that the mean difference for all the sites (mean of the
absolute value of difference between ground-based measure-
ments and EF retrievals) is 0.106. Considering the mean value
of the EF is 0.6, one can estimate that the relative error is 17%.

Table 4 also shows that, in terms of the correlation
coefficient, sites EF02, EF07, EF09, EF12, EF13, EF18,
EF19 and EF20 are reasonably good, but sites EF04, EF08
and EF15 are not so good. This may be explained by the
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heterogeneity of the EF. Chen and Brusaert (1995) showed that
the spatial distribution of ET is strongly related to the
distribution of soil moisture and of the state of the vegetation.
The strength of these relationships depends on soil moisture
content and its spatial distribution. When the mean soil content
is high, the distribution of evaporation is quite uniform
regardless of the vegetation uniformity. In the intermediate
range, both soil moisture and vegetation contribute to the spatial
Table 4
The statistical parameters of the difference of the MODIS EF retrievals and the
ground-based measurements: bias (BIAS), mean deviation (MD), standard
deviation (S.D.), and correlate coefficient (R2) from four combinations: (1) Terra
daytime Ts–NDVI, (2) Aqua daytime Ts–NDVI, (3) Terra daytime and Aqua
nighttime differenceΔTs–NDVI (Terra day–Aqua night), (4) Aqua daytime and
Aqua nighttime difference ΔTs–NDVI (Aqua day–Aqua night)

Site Method BIAS MD S.D. R2

EF02 Terra day −0.182 0.214 0.148 −0.124
Aqua day −0.142 0.166 0.142 0.057
Terra day–Aqua night −0.142 0.191 0.168 0.142
Aqua day–Aqua night −0.106 0.123 0.12 0.466

EF04 Terra day 0.089 0.134 0.157 −0.027
Aqua day 0.097 0.119 0.13 0.14
Terra day–Aqua night 0.106 0.132 0.131 0.48
Aqua day–Aqua night 0.131 0.138 0.12 0.431

EF07 Terra day −0.091 0.155 0.148 0.518
Aqua day −0.065 0.143 0.152 0.428
Terra day–Aqua night −0.076 0.138 0.154 0.554
Aqua day–Aqua night −0.04 0.114 0.14 0.645

EF08 Terra day −0.01 0.173 0.202 −0.124
Aqua day 0.002 0.174 0.207 −0.369
Terra day–Aqua night 0.003 0.173 0.207 0.004
Aqua day–Aqua night 0.013 0.143 0.176 0.159

EF09 Terra day −0.069 0.101 0.112 0.387
Aqua day −0.031 0.093 0.116 0.301
Terra day–Aqua night −0.052 0.067 0.077 0.784
Aqua day–Aqua night −0.01 0.069 0.088 0.697

EF12 Terra day 0.042 0.134 0.164 0.365
Aqua day 0.068 0.138 0.154 0.452
Terra day–Aqua night 0.092 0.146 0.153 0.605
Aqua day–Aqua night 0.08 0.112 0.116 0.77

EF13 Terra day −0.012 0.118 0.147 0.689
Aqua day 0.005 0.099 0.133 0.73
Terra day–Aqua night 0.008 0.109 0.144 0.68
Aqua day–Aqua night 0.011 0.072 0.098 0.89

EF15 Terra day 0.067 0.176 0.228 −0.468
Aqua day 0.07 0.198 0.244 −0.634
Terra day–Aqua night 0.004 0.137 0.166 0.039
Aqua day–Aqua night 0.013 0.14 0.161 −0.081

EF18 Terra day −0.051 0.125 0.138 0.07
Aqua day −0.022 0.112 0.131 0.164
Terra day–Aqua night −0.05 0.096 0.1 0.703
Aqua day–Aqua night −0.014 0.084 0.108 0.688

EF19 Terra day 0.032 0.122 0.155 −0.413
Aqua day 0.05 0.128 0.155 −0.312
Terra day–Aqua night −0.016 0.06 0.084 0.668
Aqua day–Aqua night 0.018 0.072 0.108 0.382

