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Abstract: Meteorologically observed air temperature (Ta) is limited due to low density and uneven
distribution that leads to uncertain accuracy. Therefore, remote sensing data have been widely used to
estimate near-surface Ta on various temporal scales due to their spatially continuous characteristics.
However, few studies have focused on instantaneous Ta when satellites overpass. This study
aims to produce both daily and instantaneous Ta datasets at 1 km resolution for the Jingjinji area,
China during 2018–2019, using machine learning methods based on remote sensing data, dense
meteorological observation station data, and auxiliary data (such as elevation and normalized
difference vegetation index). Newly released Moderate Resolution Imaging Spectroradiometer
(MODIS) Collection 6 surface Downward Shortwave Radiation (DSR) was introduced to improve the
accuracy of Ta estimation. Five machine learning algorithms were implemented and compared so
that the optimal one could be selected. The random forest (RF) algorithm outperformed the others
(such as decision tree, feedforward neural network, generalized linear model) and RF obtained the
highest accuracy in model validation with a daily root mean square error (RMSE) of 1.29 ◦C, mean
absolute error (MAE) of 0.94 ◦C, daytime instantaneous RMSE of 1.88 ◦C, MAE of 1.35 ◦C, nighttime
instantaneous RMSE of 2.47 ◦C, and MAE of 1.83 ◦C. The corresponding R2 was 0.99 for daily average,
0.98 for daytime instantaneous, and 0.95 for nighttime instantaneous. Analysis showed that land
surface temperature (LST) was the most important factor contributing to model accuracy, followed
by solar declination and DSR, which implied that DSR should be prioritized when estimating Ta.
Particularly, these results outperformed most models presented in previous studies. These findings
suggested that RF could be used to estimate daily instantaneous Ta at unprecedented accuracy and
temporal scale with proper training and very dense station data. The estimated dataset could be very
useful for local climate and ecology studies, as well as for nature resources exploration.

Keywords: near-surface air temperature; land surface temperature; random forest model; Jingjinji
area; machine learning; remote sensing

1. Introduction

Near-surface temperature (Ta) refers to the temperature two meters above the ground,
which is an important parameter in many fields such as the studies of the environment [1–3],
ecology [4], hydrology [5,6], and meteorology [7–10]. In the context of global warming over
the past few decades, accurate estimation of Ta is very important for climate change assess-
ment and global collaborative response and also provides the scientific basis for China’s
carbon peak and neutrality goals to address climate change. The Ta is usually obtained from
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the observations of ground-based weather stations. Although high-resolution and very
precise temperature data can be obtained through site observations, obtaining large-scale
continuous temperature data through such stations is difficult because these meteorological
stations can only provide discrete observational data and the spatial distribution of the
stations is not uniform because of variations in geographical conditions [11–13]. Low
density with an uneven distribution of ground weather stations may lead to inaccuracies
and uncertainties in related studies [14–17].

Before satellite remote sensing technologies were widely used, interpolation was
the most common and easy-to-use method for estimating the spatial distribution of Ta,
such as Inverse Distance Weighted (IDW), Kriging, Spline method, etc., [18–20]. Some
methods such as Kriging and Spline can use secondary variables as auxiliary data for
interpolation [21–25]. However, the density and uneven spatial distribution of meteo-
rological stations and variation in terrain greatly affect the accuracy of an interpolation
algorithm [26,27].

With the development of remote sensing technology in recent decades, estimating
large-scale continuous Ta data through satellite remote sensing data has become an impor-
tant research direction [28–30]. The surface temperature (LST) obtained by satellite sensors
is spatially continuous, has almost global coverage [31], and has strong correlation with
Ta [16,32]. The relationship between LST and Ta is also affected by terrain, elevation, vege-
tation coverage, and other factors. Many different methods have been proposed to increase
the accuracy of satellite-based Ta estimating in recent years [18,33,34]. According to the
technical principle, these methods can be divided into four groups:

1. Statistical methods such as linear regression models are commonly used to explore
the relationship between Ta and other variables [35–39]. Cresswell et al. [40] esti-
mated instantaneous Ta through a multiple regression model; the model used Solar
Zenith Angle (SZA) as the only auxiliary variable and achieved an accuracy of mean
deviation less than 3 ◦C for over 70% of the cases. Chen et al. [27] retrieved monthly
average temperature (RMSE between 1.29 and 1.45 ◦C) and eight-day average tem-
perature (RMSE between 0.8 and 1.29 ◦C) for China in 2010 using a model based
on remote sensing data and a geographically weighted regression (GWR) algorithm;
the elevation was the only secondary auxiliary variable; the results show that the
GWR method performs better than the multiple linear regression method and the
regression Kriging method.

2. The temperature–vegetation index (TVX) method is based on the characteristics
of plant canopy temperature that is close to the Ta; this method can be used to
calculate the Ta by the relationship between a vegetation index and LST and has
also been widely used [31,41,42]. The TVX method was tested in many areas of the
world; the resulting RMSE was between 1–3 ◦C [41–45]. Due to the principle of the
method, the TVX method is more suitable for areas with more vegetation coverage.
The TVX method shows significant uncertainties while applied to the area with sparse
vegetation [43].

3. The energy balance method based on the surface heat flux balance equation, incoming
net radiation flux, and anthropogenic heat fluxes equals the sum of outgoing land
surface heat flux (sensible and latent heat flux) [46–48]. Zaksek et al. [49] carried
out an estimation of Ta in Slovenia and Germany using the energy balance method,
having the root mean square deviation (RMSD) of the results at 2 ◦C. The method can
well describe the physical mechanism of the near-surface energy balance process [50].
The main drawback of the method is that many environmental data (usually in
hourly intervals) were needed to force the model and not all data were easy to obtain,
especially in a large scale [48].

4. Machine learning (ML) methods (such as neural networks, decision trees, support
vector machine) are based on nonlinear machine learning algorithms. ML methods
greatly improve the computational efficiency and simplify the exploration process of
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nonlinear and highly interactive relationships compared with the traditional statistical
method, the TVX method, and the energy balance method [51–53].

Numerous studies tested the different ML methods in satellite-based Ta estimating in
recent years. Noi et al. [41] compared the accuracy of multiple regression model, decision
tree model, and random forest model in estimating near-surface air temperature in the
mountainous area of northwest Vietnam from 2009 to 2013. The results showed that the
decision tree model and the linear regression model performed better than the random
forest model when only LST data were used without auxiliary variables. However, when
two easily accessible variables (altitude and Julian day) were introduced into the model
as auxiliary variables, the decision tree model and the random forest model performed
significantly better than the linear regression model, which indicates that the ML method is
more suitable for a multi-auxiliary variable model. Yoo et al. [54] used the random forest
model to estimate the daily maximum and minimum temperatures in Los Angeles and
Seoul and introduced seven auxiliary variables into the model: elevation, solar radiation,
normalized difference vegetation index, latitude, longitude, aspect, and the percentage
of impervious area. The simulated R2 ranged from 0.72–0.85 and RMSE ranged from
1.1–4.7 ◦C. Zhou et al. [55] proposed a two-stage RF based machine learning hybrid model
to estimate intra-daily Ta of Israel during 2004–2016. First, missing LST pixels were
estimated and a gap-free LST dataset was obtained, then the RF model was employed to
estimate Ta with different auxiliary variables (six auxiliary variables in stage one and seven
auxiliary variables in stage two), which reached R2 0.96, MAE 1.12 ◦C, and RMSE 1.58 ◦C.
Ruiz-Álvarez et al. [56] compared support vector machines, random forests, multiple
linear regression, and Kriging interpolation in estimating the Ta in the DHS region of
southeastern Spain and the results showed that RF-based methods are more accurate
and their performance improved when spatial components are included. Xu et al. [57]
compared the accuracy of ten different machine learning methods in simulating the monthly
average Ta of the Qinghai-Tibet Plateau with a 1 km resolution and the result showed that
the Cubist model performs better than the other models (RMSE, 1.0 ◦C; MAE, 0.73 ◦C).
Hrisko et al. [58] simulated the Ta of urban areas in the United States using a regression
neural network based on GEOS-16 satellites with a simulation result RMSE of 2.6 ◦C.
Li et al. [59] simulated the monthly average Ta of China from 2001 to 2015 using the RF
model; the simulation results had an MAE between 1.15 and 1.44 ◦C and an RMSE between
1.57 and 1.99 ◦C.

The following points can be summarized from previous studies: (1) estimating Ta
based on remote sensing data is one of the most feasible methods at present, especially
in a large scale, (2) multi-auxiliary variables can greatly improve the Ta estimation accu-
racy, (3) the machine learning methods with multi-auxiliary variables were suitable for
remote sensing based estimation of Ta [52,53,56,57]. Instantaneous Ta is very important
for meteorological processes and weather forecasts, such as numerical weather simulation,
for its better near-real-time feature [56]; however, this study found that most previous
studies focused on the estimation of average Ta over a period of time from daily aver-
age Ta to monthly average Ta in a large-scale area, while instantaneous Ta was rarely
estimated [53,60,61]. Furthermore, instantaneous Ta is more difficult to estimate due to con-
siderable changes in one day [62,63]. Thus, this study aimed to further improve estimation
accuracy by introducing the Downward Shortwave Radiation (DSR) product into the model,
by using high dense in-situ observation data as training inputs in a large study area over
different land cover types, and finally by estimating 1 km resolution instantaneous Ta while
satellites overpassed for the purpose of assessing the ability of machine learning methods.