EF20 Terra day −0.022 0.112 0.14 0.063
Aqua day −0.005 0.121 0.154 −0.095
Terra day–Aqua night −0.019 0.105 0.131 0.493
Aqua day–Aqua night 0.013 0.088 0.102 0.643

Total Terra day −0.033 0.141 0.171 0.286
Aqua day −0.014 0.134 0.166 0.34
Terra day–Aqua night −0.022 0.124 0.153 0.515
Aqua day–Aqua night −0.002 0.106 0.136 0.605

Notes to Table 4
The average of the ground EF measurements is 0.6 for all the comparison
days and sites used here.
Bias (BIAS), mean deviation (MD), standard deviation (S.D.) are defined as:

MD ¼ 1
n

Xn
i¼1

absðEFdif ;iÞ

S:D: ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

s
ðEFdif ;i−BIASÞ2

BIAS ¼ 1
n

Xn
i¼1

EFdif ;i

EFdif ;i ¼ EFMODIS; i−EFground;i

where n is the sample number.
distribution. When soil moisture is low, it is normally non-
uniform, and spatial distribution of soil moisture becomes the
primary control of the spatial variation of EF. For the sites
having better correlation, their soil moisture is high – about
20% (kg/kg) (cf. Table 1), whereas sites EF04 and EF08 have
much low soil moisture content – about 8% (kg/kg). EF15 lies
in region of varying land cover type (see Fig. 1).

5. Conclusions

Satellite remote sensing is one promising technique to
estimate global or regional ET or EF. However, current methods
using the gradient between Ts and near surface air temperature
to estimate ET (or EF) are sensitive to the retrieval errors of Ts
and the interpolation errors of air temperature from the ground-
based point measurements. Two methods have been proposed to
reduce this sensitivity: the thermal inertia method and the Ts–
NDVI spatial variation method. The former uses the temporal
difference between Ts retrievals, and the latter uses the spatial
information of Ts. A different approach is proposed in this study
that employs day–night Ts difference–NDVI(ΔTs–NDVI)
which use the temporal and spatial information of Ts, following
the parameterization proposed by Jiang and Islam (2001) which
used the daytime Ts only.

Taking advantage of satellite measurements and the extensive
ground-based measurements available at the 11 enhanced
surface facility sites throughout the Great South Plain from
April 2001 to May 2005, EF was analyzed in order to obtain a
proper parameterization of EF. The dominant factors driving the
seasonal variation of EF are air temperature and normalized
difference vegetation index. Data analyses show that the EF can
be parameterized as a function of the air temperature controlling
parameter Δ/(Δ+γ) and the Priestley–Taylor parameter, α,
which depends on soil moisture contents. Soil moisture content
and EF are poorly correlated but the correlation improves
considerably after the seasonal trend of EF is removed.
Therefore, soil moisture is also one important factor influencing
EF, which is extracted from the spatial variation of a newly
proposed method using ΔTs–NDVI.

Following the approach of Jiang and Islam (2001), we
propose to use the ΔTs difference in lieu of the daytime Ts. Yet,
the method was modified to be applicable to both the triangular
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or trapezoidal shapes for ΔTs–NDVI domain. Improvement in
the accuracy of EF retrievals was shown by applying the revised
ΔTs–NDVI and the original ΔTs–NDVI methods to the same
ground-based measurements. The retrievals of the EF are
improved in terms of bias error, mean deviation, standard
deviation, and correlation coefficient. The accuracy of the EF
retrieval is on the order of 17%, which is considered satisfactory,
given the simplicity of the new method and the number of input
variables of the method. While some approaches may achieve
higher accuracies, they often either require additional informa-
tion obtained by in situ measurements, or the calibration of their
methods against ground observations.