2. Study Area and Data
2.1. Study Area

Jingjinji area, located in north China between 36◦05′N–42◦40′N and 113◦27′E–119◦50′E,
covers three administrative regions including Beijing, Tianjin, and Hebei Province, with a
total area of about 218,000 km2 [64] (Figure 1). By 2019, the permanent population was
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about 113.07 million and the GDP was 8.458 trillion yuan, making it the most important
economic core area in northern China. Its terrain is complex and the altitudinal gradient is
nearly 3000 m from the northwest mountainous area to the southeast plains area. The land
use and vegetation cover are diverse, with a high degree of industrial and agricultural
development, including farmland, cities and towns, forests and grasslands, and lakes and
wetlands. The rapid urbanization in the Jingjinji area will have an impact on urban heat
island and other phenomena. Due to its important status as an economic, cultural, and po-
litical center, the Jingjinji area is a hot area of climate change and urbanization research,
therefore it is necessary to simulate temperature data. This area has two climatic zones.
The northwest belongs to the temperate zone continental climate and the southeast belongs
to the temperate zone monsoon climate, which means the Ta estimation is very challeng-
ing because of the complexity of the geography. Therefore, factors such as topography,
vegetation, and climatic types must be taken into account in the Ta estimation.
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2.2. Ground-Based Weather Data

The Ta observational data were acquired from the hourly observational data of
1527 weather stations in the Jingjinji region from 2018 to 2019. Figure 1 shows the spatial
distribution of the stations. The data quality has been preliminarily controlled according to
QX/T 458-2018 meteorological observational data interchange specifications.
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2.3. Remotely Sensed Data

The remote sensing data used in this paper are shown in Table 1. Digital elevation
model (DEM) data with a 1 km resolution were produced after secondary processing of
the Shuttle Topography Radar Mission’s digital elevation product with a resolution of
90 m. The LST data were derived from MODIS MOD11A1 and MYD11A1 products with
a resolution of 1 km released by NASA in 2018–2019. The MODIS remote sensing data
come from the infrared radiation sensors carried by Terra and Aqua satellites, which scan
the study area twice each day as follows: the transit time of Terra is about 11:00 and 21:00
(Beijing time, also used below), while the transit time of Aqua is about 02:30 and 13:30.
Figure 2 show the percentages of available data for each satellite overpass. The mountains
in the north and the west have more available data. Data percentage ranged from 50~60%,
because high-altitude mountainous areas are less affected by cloud, smog, fog, haze, etc.
Overall, the average percentage of valid LST data for the whole study area is about 55%.
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Table 1. Remote sensing data used in this study.

Variable Dataset/MODIS
Product Number Resolution Data Source

Elevation STRM 1 km/Unique www.resdc.cn
(accessed on 15 February 2020)

LST MOD11A1/MYD11A1 1 km/Daily NASA LP DAAC
(accessed on 5 April 2020)

DSR MCD18A1 5.6 km/Daily NASA LP DAAC
(accessed on 5 April 2020)

NDVI MOD13A3 1 km/Monthly NASA LP DAAC
(accessed on 5 April 2020)

LC MCD12Q1 0.5 km/Yearly NASA LP DAAC
(accessed on 5 April 2020)

In this paper, three other types of remote sensing data were used as auxiliary input
variables in the model, including Downward Shortwave Radiation (DSR), Normalized
Difference Vegetation Index (NDVI), and Land Cover (LC) (Table 1). The DSR data were de-
rived from MODIS daily radiation products, numbered MCD18A1 with a spatial resolution
of 5 km, according to NASA’s description on its website; the reliability of DSR products
has been improved by fixing several errors in the algorithm since 2018. Land Cover data
were derived from MODIS annual land cover type data; the product number is MCD12Q1
and has a spatial resolution of 0.5 km. This dataset contains five land cover classification
systems. In this paper, the global vegetation classification scheme of the International
Geosphere-Biosphere Program was adopted, which divided land cover into 17 types, such
as grassland, forest, and water body.

3. Methods
3.1. Variable Selection and Research Framework

Figure 3 presents the framework of model training and validation used in the present
study. As shown in the figure, seven variables (latitude, elevation, declination, normalized
difference vegetation index, land cover, downward shortwave radiation, land surface
temperature) were selected as model inputs in this study. LST, DSR, NDVI, LC, and digital
elevation model data were introduced in Section 2.3. In addition, latitude (LAT) and
declination of the sun were selected as auxiliary variables. LAT largely determines the
climatic and environmental characteristics of an area, while the declination of the sun
is closely related to the day length and seasonal changes of a region. These two factors
affect the energy balance process near the ground. Solar declination is rarely considered
as a variable in the model of previous studies. This paper ranked the importance of each
parameter in the model validation stage in order to verify the importance of different
parameters. Table 2 shows the input variables for different scenarios. In this paper, two
instantaneous Ta estimation models were established, one for day and one for night. In the
estimation of daily mean Ta, the daily mean LST was obtained by summing the LST data of
four times a day. If data were missing due to cloud cover or other reasons at a certain time,
the daily mean LST of this point was considered as missing.

Table 2. Model input variables under different scenarios.

Scenarios Model Input Variables

Daily average LAT, ELEVATION, DECLINATION, NDVI, LC, DSR
(Daily average), LST (Daily average)

Daytime instantaneous LAT, ELEVATION, DECLINATION, NDVI, LC, DSR,
LST (Daytime instantaneous)

Nighttime instantaneous LAT, ELEVATION, DECLINATION, NDVI, LC,
LST (Nighttime instantaneous)

www.resdc.cn
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3.2. Models

As both complicated geographic environment and human factors such as impervious
land surfaces have influence, Ta changes dramatically along with time and space. Five typi-
cal machine learning models were employed to tackle the spatiotemporal variability and
factors with complex effects on the relationship with Ta, including a feedforward neural
network (FNN) [65], decision tree (DT) [66], random forest (RF) [67], generalized linear
model (GLM) [68], and support vector machine (SVM) [69]. We adjusted these models until
the lowest level of error was procured using 10-fold cross-validation to obtain best fitting
estimation as these models all have different parameter or algorithm combinations. In ad-
dition, the final model used for estimating Ta was selected by comparing the performance
of the five models (FNN, DT, RF, GLM, and SVM).

3.2.1. Feedforward Neural Network

Feedforward neural network (FNN) is a kind of artificial neural network that has a
simple structure and a wide application. It is a kind of static nonlinear mapping, good
at complex nonlinear processing [70]. Most feedforward networks are learning networks
and their classification ability and pattern recognition ability are generally stronger than
those of feedback networks. FNN adopts a unidirectional multilayer structure; each layer
contains several neurons and each neuron can receive the signal of the previous neuron
and produce the output to the next layer. The zero layer is called the input layer, the last
layer is called the output layer, and the other intermediate layers are called the hidden
layers; a hidden layer can be one layer or multiple layers [71].
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3.2.2. Decision Tree

Decision tree (DT) is a simple but widely used classifier. In machine learning, DT is
a prediction model that represents a mapping relationship between object attributes and
object values [72]. A decision tree is a tree structure in which each internal node represents
a test on an attribute, each branch represents a test output, and each leaf node represents
a category. By training data to build a decision tree, the unknown data can be efficiently
classified. The decision tree model is readable, descriptive, helpful for manual analysis,
and efficient. The decision tree only needs to be constructed once, used repeatedly, and the
maximum calculation times of each prediction does not exceed the depth of the decision
tree [73].

3.2.3. Random Forest

Random forest (RF), proposed by Breiman in 2001, is a classifier. RF uses multiple trees
to train and predict samples. The output categories of RF are determined by the output
mode of individual trees [74,75]. RF runs efficiently on large data bases with high accuracy,
which can handle thousands of input variables without variable deletion. RF can estimate
which variables are important in classification and generate an internal unbiased estimate
of generalization error as forest construction progresses. In addition, RF can also effectively
estimate missing data and maintain accuracy when the proportion of missing data is large.

3.2.4. Generalized Linear Model

The generalized linear model is based on a linear model; the relationship between
the mathematical expected value of a response variable and the predictive variables of a
linear combination is established by means of a joint function [76]. It is characterized by
the natural measurement of data without forcing changes and data can have nonlinear and
unsteady variance structures. It is a development of a linear model in studying non-normal
distribution of response value and simple and direct linear transformation of a nonlinear
model [77].

3.3. Variable Importance Analysis

Mean decrease accuracy (IncMSE) [78] was used to calculate the importance of different
variables in each model. Each model was recalculated to calculate the mean square error
(MSE) increment of the new result after a random increase of ±25% deviation for a certain
variable, assuming that other conditions remained unchanged. The average value was
obtained after 30 repetitions. If the increase in the MSE value was larger, the importance of
the parameter in the model was higher; otherwise, the importance was lower.

3.4. Model Training and Validation

In this study, data fusion correction and spatial matching were carried out based on
meteorological and remote sensing data from 2018 to 2019. Ultimately, 166,008 daily sample
data points and 992,705 instantaneous sample data points were collected. In this study,
the widely used 10-fold cross-validation (10-CV) procedure [79] was selected for model
validation, where all data samples were divided into ten subsets randomly; nine of them
were used as the training data and the remaining as the testing data, and the holdout
method is repeated 10 times. We computed an average accuracy score of all the accuracy
scores that were calculated in each 10 iterations. The validation of the model was evaluated
by mean absolute error (MAE), root mean square error (RMSE), and the coefficient of
determination (R2). The statistical measures were defined and used as follows:

MAE =
1
n

n

∑
i=1
|xi − yi| (1)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (2)
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R2 = 1−

n
∑

i=1
(xi − yi)

2

n
∑

i=1
(yi − y)2

(3)

where n is the sample size, xi is the simulated value, yi is the measured value, and ȳ is the
average value of the measured value.

4. Results
4.1. Comparison of Results of Different Models

We extracted 166,008 samples for the daily model, 456,422 samples for the daytime
instantaneous model, and 536,283 samples for the nighttime instantaneous model. Table 3
shows the comparison of simulation results produced by the different models. The results
show that the decision tree and RF algorithm performed better than other methods in the
model fitting stage; the RMSE of the simulation results of daily mean air temperature,
daytime instantaneous Ta, and night instantaneous air temperature ranged from 0.71 ◦C to
1.42 ◦C. The RF algorithm is obviously better than other algorithms, while in the model
validation stage the RMSEs were 1.29 ◦C, 1.88 ◦C, and 2.47 ◦C, respectively. Therefore, the
RF model can be considered as the optimal model in the retrieval of Ta in Jingjinji.

Table 3. Comparison of results of each model.