When the EF is ready, it can be easily used to partition the
surface net radiation budget. Satellite remote sensed data have
been use to estimate global net radiation and the accuracy
improves thanks to numerous techniques proposed with proven
high accuracy (for example, Allan et al., 2004; Bisht et al., 2005;
Diak et al., 2004; Gupta et al., 1999; Li & Leighton, 1993; Li et
al., 2005; Wang et al., 2005b,2005c; Zhang et al., 2004).
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Appendix A. Derivation of the modified ΔTs–NDVI for
estimating EF

Fig. A1 shows the schematic plot for the interpretation of the
Priestley–Taylor parameter, α. The trapezoid ABCD represents
the Ts–NDVI or ΔTs–NDVI spatial variation; CD is the “cold
edge” and AB is the “warm edge” of the spatial variation. Three
assumptions made by Jiang and Islam (2001) were adopted
here: (1) the cold edge has the maximum αmax=1.26 (for
example, α at points F and G of Fig. A1 is both equal to 1.26),
(2) the maximum temperature of the warm edge has minimum
αmax=0.0 (point A in Fig. A1), and (3) the relationship between
α and the spatial variation of Ts (or ΔTs) is linear. The linear
interpolation of Ts–NDVI is adopted by Jiang and Islam (2001)
to parameterize α. Sandholt et al. (2002) and Wan et al. (2004a)
estimated the soil water index by linearly interpolating the Ts–
NDVI spatial variation. For pixel i at E(Ts–NDVI), connect A
and E, and extend AE to G. Because α at point A is equal to αmin

and “cold edge” has the maximum αmax, the length of AG is
αmax−αmin, and the length of AE is αi−αmin. Because the
triangle EFG is similar to triangle ACG, the following equation
can be derived:

jEFj
jACj ¼

jEGj
jAGj ðA1Þ
Eq. (A1) can be written as:

Ti−Tmin

Tmax−Tmin
¼ ðamax−aminÞ−ðai−aminÞ

amax−amin
ðA2Þ

αi at (Ti,NDVI) is equal to:

ai ¼ Tmax−Ti
Tmax−Tmin

ðamax−aminÞ þ amin ðA3Þ

where T is the Ts in the Ts–NDVI or (ΔTs in the ΔTs–NDVI)
spatial variation. Tmax and Tmin are determined from the spatial
variations as shown in Fig. 7, αmax and αmin is same as that used
in Jiang and Islam (2001).

The EF retrieved using the above parameterization is the
same as that of Jiang and Islam (2001). However, the method
proposed here is more direct, and is more easily used in other
situations, such as parameterization of EF in model simulation
with the satellite remote sensed land surface temperature.

Therefore, EF is parameterized as:

EF ¼ D
Dþ g

Tmax−Ti
Tmax−Tmin

ðamax−aminÞ þ amin

� �
ðA4Þ

The sensitivity of EF to Tmax, Tmin, αmax, αmin can be written
as:

AEF
ATmax

¼ D
Dþ g

ðamax−aminÞ Ti−Tmin

ðTmax−TminÞ2
ðA5Þ

AEF
ATmin

D
ðDþ gÞ ðamax−aminÞ Tmax−Ti

ðTmax−TminÞ2
ðA6Þ

AEF
Aamax

¼ D
Dþ g

Tmax−Ti
Tmax−Tmin

ðA7Þ

and

AEF
Aamin

¼ 1−
D

Dþ g

Tmax−Ti
Tmax−Tmin

¼ 1−
AEF
Aamax

ðA8Þ
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From Eqs. (A5) (A6), one can estimate that ∂EF/∂Tmax and
∂EF/∂Tmin both have a typical value of about 0.02. Therefore,
the sensitivity of EF to Tmax and Tmin is relative low. Using the
slope of Δ/(Δ+γ) to air temperature Tair (see Section 3), the
sensitivity of EF to air temperature can be written as:

AEF
ATair

¼ 0:0127
Tmax−Ti
Tmax−Tmin

ðamax−aminÞ þ amin

� �
: ðA9Þ
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