Scenarios Model
Model Fitting Model Validation

MAE (◦C) RMSE (◦C) R2 MAE (◦C) RMSE (◦C) R2

Daily average

FNN 1.29 1.66 0.98 1.29 1.66 0.98
DT 0.67 0.88 0.99 1.17 1.66 0.98
RF 0.48 0.71 0.99 0.94 1.29 0.99

GLM 1.54 1.97 0.97 1.53 1.97 0.97
SVM 0.96 1.22 0.99 1.07 1.41 0.98

Daytime instantaneous

FNN 2.02 2.63 0.95 2.02 2.63 0.95
DT 1.05 1.4 0.99 1.63 2.35 0.96
RF 0.69 1.04 0.99 1.35 1.88 0.98

GLM 2.84 3.59 0.91 2.84 3.58 0.91
SVM 1.79 2.37 0.96 1.84 2.44 0.96

Nighttime instantaneous

FNN 2.21 2.93 0.94 2.21 2.93 0.94
DT 1.32 1.74 0.98 2.14 2.97 0.94
RF 0.98 1.42 0.99 1.83 2.47 0.95

GLM 2.32 3.08 0.93 2.31 3.08 0.93
SVM 2.06 2.79 0.94 2.08 2.83 0.94

According to the results, RF produced the best simulation results for the daily average
temperature in the model validation stage with the RMSE, MAE, and R2 of 1.29 ◦C, 0.94 ◦C,
and 0.99, respectively. Meanwhile, the RMSE, MAE, and R2 of daytime instantaneous
Ta simulation were 1.88 ◦C, 1.35 ◦C, and 0.98, respectively. The estimation results of
instantaneous Ta at night were relatively poor with an RMSE, MAE, and R2 of 2.47 ◦C,
1.83 ◦C, and 0.95, respectively (Table 3).

4.2. Analysis of the Importance of Model Variables

Table 4 shows the IncMSE values and the weight ratios of each parameter in different
scenarios. The results show that in the simulation of daily mean Ta, the top four variables
of IncMSE were LST, LAT, DECLINATION, and DSR. For daytime instantaneous Ta simu-
lation, the top four variables of IncMSE were LST, DECLINATION, DSR, and LAT. For the
simulation of nighttime instantaneous Ta, the top four variables of IncMSE were LST,
declination, LAT, and LC. In general, the variable LST was much more important than other
variables; IncMSE accounted for about 40–60%, followed by DECLINATION, of which the
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proportion of IncMSE was about 12–28%. In the simulation of daytime instantaneous Ta,
the importance of the variable DSR was second only to DECLINATION, and the proportion
of IncMSE reached 14.93%, while in the simulation of daily average Ta, the proportion of
IncMSE was only 6.63%, which is lower than the variable LAT and DECLINATION.

Table 4. Ranking of variable importance.

Variables

Daily
Average

Daytime
Instantaneous

Nighttime
Instantaneous

IncMSE (◦C) Weight
(%) IncMSE (◦C) Weight

(%) IncMSE (◦C) Weight
(%)

LAT 2.34 12.55 2.09 7.14 3.72 21.10
ELEVATION 0.12 0.67 0.43 1.45 0.27 1.52

LC 0.04 0.23 0.35 1.18 1.42 8.03
DECLINATION 2.23 11.93 5.89 20.07 4.86 27.58

NDVI 0.26 1.40 1.66 5.67 0.49 2.77
DSR 1.24 6.63 4.38 14.93 - -
LST 12.43 66.60 14.54 49.57 6.88 39.00

4.3. Evaluation of Random Forest Performance

Figure 4 presents the histogram of the distribution validation residuals of daily average
Ta, daytime instantaneous Ta, and nighttime instantaneous Ta simulated by the RF model.
The figure shows the overall model error has a normal distribution. The error of less than
±1 ◦C accounts for 64.95%, 50.74%, and 38.09%, respectively, in the simulation of daily
average Ta, instantaneous Ta during the day, and instantaneous Ta at night, while the error
of less than ±2 ◦C accounts for 89.18%, 77.86%, and 65.54%, respectively, in the simulation
of these three types of Ta.
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Figure 5 shows a diagram of the distribution of the spatial error in simulation results
for daily mean Ta, daytime instantaneous Ta, and nighttime instantaneous Ta under the
RF model. As can be seen from Figure 5, when simulating daily average Ta most station
errors are between 0 and 2 ◦C. In the daytime instantaneous Ta simulation, compared with
the average daytime Ta simulation, the number of stations with errors of >2 ◦C increased
significantly. In addition, in the simulation of transient Ta at night, the station with error of
>2 ◦C is further increased. According to the spatial distribution characteristics, the sites
with errors >2 ◦C were mainly distributed in the western and northern high-elevation
mountainous areas. Table 5 shows the comparison of the simulation results in areas of
different types of terrain (plains and mountains) and land cover (urban and rural). It can be
seen that the simulation accuracy in the plains was higher than in the mountainous areas
under various scenarios; RMSE decreased by 0.62 ◦C, MAE decreased by 0.49 ◦C, and R2

increased by 0.01 on average. The simulation accuracy in urban areas was higher than in
rural areas; RMSE decreased by 0.24 ◦C, MAE decreased by 0.16 ◦C, and R2 increased by
0.01 on average.
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Figure 5. Mean absolute error (MAE) of estimated near-surface air temperature (Ta) in the Beijing-
Tianjing-Hebei region: (a) day average Ta, (b) daytime instantaneous Ta, (c) nighttime instantaneous Ta.

Table 5. Comparison of the precision of Ta estimation in different types of terrain and land cover.

Terrain Plains
(Elevation < 260 m) Mountainous Area Urban Area Rural

Area

Daily average

MAE (◦C) 0.79 1.24 0.83 0.97
RMSE (◦C) 1.07 1.66 1.12 1.34

R2 0.99 0.98 0.99 0.99
MD (◦C) 9.04 8.08 8.9 8.98
SD (◦C) 10.52 10.28 10.35 10.47

Daytime instantaneous

MAE (◦C) 1.19 1.70 1.19 1.42
RMSE (◦C) 1.67 2.27 1.67 1.96

R2 0.98 0.97 0.98 0.97
MD (◦C) 9.92 9.94 10.04 9.89
SD (◦C) 11.45 11.44 11.56 11.41

Nighttime instantaneous

MAE (◦C) 1.69 2.20 1.75 1.87
RMSE (◦C) 2.26 2.94 2.33 2.54

R2 0.96 0.94 0.96 0.95
MD (◦C) 9.01 8.95 9.03 8.98
SD (◦C) 10.51 10.49 10.51 10.5

Note: MD—mean deviation of observed Ta; SD—standard deviation of observed Ta.

Table 6 compares the evaluation results of daily average Ta, daytime instantaneous Ta,
and nighttime instantaneous Ta at different seasons simulated by the RF model. Figure 6
presents a scatter diagram of simulated and measured Ta values at different seasons. As can
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be seen from Table 6, in Ta daily average simulation, the error difference in four seasons is
generally small. Among them, summer has the best simulation effect, followed by autumn,
spring, and winter. The maximum and minimum values of RMSE and MAE in four seasons
were 0.32 ◦C and 0.25 ◦C, respectively. In the simulation of daytime instantaneous Ta,
the simulation worked best in winter, followed by autumn and summer. The simulation
results in spring are worse than in other seasons. The simulation of instantaneous Ta
worked best at night, followed by autumn. Table 6 shows that in summer the models
have low MAE but also low R2 in daily average and nighttime scenes. LST is closer to
temperature in summer than in other seasons, which probably caused the small MAE
in summer. Due to less cloud cover, there are more clear days in other seasons than in
summer and a large number of relatively consistent data enhance the correlation of valid
data, which may be the main reason for the high R2 in other seasons.

Table 6. Comparison of the precision of Ta estimation in different seasons.

Season Spring Summer Autumn Winter

Daily average

MAE (◦C) 0.93 0.81 0.93 1.06
RMSE (◦C) 1.32 1.11 1.25 1.43

R2 0.96 0.91 0.98 0.91
MD (◦C) 4.97 2.08 5.79 2.42
SD (◦C) 6.01 2.45 6.80 2.96

Daytime instantaneous

MAE (◦C) 1.61 1.35 1.25 1.19
RMSE (◦C) 2.21 1.84 1.72 1.67

R2 0.92 0.77 0.96 0.90
MD (◦C) 5.65 2.25 6.76 3.36
SD (◦C) 6.75 2.8 8.01 4.14

Nighttime instantaneous

MAE (◦C) 2.02 1.48 1.76 1.98
RMSE (◦C) 2.72 1.99 2.39 2.62

R2 0.87 0.83 0.91 0.78
MD (◦C) 5.20 2.68 5.56 2.82
SD (◦C) 6.29 3.21 6.59 3.50

Note: MD—mean deviation of observed Ta; SD—standard deviation of observed Ta.

4.4. Spatial Distribution of Ta

Thirty-first May 2018 was one of the clearest days in the study period. It was selected
for showing the model’s ability to recreate spatial Ta distribution maps where ground
weather stations do not exist. Figure 7a shows satellite retrieval daily mean Ta of Jingjinji
region on the selected day. The result shows that the distribution of high and low Ta is very
close to the distribution of elevation, which is consistent with the fact that temperature
decreases with height in the troposphere.

The Beijing region was selected for showing the correlation of estimated temperature
and the distribution of elevation. Figure 7b contains significant details of the estimated
daily mean temperature, which were in line with the distribution of elevation (Figure 7c).
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Figure 8 shows the instantaneous Ta estimation products at four times of day on
31 May 2018. This figure shows that the Ta products retrieved by satellite clearly show the
process of change in Ta at four times of a day. High Ta areas with clear boundaries caused
by the heat island effect are shown after cooling at night.
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5. Discussion
5.1. The Performance of RF Model

This study indicated the RF algorithm is obviously better than other algorithms to
estimate daily and instantaneous air temperature from MODIS data over this study area,
with the highest accuracy in model validation (Table 3). These results are consistent with
other research [52,56,80,81]. In addition, RF produced the best simulation results for daily
mean temperature, whereas the results for instantaneous Ta at night were relatively poor.
This mainly occurred because the daily average LST was calculated based on four MODIS
LST data from two sensors at two local overpass times (daytime and night-time). LST is
higher than Ta in the daytime and lower at night, therefore the difference between LST and
Ta is greatly reduced after averaging. The poorest simulation results were found at night,
mainly because the process of energy balance near the ground at night is quite different from
that in the daytime. Phan et al. [61] also found the correlation between LST daytime versus
Ta was slightly higher than nighttime versus Ta, which indicated that the relationship
between MODIS LST and Ta was complex. In this study, DSR was added as an input
variable in the daytime simulation; however, no such variable exists in the nighttime model.
Ruiz-Álvarez et al. [56] indicated that the most important variables in RF were satellite land
surface temperature, cdayt, and radiation, which could explain the results of this study
with lower accuracy observed at night due to the lack of radiation variables compared
with the daytime. In addition, this study did not take into account the advection process,
which is also a potential factor affecting the instantaneous Ta at night. Specifically, there is
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no energy at night and the temperature depends on the cooling speed of the air and the
ground. The ground and the nearby air are cooled by long wave radiation. On the cloudy
night, this long wave radiation is absorbed by the clouds and the clouds also transmit long
wave radiation upward and downward, with some of the downward radiation returning
to the ground to compensate for heat lost at the ground [82,83]. Therefore, factors such as
ground long wave radiation and clouds are affecting the simulation of night temperature
and these factors are difficult to quantify using ready-made remote sensing products. Due
to the difficulty of data acquisition, these factors were not selected in this study, which led
to the phenomenon of low accuracy of night temperature. Therefore, due to the lack of
potential influencing factors such as solar radiation and advection processes in the model,
the simulation accuracy of instantaneous Ta at night was relatively poor [4,37].

The experimental results of RF showed that the simulation accuracy in the plains
area was higher than in the mountainous area (Figure 5). Previous studies also found
that the higher the altitude the greater the uncertainty of the model [37], which is mainly
caused by the higher elevation, complex terrain, and the process of energy balance near
the ground in mountainous areas being more complex [84]. Previous studies have shown
that the relationships between daily mean air temperature and LST may change season-
ally [85–87]. According to the simulation results of different seasons, it was found that the
best results among the estimations of daily average Ta and night instantaneous Ta were
obtained in summer. However, many previous studies have shown that the estimation
accuracy is poorest in summer [37,57,88,89], and this study indicated that this phenomenon
can be changed by selecting appropriate variables on the scale of daily average Ta and
instantaneous Ta simulation.

5.2. Comparison with Recent Studies

As mentioned in the introduction, many studies have been carried out on the estima-
tion of Ta from remote sensing data. Some studies used machine learning methods that this
study follows. Many of them focused on the estimation of monthly average Ta [53,59,80],
while other studies focused on estimating the daily average Ta; few studies have focused on
the instantaneous Ta. To the best of our knowledge, two such studies [55,56] used a similar
method to estimate instantaneous Ta at the satellite pass time. The authors of [55] proposed
a two-stage random forest based approach to estimating intra-daily instantaneous Ta across
Israel for 2004–2016 and obtained an excellent resulting RMSE of 1.58 ◦C. The authors
of [56] compared four different methods and reached the conclusion that RF performed
better than other methods (Support Vector Machines, Multiple Linear Regression, Ordinary
Kriging) with the resulting RMSE of 3.01 ◦C. When compared with studies of daily average
validation, the results of this paper are better than most other studies. Table 7 shows the
details of comparison with recent studies.
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Table 7. Comparison with recent studies.

Method Resolution Number of
Ground Stations Input Variables Ta Type

Model Validation
Literature

MAE (◦C) RMSE
(◦C) R2

Random Forest Daily/1 km 1527
LST, DSR, NDVI, LC, LAT,

ELEVATION, DECLINATION

Daily mean 0.94 1.29 0.99
This studyDaytime instantaneous 1.35 1.88 0.98

Nighttime instantaneous 1.83 2.47 0.95

Statistical methods Daily/1 km 538 LST, NDVI, PERCENT OF URBAN AREAS,
ELEVATION, DISTANCE TO WATER BODY Daily mean - 1.38 0.97 [39]

Random Forest Daily/1 km 85

LST, NDVI, ROAD AND POPULATION
DENSITY, DISTANCE TO LARGE BODIES OF

WATER, ELEVATION, SLOPE, ASPECT,
URBAN FRACTIONS,

VEGETATION FRACTIONS

Intra-daily instantaneous 1.12 1.58 0.96

[55]
Daily max 1.27 1.89 0.97

Random Forest Daily/1 km 53

LST, ALBEDO, NDVI, ELEVATION,
DISTANCE TO THE SEA, POTENTIAL

INSOLATION, TOPOGRAPHIC
WETNESS INDEX

Daytime instantaneous 3.01 0.89 [56]

Geographically
weighted regression Daily/1 km 10,141 LST, ELEVATION Daily min 1.54 2.14 0.95 [60]

Linear regression Daily/1 km 23 LST Daily mean 1.84 2.41 [89]

Deep belief network Daily/0.01◦ 829

LST, NDVI, LC, ELEVATION, LATITUDE,
LONGITUDE, DAY OF YEAR,

MONTH OF YEAR,
VIEW ZENITH ANGLE OF DAY,

ROAD AND POPULATION DENSITY,
WIND SPEED,

SOIL MOISTURE CONTENT, ALBEDO

Daily max 1.54 2.00 0.99 [90]

Cubist Daily/0.05◦ 135 LST, ISR, OLR, TOAALB, SFCALB,
NDVI, NDSI Daily mean - 1.87 0.96 [91]
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Compared with other studies, firstly, we added elevation, which most studies also
added [39,55,56,60,90], so this model can be applied to the simulation of temperature
under different terrain conditions. Second, we had more stations (1527) than other stud-
ies [39,55,56,89–91], but fewer than the study of Li et al. [60] (10,141). However, the station
density in this study was higher than other studies, therefore the results and process of
this current study are still facing uncertainties. It is most likely due to the high density
of the site, resulting in high accuracy of the training model. Third, objectively speaking,
our model is more suitable for clear-sky days. Cloud cover is a major challenge when
modelling air temperature using satellite data. Inevitably, researchers would encounter
data missing from satellite-based remote sensing products due to cloud impact or data
quality. Since we used MODIS LST products, they had the same defect when it comes to
zone under clouds or pixels contaminated by smog, fog, haze, etc. However, none of the
currently available satellite-based LST products are spatially continuous due to the presence
of clouds, restricting the application of LST and derived Ta based on LST. In the future,
we will produce long term Ta products based on gap-free LST products released by other
platforms or scholars to make our model applicable to all days not only clear-sky days.

5.3. The Importance of Model Variables

LST can be directly retrieved from remotely sensed radiance data, which is considered
as one of the most important and useful data sources for Ta retrieval over a region or
large area [92–94]. In fact, various studies have used LST data for Ta estimation with high
accuracy [37,38,54,80,95]. According to the ranking results of models contributing variable
importance, we found that LST was the most important variable affecting simulation results,
which was consistent with previous studies [52].

DECLINATION was the second most important variable in the estimation of daytime
and nighttime instantaneous Ta and DSR was the third important variable in the estimation
of daytime instantaneous Ta only after DECLINATION. Previous studies have rarely used
declination as a model input variable. The present study shows that declination is an
important parameter for the retrieval of Ta, which is closely related to the change of seasons
and the variation of day length; therefore, declination plays an important role in the
retrieval of Ta.

Yang et al. [96] indicated that the complexity in land cover, elevation, and solar
radiation at daytime could have resulted in low accuracy of Ta estimation, because at
night-time there is no solar radiation effect [89,96,97]. During the daytime, the effects of
solar radiation will result in a more complex interaction between Ta and LST, which is why
the performance of the models with the nighttime LST variable was better than the models
without LST nighttime in the study of Phan et al. [61]. In this study, the importance of
DSR in the estimation of daytime instantaneous Ta ranks third, which showed that DSR
played an important role in the estimation of daytime scenarios and was also one of the
reasons why the accuracy of estimation of daytime instantaneous Ta was higher than that
of nighttime. As a result, declination and solar radiation are highly recommended to use to
improve the accuracy of Ta estimation in the future study.

5.4. Limitations and Future Perspectives

In the estimation of instantaneous Ta, the retrieval accuracy in daytime was obviously
better than that at night, which may occur because DSR was added as an input variable
of the model in daytime simulation, but there is no such variable in nighttime simulation.
In the future, more input variables such as advection processes, wind speed, wind direc-
tion, etc., which remote sensors cannot retrieve, should be taken into account and model
parameters can be adjusted to further improve the accuracy of nighttime instantaneous air
Ta simulation [98,99].

In addition, the results and processes of our current study are still facing uncertainties.
Compared with other studies, this study has a high density of meteorological stations,
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which may have greatly improved the accuracy of the model. In the future, we will attempt
to verify the performance of the model in the case of low-density meteorological stations.

6. Conclusions

In this paper, satellite remote sensing data and observational ground-based weather
station temperature data in the Jingjinji region during 2018–2019 were used to establish five
machine learning models for Ta estimation; the accuracy of the model products was verified
and compared. The results showed that RF provided the optimal model with the lowest
RMSEs (day average 1.29 ◦C, daytime instantaneous 1.88 ◦C, nighttime instantaneous
2.47 ◦C). In addition, as for the instantaneous Ta estimation, the retrieval accuracy in
daytime was obviously better than that at night, the plains areas were obviously better than
those in mountainous areas, and the summer simulation results were the best among the Ta
estimation of daily average and night instantaneous. This study showed that LST was the
most important factor contributing to model accuracy, followed by solar declination and
DSR, which implied that declination and DSR should be prioritized when estimating Ta.
However, it must be emphasized that there are still several limitations in this study, such
as the nighttime instantaneous Ta estimation, which was relatively low due to different
surface energy balance processes that occur at night.

In conclusion, based on the support of high-density meteorological station and remote
sensing data, a large-scale spatial continuous daily average and instantaneous Ta estimation
can be carried out by selecting appropriate variables to establish an RF model. On this
basis, the daily average Ta, daytime instantaneous Ta, and nighttime instantaneous Ta
datasets with a 1 km resolution in the Jingjinji region from 2018 to 2019 were established in
this paper, which can provide spatial continuous Ta data and are of reference value for the
boundary layer of related research studies in the Jingjinji region.
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